Abstract
Ascorbic acid is the most well-known vitamin found in different types of food. It has tremendous medical applications in several different fields such as in pharmaceuticals, cosmetics, and in organic synthesis. Ascorbic acid can be used as a substrate or mediator in organic synthesis. In this review, we report ascorbic acid-catalyzed reactions in organic synthesis. Several examples are included in this review to demonstrate that ascorbic acid is a versatile catalyst for the synthesis of diverse organic compounds. Reactions catalyzed by ascorbic acid are performed in organic or aqueous media. The ready availability and easy handling features of ascorbic acid make these procedures highly fascinating.
Keywords: Ascorbic acid, catalyst, organic synthesis, pharmaceuticals, medicine, green chemistry, acid-catalyzed.
[http://dx.doi.org/10.1093/jn/125.7.1952] [PMID: 7616313]
[PMID: 8175804]
[PMID: 16745082]
(b)Buettner, G.R.; Schafer, F.Q. Albert, Szent-Györgyi. Vitamin C identification. Biochemist (Lond.), 2006, 28, 31-33.
[http://dx.doi.org/10.17221/756-CJFS]
(b)Elmore, A.R. Final report of the safety assessment of l-ascorbic acid, calcium ascorbate, magnesium ascorbate, magnesium ascorbyl phosphate, sodium ascorbate, and sodium ascorbyl phosphate as used in cosmetics. Int. J. Toxicol., 2005, 24(Suppl. 2), 51-111.
[http://dx.doi.org/10.1080/10915810590953851] [PMID: 16154915]
(b)Mehlhorn, R.J. Ascorbate- and dehydroascorbic acid-mediated reduction of free radicals in the human erythrocyte. J. Biol. Chem., 1991, 266(5), 2724-2731.
[PMID: 1993652]
(c)Tripathi, R.P.; Singh, B.; Bisht, S.S.; Pandey, J. L-Ascorbic acid in Organic Synthesis: An Overview. Curr. Org. Chem., 2009, 13, 99-122.
[http://dx.doi.org/10.2174/138527209787193792]
[http://dx.doi.org/10.1007/BF02165477] [PMID: 14813261]
[http://dx.doi.org/10.1021/ba-1982-0200.ch004]
(b)Buettner, G.R.; Jurkiewicz, B.A. Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat. Res., 1996, 145(5), 532-541.
[http://dx.doi.org/10.2307/3579271] [PMID: 8619018]
(c)Buettner, G.R. In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. J. Biochem. Biophys. Methods, 1988, 16(1), 27-40.
[http://dx.doi.org/10.1016/0165-022X(88)90100-5] [PMID: 3135299]
(d)Song, Y.; Buettner, G.R. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radic. Biol. Med., 2010, 49(6), 919-962.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.009] [PMID: 20493944]
(e)Williams, N.H.; Yandell, J.K. Outer-sphere electron-transfer reactions of ascorbate anions. Aust. J. Chem., 1982, 35, 1133-1144.
[http://dx.doi.org/10.1071/CH9821133]
[http://dx.doi.org/10.1021/ja01002a046] [PMID: 6064355]
(b)Udenfriend, S.; Clark, C.T.; Axelrod, J.; Brodie, B.B. Ascorbic acid in aromatic hydroxylation. I. A model system for aromatic hydroxylation. J. Biol. Chem., 1954, 208(2), 731-739.
[PMID: 13174582]
[http://dx.doi.org/10.1016/S0968-0004(99)01418-8] [PMID: 10390611]
(b)Frei, B.; Lawson, S. Vitamin C and cancer revisited. Proc. Natl. Acad. Sci. USA, 2008, 105(32), 11037-11038.
[http://dx.doi.org/10.1073/pnas.0806433105] [PMID: 18682554]
[http://dx.doi.org/10.1021/cr60296a004]
(b)Samec, J.S.; Ell, A.H.; Bäckvall, J-E. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system. Chemistry, 2005, 11(8), 2327-2334.
[http://dx.doi.org/10.1002/chem.200401082] [PMID: 15706621]
(c)Murahashi, S-I.; Okano, Y.; Sato, H.; Nakae, T.; Komiya, N. Synlett, 2007, 1675.
[http://dx.doi.org/10.1055/s-2007-984515]
(d)Suzuki, K.; Watanabe, T.; Murahashi, S-I. Aerobic oxidation of primary amines to oximes catalyzed by DPPH and WO3/Al2O3. Angew. Chem. Int. Ed., 2008, 47, 2079.
[http://dx.doi.org/10.1002/anie.200705002]
(e)Murahashi, S.; Zhang, D. Ruthenium catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450. Chem. Soc. Rev., 2008, 37(8), 1490-1501.
[http://dx.doi.org/10.1039/b706709g] [PMID: 18648675]
[http://dx.doi.org/10.1021/ol802715c] [PMID: 19146453]
[http://dx.doi.org/10.1021/cr050523v] [PMID: 15941216]
[http://dx.doi.org/10.1039/c002725a] [PMID: 20461276]
[PMID: 19842423]
(b)Attanasi, O.A.; Favi, G.; Filippone, P.; Mantellini, F.; Moscatelli, G.; Perrulli, F.R. Copper(II)/copper(I)-catalyzed aza-Michael addition/click reaction of in situ generated α-azidohydrazones: synthesis of novel pyrazolone-triazole framework. Org. Lett., 2010, 12(3), 468-471.
[http://dx.doi.org/10.1021/ol902642z] [PMID: 20043624]
[http://dx.doi.org/10.1039/b107811a] [PMID: 12108978]
(b)Kharasch, M.S.; Engelmann, H.; Mayo, F.R. The Peroxide effect in the addition of reagents to unsaturated compounds. XV. The addition of hydrogen bromide to 1-and 2-bromo-and chloropropenes. J. Org. Chem., 1937, 2, 288-302.
[http://dx.doi.org/10.1021/jo01226a011]
(c)Eckenhoff, W.T.; Pintauer, T. Copper catalyzed atom transfer radical addition (ATRA) and cyclization (ATRC) reactions in the presence of reducing agents. Catal. Rev., Sci. Eng., 2010, 52, 1-59.
[http://dx.doi.org/10.1080/01614940903238759]
(d)Kharasch, M.S.; Urry, W.H.; Jensen, E.V. Addition of derivatives of chlorinated acetic acids to olefins. J. Am. Chem. Soc., 1945, 67, 1626-1626.
[http://dx.doi.org/10.1021/ja01225a517]
[http://dx.doi.org/10.1021/cr00026a008]
(b)Gossage, R.A.; De Kuil, L.A.V.; Van Koten, G. Diaminoarylnickel(II) “Pincer” complexes: Mechanistic considerations in the kharasch addition reaction, controlled polymerization, and dendrimeric transition metal catalysts. Acc. Chem. Res., 1998, 31, 423-431.
[http://dx.doi.org/10.1021/ar970221i]
(c)Minisci, F. Free-radical additions to olefins in the presence of redox systems. Acc. Chem. Res., 1975, 8, 165-171.
[http://dx.doi.org/10.1021/ar50089a004]
[http://dx.doi.org/10.1039/c0dt01157f] [PMID: 20981391]
[http://dx.doi.org/10.1021/ic700908m] [PMID: 17602555]
[http://dx.doi.org/10.1021/ma0702041]
(b)Min, K. Jakubowski, W.; Matyjaszewski, K. AGET ATRP in the Presence of Air in Miniemulsion and in Bulk. Macromol. Rapid Commun., 2006, 27, 594-598.
[http://dx.doi.org/10.1002/marc.200600060]
(c)Oh, J.K.; Min, K.; Matyjaszewski, K. Preparation of Poly(oligo(ethylene glycol) monomethyl ether methacrylate) by Homogeneous Aqueous AGET ATRP. Macromolecules, 2006, 39, 3161-3167.
[http://dx.doi.org/10.1021/ma060258v]
[http://dx.doi.org/10.1016/j.tet.2010.11.025]
(b)Hunger, K. Industry Dyes: Chemistry, Properties and Applications; Wiley-VCH: Weinheim, 2003.
(c)Rappoport, Z. Chemistry of Anilines, Part 1 In: Patai Series; Rappoport, Z., Ed.; The Chemistry of Functional GroupsJohn Wiley & Sons Ltd: Chichester: West Sussex, 2007.
(d)Lawrence, S.A. Amines: Synthesis, Properties and Application; Cambridge University Press: Cambridge, 2004.
[http://dx.doi.org/10.1016/S0040-4039(97)10877-2]
(b)Mann, G.; Hartwig, J.F.; Driver, M.S.; Fernandez-Rivas, C. Palladium-Catalyzed C−N(sp2) Bond Formation: N-Arylation of Aromatic and Unsaturated Nitrogen and the Reductive Elimination Chemistry of Palladium Azolyl and Methyleneamido Complexes. J. Am. Chem. Soc., 1998, 120, 827-828.
[http://dx.doi.org/10.1021/ja973524g]
(c)Kiyomori, A.; Marcoux, J.; Buchwald, S.L. An efficient copper-catalyzed coupling of aryl halides with imidazoles. Tetrahedron Lett., 1999, 40, 2657-2660.
[http://dx.doi.org/10.1016/S0040-4039(99)00291-9]
(d)Grasa, G.A.; Viciu, M.S.; Huang, J.; Nolan, S.P. Amination reactions of aryl halides with nitrogen-containing reagents mediated by palladium/imidazolium salt systems. J. Org. Chem., 2001, 66(23), 7729-7737.
[http://dx.doi.org/10.1021/jo010613+] [PMID: 11701028]
(e)Barluenga, J.; Aznar, F.; Valdés, C. N-trialkylsilylimines as coupling partners for pd-catalyzed C[bond]N-forming reactions: one-step synthesis of imines and azadienes from aryl and alkenyl bromides. Angew. Chem. Int. Ed. Engl., 2004, 43(3), 343-345.
[http://dx.doi.org/10.1002/anie.200352808] [PMID: 14705093]
(f)Xu, L.; Zhu, D.; Wu, F.; Wang, R.; Wan, B. Mild and efficient copper-catalyzed N-arylation of alkylamines and N–H heterocycles using an oxime-phosphine oxide ligand. Tetrahedron, 2005, 61, 6553-6560.
[http://dx.doi.org/10.1016/j.tet.2005.04.053]
(g)Altman, R.A.; Fors, B.P.; Buchwald, S.L. Pd-catalyzed amination reactions of aryl halides using bulky biarylmonophosphine ligands. Nat. Protoc., 2007, 2(11), 2881-2887.
[http://dx.doi.org/10.1038/nprot.2007.414] [PMID: 18007623]
(h)Ogata, T.; Hartwig, J.F. Palladium-catalyzed amination of aryl and heteroaryl tosylates at room temperature. J. Am. Chem. Soc., 2008, 130(42), 13848-13849.
[http://dx.doi.org/10.1021/ja805810p] [PMID: 18811161]
(i)Zhao, H.; Fu, H.; Qiao, R. Copper-catalyzed direct amination of ortho-functionalized haloarenes with sodium azide as the amino source. J. Org. Chem., 2010, 75(10), 3311-3316.
[http://dx.doi.org/10.1021/jo100345t] [PMID: 20359203]
(j)Senra, J.D.; Aguiara, L.C.S.; Simas, A.B.C. Recent Progress in Transition-Metal-Catalyzed C-N Cross-Couplings: Emerging Approaches Towards Sustainability. Curr. Org. Synth., 2011, 8, 53-78.
[http://dx.doi.org/10.2174/157017911794407683]
[http://dx.doi.org/10.1002/9783527613885]
(b)Appl, M. Ammonia.Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2006.
[http://dx.doi.org/10.1002/14356007.a02_143.pub2]
(c)Enthaler, S. Ammonia: an environmentally friendly nitrogen source for primary aniline synthesis. ChemSusChem, 2010, 3(9), 1024-1029.
[http://dx.doi.org/10.1002/cssc.201000145] [PMID: 20572289]
(d)Roundhill, D.M. Transition metal and enzyme catalyzed reactions involving reactions with ammonia and amines. Chem. Rev., 1992, 92, 1-27.
[http://dx.doi.org/10.1021/cr00009a001]
[http://dx.doi.org/10.1021/ja074681a] [PMID: 17672469]
(b)Schulz, T.; Torborg, C.; Enthaler, S.; Schäffner, B.; Dumrath, A.; Spannenberg, A.; Neumann, H.; Börner, A.; Beller, M. A general palladium-catalyzed amination of aryl halides with ammonia. Chemistry, 2009, 15(18), 4528-4533.
[http://dx.doi.org/10.1002/chem.200802678] [PMID: 19322847]
(c)Wu, Z.; Jiang, Z.; Wu, D.; Xiang, H.; Zhou, X. A simple and efficient catalytic system for coupling aryl halides with aqueous ammonia in water. Eur. J. Org. Chem., 2010, 1854-1857.
[http://dx.doi.org/10.1002/ejoc.201000060]
(d)Jiang, L.; Lu, X.; Zhang, H.; Jiang, Y.; Ma, D. CuI/4-hydro-L-proline as a more effective catalytic system for coupling of aryl bromides with N-boc hydrazine and aqueous ammonia. J. Org. Chem., 2009, 74(12), 4542-4546.
[http://dx.doi.org/10.1021/jo9006738] [PMID: 19432437]
[http://dx.doi.org/10.1016/S0040-4039(97)01465-2]
(b)Wolfe, J.P.; Tomori, H.; Sadighi, J.P.; Yin, J.; Buchwald, S.L. Simple, efficient catalyst system for the palladium-catalyzed amination of aryl chlorides, bromides, and triflates. J. Org. Chem., 2000, 65(4), 1158-1174.
[http://dx.doi.org/10.1021/jo991699y] [PMID: 10814067]
(c)Huang, X.; Buchwald, S.L. New ammonia equivalents for the Pd-catalyzed amination of aryl halides. Org. Lett., 2001, 3(21), 3417-3419.
[http://dx.doi.org/10.1021/ol0166808] [PMID: 11594848]
(d)Huang, X.; Anderson, K.W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S.L. Expanding Pd-catalyzed C-N bond-forming processes: the first amidation of aryl sulfonates, aqueous amination, and complementarity with Cu-catalyzed reactions. J. Am. Chem. Soc., 2003, 125(22), 6653-6655.
[http://dx.doi.org/10.1021/ja035483w] [PMID: 12769573]
(e)Lee, S.; Jørgensen, M.; Hartwig, J.F. Palladium-catalyzed synthesis of arylamines from aryl halides and lithium bis(trimethylsilyl)amide as an ammonia equivalent. Org. Lett., 2001, 3(17), 2729-2732.
[http://dx.doi.org/10.1021/ol016333y] [PMID: 11506620]
(f)Lee, D.Y.; Hartwig, J.F. Zinc trimethylsilylamide as a mild ammonia equivalent and base for the amination of aryl halides and triflates. Org. Lett., 2005, 7(6), 1169-1172.
[http://dx.doi.org/10.1021/ol050141b] [PMID: 15760166]
[http://dx.doi.org/10.1021/jo301204t] [PMID: 22849292]
(b)Xu, H.; Wolf, C. Copper catalyzed coupling of aryl chlorides, bromides and iodides with amines and amides. J. Chem. Soc. Chem. Commun., 2009, 1715-1717.
(c)Kim, J.; Chang, S. Ammonium salts as an inexpensive and convenient nitrogen source in the Cu-catalyzed amination of aryl halides at room temperature. J. Chem. Soc. Chem. Commun., 2008, 3052-3054.
(d)Cortes-Salva, M.; Nguyen, B.; Cuevas, J.; Pennypacker, K.R.; Antilla, J.C. Copper-Catalyzed Guanidinylation of Aryl Iodides: The Formation of N,N′-Disubstituted Guanidines. Org. Lett., 2010, 12, 1316-1319.
(e)Surry, D.S.; Buchwald, S.L. Diamine ligands in copper-catalyzed reactions. Chem. Sci., 2010, 1, 13-31.
(f)Rout, L.; Jammi, S.; Punniyamurthy, T. Novel CuO nanoparticle catalyzed C− N cross coupling of amines with iodobenzene. Org. Lett., 2007, 9, 3397-3399.
(g)Lang, F.; Zewge, D.; Houpis, I.N.; Volante, R.P. Amination of aryl halides using copper catalysis. Tetrahedron Lett., 2001, 42, 3251-3254.
[http://dx.doi.org/10.1002/adsc.200900327]
[http://dx.doi.org/10.1016/j.tetlet.2012.11.133]
[http://dx.doi.org/10.1002/tcr.20135] [PMID: 18069686]
(b)Imada, Y.; Iida, H.; Murahashi, S.; Naota, T. An aerobic, organocatalytic, and chemoselective method for Baeyer-Villiger oxidation. Angew. Chem. Int. Ed. Engl., 2005, 44(11), 1704-1706.
[http://dx.doi.org/10.1002/anie.200462429] [PMID: 15693045]
(c)Imada, Y.; Iida, H.; Naota, T. Flavin-catalyzed generation of diimide: an environmentally friendly method for the aerobic hydrogenation of olefins. J. Am. Chem. Soc., 2005, 127(42), 14544-14545.
[http://dx.doi.org/10.1021/ja053976q] [PMID: 16231886]
(d)Imada, Y.; Kitagawa, T.; Ohno, T.; Iida, H.; Naota, T. Neutral flavins: green and robust organocatalysts for aerobic hydrogenation of olefins. Org. Lett., 2010, 12(1), 32-35.
[http://dx.doi.org/10.1021/ol902393p] [PMID: 19950976]
(e)Imada, Y.; Iida, H.; Kitagawa, T.; Naota, T. Aerobic reduction of olefins by in situ generation of diimide with synthetic flavin catalysts. Chemistry, 2011, 17(21), 5908-5920.
[http://dx.doi.org/10.1002/chem.201003278] [PMID: 21495097]
(f)Murahashi, S-I.; Oda, T.; Masui, Y. Flavin-catalyzed oxidation of amines and sulfur compounds with hydrogen peroxide. J. Am. Chem. Soc., 1989, 111, 5002-5003.
[http://dx.doi.org/10.1021/ja00195a076]
(g)Murahashi, S.; Ono, S.; Imada, Y. Asymmetric baeyer-villiger reaction with hydrogen peroxide catalyzed by a novel planar-chiral bisflavin. Angew. Chem. Int. Ed. Engl., 2002, 41(13), 2366-2368.
[http://dx.doi.org/10.1002/1521-3773(20020703)41:13<2366:AID-ANIE2366>3.0.CO;2-S] [PMID: 12203594]
(h)Imada, Y.; Ohno, T.; Naota, T. Oxidation of sulfides with hydrogen peroxide catalyzed by 10, 10′-linked bisflavinium perchlorates. Tetrahedron Lett., 2007, 48, 937-939.
[http://dx.doi.org/10.1016/j.tetlet.2006.12.017]
[http://dx.doi.org/10.1021/ja028276p] [PMID: 12617641]
(b)Imada, Y.; Iida, H.; Ono, S.; Masui, Y.; Murahashi, S. Flavin-catalyzed oxidation of amines and sulfides with molecular oxygen: biomimetic green oxidation. Chem. Asian J., 2006, 1(1-2), 136-147.
[http://dx.doi.org/10.1002/asia.200600080] [PMID: 17441048]
[http://dx.doi.org/10.1039/C39830000253]
(b)Aihara, K.; Urano, Y.; Higuchi, T.; Hirobe, M. Mechanistic studies of selective catechol formation from o-methoxyphenols using a copper (II)–ascorbic acid–dioxygen system. J. Chem. Soc. Perkin Trans., 1993, 2, 2165-2170.
[http://dx.doi.org/10.1039/P29930002165]
(c)Shul’pin, G.B.; Lachter, E.R. Aerobic hydroxylation of hydrocarbons catalysed by vanadate ion. J. Mol. Catal. Chem., 2003, 197, 65-71.
[http://dx.doi.org/10.1016/S1381-1169(02)00677-5]
[http://dx.doi.org/10.1021/cr000664r] [PMID: 11996540]
(b)Corbet, J-P.; Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev., 2006, 106(7), 2651-2710.
[http://dx.doi.org/10.1021/cr0505268] [PMID: 16836296]
[http://dx.doi.org/10.1021/cr0509760] [PMID: 17212475]
(b)Lyons, T.W.; Sanford, M.S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev., 2010, 110(2), 1147-1169.
[http://dx.doi.org/10.1021/cr900184e] [PMID: 20078038]
(c)Wencel-Delord, J.; Glorius, F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem., 2013, 5(5), 369-375.
[http://dx.doi.org/10.1038/nchem.1607] [PMID: 23609086]
(d)McGlacken, G.P.; Bateman, L.M. Recent advances in aryl-aryl bond formation by direct arylation. Chem. Soc. Rev., 2009, 38(8), 2447-2464.
[http://dx.doi.org/10.1039/b805701j] [PMID: 19623360]
(e)Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
(f)Mehta, V.P.; Punji, B. Recent advances in transition-metal-free direct C–C and C–heteroatom bond forming reactions. RSC Advances, 2013, 3, 11957-11986.
[http://dx.doi.org/10.1039/c3ra40813b]
(g)Sun, C.L.; Li, H.; Yu, D.G.; Yu, M.; Zhou, X.; Lu, X.Y.; Huang, K.; Zheng, S.F.; Li, B.J.; Shi, Z.J. An efficient organocatalytic method for constructing biaryls through aromatic C-H activation. Nat. Chem., 2010, 2(12), 1044-1049.
[http://dx.doi.org/10.1038/nchem.862] [PMID: 21107368]
(h)Shirakawa, E.; Itoh, K.; Higashino, T.; Hayashi, T. tert-Butoxide-mediated arylation of benzene with aryl halides in the presence of a catalytic 1,10-phenanthroline derivative. J. Am. Chem. Soc., 2010, 132(44), 15537-15539.
[http://dx.doi.org/10.1021/ja1080822] [PMID: 20961045]
(i)Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K.H.; He, C.; Wang, H.; Kwong, F.Y.; Lei, A. Organocatalysis in cross-coupling: DMEDA-catalyzed direct C-H arylation of unactivated benzene. J. Am. Chem. Soc., 2010, 132(47), 16737-16740.
[http://dx.doi.org/10.1021/ja103050x] [PMID: 20677824]
[http://dx.doi.org/10.1002/anie.201309761] [PMID: 24453180]
[http://dx.doi.org/10.1002/anie.200905824] [PMID: 20127778]
(b)Qiu, D.; Meng, H.; Jin, L.; Wang, S.; Tang, S.; Wang, X.; Mo, F.; Zhang, Y.; Wang, J. Synthesis of aryl trimethylstannanes from aryl amines: a Sandmeyer-type stannylation reaction. Angew. Chem. Int. Ed. Engl., 2013, 52(44), 11581-11584.
[http://dx.doi.org/10.1002/anie.201304579] [PMID: 24014092]
(c)Qiu, D.; Jin, L.; Zheng, Z.; Meng, H.; Mo, F.; Wang, X.; Zhang, Y.; Wang, J. Synthesis of pinacol arylboronates from aromatic amines: a metal-free transformation. J. Org. Chem., 2013, 78(5), 1923-1933.
[http://dx.doi.org/10.1021/jo3018878] [PMID: 23106090]
[http://dx.doi.org/10.1002/1522-2675(20010321)84:3<632:AID-HLCA632>3.0.CO;2-0]
(b)Reszka, K.J.; Chignell, C.F. One-electron reduction of arenediazonium compounds by physiological electron donors generates aryl radicals. An EPR and spin trapping investigation. Chem. Biol. Interact., 1995, 96(3), 223-234.
[http://dx.doi.org/10.1016/0009-2797(94)03593-W] [PMID: 7750162]
[http://dx.doi.org/10.3390/molecules200915631] [PMID: 26343622]
[http://dx.doi.org/10.1016/S0040-4020(01)91887-3]
(b)Jacob, C. A scent of therapy: pharmacological implications of natural products containing redox-active sulfur atoms. Nat. Prod. Rep., 2006, 23(6), 851-863.
[http://dx.doi.org/10.1039/b609523m] [PMID: 17119635]
(c)Fontecave, M.; Ollagnier-de-Choudens, S.; Mulliez, E. Biological radical sulfur insertion reactions. Chem. Rev., 2003, 103(6), 2149-2166.
[http://dx.doi.org/10.1021/cr020427j] [PMID: 12797827]
(d)Procter, D.J. The synthesis of thiols, selenols, sulfides, selenides, sulfoxides, selenoxides, sulfones and selenones. J. Chem. Soc. Perkin Trans., 2001, 1, 335-354.
[http://dx.doi.org/10.1039/b002081h]
(e)Rayner, C.M. Synthesis of thiols, selenols, sulfides, selenides, sulfoxides, selenoxides, sulfones and selenones. Contemp. Org. Synth., 1996, 3, 499-533.
[http://dx.doi.org/10.1039/co9960300499]
(f)Hoyle, C.E.; Lee, T.Y.; Roper, T. J. Polym. Sci., Part A: Thiol–enes: Chemistry of the past with promise for the future. Polym. Chem., 2004, 42, 5301-5338.
[http://dx.doi.org/10.1002/pola.20366]
(g)Clemenson, P.I. The chemistry and solid state properties of nickel, palladium and platinum bis (maleonitriledithiolate) compounds. Coord. Chem. Rev., 1990, 106, 171-203.
[http://dx.doi.org/10.1016/0010-8545(60)80003-3]
[http://dx.doi.org/10.1021/cr068402y] [PMID: 18072810]
(b)Gómez Arrayás, R.; Carretero, J.C. Chiral thioether-based catalysts in asymmetric synthesis: recent advances. Chem. Commun. (Camb.), 2011, 47(8), 2207-2211.
[http://dx.doi.org/10.1039/C0CC03978K] [PMID: 21127802]
[http://dx.doi.org/10.1021/cr100347k] [PMID: 21391564]
(b)Kondo, T.; Mitsudo Ta, T.A. Metal-catalyzed carbon-sulfur bond formation. Chem. Rev., 2000, 100(8), 3205-3220.
[http://dx.doi.org/10.1021/cr9902749] [PMID: 11749318]
(c)Hoyle, C.E.; Lowe, A.B.; Bowman, C.N. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev., 2010, 39(4), 1355-1387.
[http://dx.doi.org/10.1039/b901979k] [PMID: 20309491]
(d)Chauhan, P.; Mahajan, S.; Enders, D. Organocatalytic carbon-sulfur bond-forming reactions. Chem. Rev., 2014, 114(18), 8807-8864.
[http://dx.doi.org/10.1021/cr500235v] [PMID: 25144663]
(e)Ley, S.V.; Thomas, A.W. Modern synthetic methods for copper-mediated C(aryl)[bond]O, C(aryl)[bond]N, and C(aryl)[bond]S bond formation. Angew. Chem. Int. Ed. Engl., 2003, 42(44), 5400-5449.
[http://dx.doi.org/10.1002/anie.200300594] [PMID: 14618572]
[http://dx.doi.org/10.3390/molecules16010590] [PMID: 21242940]
(b)Baig, R.B.N.; Varma, R.S. A highly active and magnetically retrievable nanoferrite-DOPA-copper catalyst for the coupling of thiophenols with aryl halides. Chem. Commun. (Camb.), 2012, 48(20), 2582-2584.
[http://dx.doi.org/10.1039/c2cc17283f] [PMID: 22293995]
(c)Wu, Q.; Zhao, D.; Qin, X.; Lan, J.; You, J. Synthesis of di(hetero)aryl sulfides by directly using arylsulfonyl chlorides as a sulfur source. Chem. Commun. (Camb.), 2011, 47(32), 9188-9190.
[http://dx.doi.org/10.1039/c1cc13633j] [PMID: 21750836]
(d)Kundu, D.; Ahammed, S.; Ranu, B.C. Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate: a general procedure for the synthesis of unsymmetrical diaryl chalcogenides. Green Chem., 2012, 14, 2024-2030.
[http://dx.doi.org/10.1039/c2gc35328h]
(e)Cheng, J-H.; Ramesh, C.; Kao, H-L.; Wang, Y-J.; Chan, C-C.; Lee, C.F. Synthesis of aryl thioethers through the N-chlorosuccinimide-promoted cross-coupling reaction of thiols with Grignard reagents. J. Org. Chem., 2012, 77(22), 10369-10374.
[http://dx.doi.org/10.1021/jo302088t] [PMID: 23067042]
[http://dx.doi.org/10.1002/cber.188401702106]
(b)Ziegler, J.H. Ueber eine Methode zur Darstellung aromatischer Sulfide von bestimmter Constitution und das Thioxanthon. Ber. Dtsch. Chem. Ges., 1890, 23, 2469.
[http://dx.doi.org/10.1002/cber.189002302128]
[http://dx.doi.org/10.1021/ja01380a033]
(b)Szmant, H.H.; Levitt, G. p-Nitrophenyl p-Acylphenyl Sulfides and Related Compounds. J. Am. Chem. Soc., 1954, 76, 5459-5461.
[http://dx.doi.org/10.1021/ja01650a059]
(c)Baleja, J.D. The Facile Conversion of Aromatic Amines to Arylmethylsulfides with Methylthiocopper. Synth. Commun., 1984, 14, 215-218.
[http://dx.doi.org/10.1080/00397918408060724]
(d)Petrillo, G.; Novi, M.; Garbarino, G.; Dell’Erba, C. A simple preparation of symmetrical and unsymmetrical diarylsulfides from arenediazonium tetrafluoroborates. Tetrahedron Lett., 1985, 26, 6365-6368.
[http://dx.doi.org/10.1016/S0040-4039(01)84600-1]
[http://dx.doi.org/10.1002/anie.201303483] [PMID: 23784666]
[http://dx.doi.org/10.1021/ar800098p] [PMID: 18681463]
(b)Carril, M.; SanMartin, R.; Domínguez, E. Palladium and copper-catalysed arylation reactions in the presence of water, with a focus on carbon-heteroatom bond formation. Chem. Soc. Rev., 2008, 37(4), 639-647.
[http://dx.doi.org/10.1039/b709565c] [PMID: 18362973]
(c)Beletskaya, I.P.; Cheprakov, A.V. Copper in cross-coupling reactions: The post-Ullmann chemistry. Coord. Chem. Rev., 2004, 248, 2337-2364.
[http://dx.doi.org/10.1016/j.ccr.2004.09.014]
(d)Prim, D.; Campagne, J-M.; Joseph, D.; Andrioletti, B. Palladium-catalysed reactions of aryl halides with soft, non-organometallic nucleophiles. Tetrahedron, 2002, 58, 2041-2075.
[http://dx.doi.org/10.1016/S0040-4020(02)00076-5]
(e)Kunz, K.; Scholz, U.; Ganzer, D. Renaissance of Ullmann and Goldberg Reactions - Progress in Copper Catalyzed C-N-, C-O- and C-S-Coupling. Synlett, 2003, 15, 2428-2439.
[http://dx.doi.org/10.1055/s-2003-42473]
(f)Alvaro, E.; Hartwig, J.F. Resting state and elementary steps of the coupling of aryl halides with thiols catalyzed by alkylbisphosphine complexes of palladium. J. Am. Chem. Soc., 2009, 131(22), 7858-7868.
[http://dx.doi.org/10.1021/ja901793w] [PMID: 19453106]
(g)Fernández-Rodríguez, M.A.; Shen, Q.; Hartwig, J.F. Highly efficient and functional-group-tolerant catalysts for the palladium-catalyzed coupling of aryl chlorides with thiols. Chemistry, 2006, 12(30), 7782-7796.
[http://dx.doi.org/10.1002/chem.200600949] [PMID: 17009367]
(h)Fukuzawa, S-i.; Tanihara, D.; Kikuchi, S. Palladium-catalyzed coupling reaction of diaryl dichalcogenide with aryl bromide leading to the synthesis of unsymmetrical aryl chalcogenide. Synlett, 2006, 13, 2145-2147.
[http://dx.doi.org/10.1055/s-2006-949607]
(i)Bhadra, S.; Sreedhar, B.; Ranu, B.C. Recyclable heterogeneous supported copper‐catalyzed coupling of thiols with aryl halides: base‐controlled differential arylthiolation of bromoiodobenzenes. Adv. Synth. Catal., 2009, 351, 2369-2378.
[http://dx.doi.org/10.1002/adsc.200900358]
(j)Zhang, Y.; Ngeow, K.C.; Ying, J.Y. The first N-heterocyclic carbene-based nickel catalyst for C-S coupling. Org. Lett., 2007, 9(18), 3495-3498.
[http://dx.doi.org/10.1021/ol071248x] [PMID: 17676857]
[http://dx.doi.org/10.1039/c3cc41867g] [PMID: 23660726]
(b)Du, B.; Jin, B.; Sun, P. Syntheses of sulfides and selenides through direct oxidative functionalization of C(sp3)-H bond. Org. Lett., 2014, 16(11), 3032-3035.
[http://dx.doi.org/10.1021/ol5011449] [PMID: 24835082]
(c)Guo, S.R.; Yuan, Y.Q.; Xiang, J.N. Metal-free oxidative C(sp3)-H bond thiolation of ethers with disulfides. Org. Lett., 2013, 15(18), 4654-4657.
[http://dx.doi.org/10.1021/ol402281f] [PMID: 23987104]
(d)Wang, P.F.; Wang, X.Q.; Dai, J.J.; Feng, Y.S.; Xu, H.J. Silver-mediated decarboxylative C-S cross-coupling of aliphatic carboxylic acids under mild conditions. Org. Lett., 2014, 16(17), 4586-4589.
[http://dx.doi.org/10.1021/ol502144c] [PMID: 25153507]
[http://dx.doi.org/10.1055/s-0034-1378738]
[http://dx.doi.org/10.1016/j.tet.2012.09.056]
(b)Cho, C.S.; Ren, W.X.; Shim, S.C. Ketones as a new synthon for quinoxaline synthesis. Tetrahedron Lett., 2007, 48, 4665-4667.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.044]
(c)Qi, C.; Jiang, H.; Huang, L.; Chen, Z.; Chen, H. DABCO-catalyzed oxidation of deoxybenzoins to benzils with air and one-pot synthesis of quinoxalines. Synthesis, 2011, 3, 387-396.
[http://dx.doi.org/10.1021/ol400912v] [PMID: 23772562]
(b)Naveen, T.; Kancherla, R.; Maiti, D. Radical based strategy toward the synthesis of 2,3-dihydrofurans from aryl ketones and aromatic olefins. Org. Lett., 2014, 16(20), 5446-5449.
[http://dx.doi.org/10.1021/ol502688r] [PMID: 25275799]
[http://dx.doi.org/10.1002/adsc.201200582]
[http://dx.doi.org/10.1016/S0040-4020(03)00080-2]
(b)Liu, J.; Yi, H.; Zhang, X.; Liu, C.; Liu, R.; Zhang, G.; Lei, A. Copper-catalysed oxidative Csp(3)-H methylenation to terminal olefins using DMF. Chem. Commun. (Camb.), 2014, 50(57), 7636-7638.
[http://dx.doi.org/10.1039/C4CC02275K] [PMID: 24893656]
[http://dx.doi.org/10.1039/b902230a]
(b)Liang, Y-F.; Wu, K.; Song, S.; Li, X.; Huang, X.; Jiao, N. I2- or NBS-catalyzed highly efficient α-hydroxylation of ketones with dimethyl sulfoxide. Org. Lett., 2015, 17(4), 876-879.
[http://dx.doi.org/10.1021/ol5037387] [PMID: 25650782]
[http://dx.doi.org/10.1016/S0040-4039(02)01130-9]
(b)Urgoitia, G.; SanMartin, R.; Herrero, M.T.; Dominguer, E. Palladium NCN and CNC pincer complexes as exceptionally active catalysts for aerobic oxidation in sustainable media. Green Chem., 2011, 13, 2161-2166.
[http://dx.doi.org/10.1039/c1gc15390k]
(c)Cacchi, S.; Fabrizi, G.; Goggiamani, A. IAZZetti, A.; Verdiglione, R. Copper-Catalyzed oxidation of deoxybenzoins to benzils under aerobic conditions. Synthesis, 2013, 45, 1701-1707.
[http://dx.doi.org/10.1055/s-0033-1338451]
[http://dx.doi.org/10.1002/anie.201308785] [PMID: 24481978]
[http://dx.doi.org/10.1016/j.tetlet.2006.03.040]
(b)Churruca, F.; SanMartin, R.; Tellitu, I.; Domínguez, E. Palladium-catalyzed arylation of ketone enolates: an expeditious entry to tamoxifen-related 1,2,2-triarylethanones. Org. Lett., 2002, 4(9), 1591-1594.
[http://dx.doi.org/10.1021/ol025811h] [PMID: 11975636]
[http://dx.doi.org/10.1039/C4CY01523A]
[http://dx.doi.org/10.1021/acs.joc.5b00825] [PMID: 26154891]
[http://dx.doi.org/10.1039/c1cc10827a] [PMID: 21431223]
(b)Giedyk, M.; Turkowska, J.; Lepak, S.; Marculewicz, M.; Ó Proinsias, K.; Gryko, D. Photoinduced Vitamin B12-Catalysis for Deprotection of (Allyloxy)arenes. Org. Lett., 2017, 19(10), 2670-2673.
[http://dx.doi.org/10.1021/acs.orglett.7b01012] [PMID: 28453294]
(c)DeClue, M.S.; Monnard, P-A.; Bailey, J.A.; Maurer, S.E.; Collis, G.E.; Ziock, H-J.; Rasmussen, S.; Boncella, J.M. Nucleobase mediated, photocatalytic vesicle formation from an ester precursor. J. Am. Chem. Soc., 2009, 131(3), 931-933.
[http://dx.doi.org/10.1021/ja808200n] [PMID: 19115944]
(d)Borak, J.B.; Lee, H-Y.; Raghavan, S.R.; Falvey, D.E. Application of PET deprotection for orthogonal photocontrol of aqueous solution viscosity. Chem. Commun. (Camb.), 2010, 46(47), 8983-8985.
[http://dx.doi.org/10.1039/c0cc02203a] [PMID: 20967368]
(e)Borak, J.B.; Falvey, D.E. A new photolabile protecting group for release of carboxylic acids by visible-light-induced direct and mediated electron transfer. J. Org. Chem., 2009, 74(10), 3894-3899.
[http://dx.doi.org/10.1021/jo900182x] [PMID: 19361187]
(f)Falvey, D.E.; Sundararajan, C. Photoremovable protecting groups based on electron transfer chemistry. Photochem. Photobiol. Sci., 2004, 3(9), 831-838.
[http://dx.doi.org/10.1039/b406866a] [PMID: 15346183]
(g)Sundararajan, C.; Falvey, D.E. C-O bond fragmentation of 4-picolyl- and N-methyl-4-picolinium esters triggered by photochemical electron transfer. J. Org. Chem., 2004, 69(17), 5547-5554.
[http://dx.doi.org/10.1021/jo049501j] [PMID: 15307722]
[http://dx.doi.org/10.1021/acs.joc.7b02775] [PMID: 29135249]
[http://dx.doi.org/10.1021/acs.jpca.6b07291] [PMID: 27529793]
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
[http://dx.doi.org/10.1002/anie.201206566] [PMID: 23873766]
(b)Campbell, M.G.; Ritter, T. Late-stage fluorination: from fundamentals to application. Org. Process Res. Dev., 2014, 18(4), 474-480.
[http://dx.doi.org/10.1021/op400349g] [PMID: 25838756]
(c)Kawamura, S.; Dosei, K.; Valverde, E.; Ushida, K.; Sodeoka, M. N-Heterocycle-Forming Amino/Carboperfluoroalkylations of Aminoalkenes by Using Perfluoro Acid Anhydrides: Mechanistic Studies and Applications Directed Toward Perfluoroalkylated Compound Libraries. J. Org. Chem., 2017, 82(23), 12539-12553.
[http://dx.doi.org/10.1021/acs.joc.7b02307] [PMID: 29052416]
(d)Wang, Y.; Wang, J.; Li, G-X.; He, G.; Chen, G. Halogen-bond-promoted photoactivation of perfluoroalkyl iodides: a photochemical protocol for perfluoroalkylation reactions. Org. Lett., 2017, 19(6), 1442-1445.
[http://dx.doi.org/10.1021/acs.orglett.7b00375] [PMID: 28263075]
(e)Huang, Y.; Ajitha, M.J.; Huang, K-W.; Zhang, Z.; Weng, Z. A class of effective decarboxylative perfluoroalkylating reagents: [(phen)2Cu](O2CRF). Dalton Trans., 2016, 45(20), 8468-8474.
[http://dx.doi.org/10.1039/C6DT00277C] [PMID: 27114043]
(f)Wu, C.; Huang, Y.; Zhang, Z.; Weng, Z. Decarboxylative Perfluoroalkylation of Vinyl Bromides with Copper (I). Perfluorocarboxylato Complexes. Asian J. Org. Chem., 2016, 5, 1406-1410.
[http://dx.doi.org/10.1002/ajoc.201600348]
(g)Chen, X.; Tan, Z.; Gui, Q.; Hu, L.; Liu, J.; Wu, J.; Wang, G. Photocatalytic/Cu-Promoted C-H Activations: Visible-light-Induced ortho-Selective Perfluoroalkylation of Benzamides. Chemistry, 2016, 22(18), 6218-6222.
[http://dx.doi.org/10.1002/chem.201600229] [PMID: 26933840]
[http://dx.doi.org/10.1021/cr4002879] [PMID: 24299176]
(b)Hagmann, W.K. The many roles for fluorine in medicinal chemistry. J. Med. Chem., 2008, 51(15), 4359-4369.
[http://dx.doi.org/10.1021/jm800219f] [PMID: 18570365]
(c)Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev., 2008, 37(2), 320-330.
[http://dx.doi.org/10.1039/B610213C] [PMID: 18197348]
[http://dx.doi.org/10.1021/cr9408991] [PMID: 11848888]
(b)Liu, X.; Xu, C.; Wang, M.; Liu, Q. Trifluoromethyltrimethylsilane: nucleophilic trifluoromethylation and beyond. Chem. Rev., 2015, 115(2), 683-730.
[http://dx.doi.org/10.1021/cr400473a] [PMID: 24754488]
(c)Krishnamoorthy, S.; Prakash, G.K.S. Silicon-based reagents for difluoromethylation and difluoromethylenation reactions. Synthesis, 2017, 49, 3394-3406.
[http://dx.doi.org/10.1055/s-0036-1588489]
(d)Dilman, A.D.; Levin, V.V. Synthesis of organofluorine compounds using α-fluorine-substituted silicon reagents. Mendeleev Commun., 2015, 25, 239-244.
[http://dx.doi.org/10.1016/j.mencom.2015.07.001]
(e)Prakash, G.K.S.; Zhang, Z. Modern Synthesis Processes and Reactivity of Fluorinated Compounds; Groult, H.; Leroux, F.R; Tressaud, A., Ed.; Elsevier: Amsterdam, 2017, pp. 289-337.
[http://dx.doi.org/10.1016/B978-0-12-803740-9.00011-1]
(b)Berliner, L.J. Assessment of nitrones as in vivo redox sensors. Appl. Magn. Reson., 2009, 36, 157-170.
[http://dx.doi.org/10.1007/s00723-009-0034-2]
[http://dx.doi.org/10.1002/anie.201611058] [PMID: 28097819]
(b)Klein, A.; Vicic, D.A.; Biewer, C.; Kieltsch, I.; Stirnat, K.; Hamacher, C. Oxidative Cleavage of CH3 and CF3 Radicals from BOXAM Nickel Complexes. Organometallics, 2012, 31, 5334-5341.
[http://dx.doi.org/10.1021/om300342r]
[http://dx.doi.org/10.1021/acs.orglett.7b03987] [PMID: 29355326]
[http://dx.doi.org/10.1021/ja300798k] [PMID: 22486313]
[http://dx.doi.org/10.1021/ja802055t] [PMID: 18505256]
(b)Warren, J.J.; Mayer, J.M. Tuning of the thermochemical and kinetic properties of ascorbate by its local environment: solution chemistry and biochemical implications. J. Am. Chem. Soc., 2010, 132(22), 7784-7793.
[http://dx.doi.org/10.1021/ja102337n] [PMID: 20476757]
[http://dx.doi.org/10.1021/ol400122k] [PMID: 23368906]
(b)Chernov, G.N.; Levin, V.V.; Kokorekin, V.A.; Struchkova, M.I.; Dilman, A.D. Interaction of gem-Difluorinated Iodides with Silyl Enol Ethers Mediated by Photoredox Catalysis. Adv. Synth. Catal., 2017, 359, 3063-3067.
[http://dx.doi.org/10.1002/adsc.201700423]
[http://dx.doi.org/10.1002/anie.201410954] [PMID: 25651531]
Nitro compounds, aromatic.Booth, G In: Ed.; Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2012.
(b) Trost, B.M.; Fleming, I., Eds.; Comprehensive organic synthesis. Selectivity, strategy and efficiency in modern organic chemistry; Pergamon: Oxford, 1991.
[http://dx.doi.org/10.1021/acs.oprd.6b00205]
[http://dx.doi.org/10.1021/acs.orglett.9b01205] [PMID: 31066563]
[http://dx.doi.org/10.1021/ol202456d] [PMID: 22046963]
(b)Binstead, R.A.; McGuire, M.E.; Dovletoglou, A.; Seok, W.K.; Roecker, L.E.; Meyer, T.J. Oxidation of hydroquinones by [(bpy)2(py)RuIV(0)]2+ and [(bpy)2(py)RuIII(OH)]2+. Proton-coupled electron transfer. J. Am. Chem. Soc., 1992, 114, 173-186.
[http://dx.doi.org/10.1021/ja00027a025]
[http://dx.doi.org/10.1021/jo102239x] [PMID: 21192632]
[http://dx.doi.org/10.1021/cr900393d]
(b)Lawrenson, S.; North, M.; Peigneguy, F.; Routledge, A. Greener solvents for solid-phase synthesis. Green Chem., 2017, 19, 952-962.
[http://dx.doi.org/10.1039/C6GC03147A]
(c)Sathish, M.; Sreeram, K.J.; Raghava Rao, J.; Unni Nair, B. Cyclic Carbonate: A Recyclable Medium for Zero Discharge Tanning. ACS Sustain. Chem.& Eng., 2016, 4, 1032-1040.
[http://dx.doi.org/10.1021/acssuschemeng.5b01121]
(d)Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Catalytic hydrogenation of cyclic carbonates: a practical approach from CO2 and epoxides to methanol and diols. Angew. Chem. Int. Ed. Engl., 2012, 51(52), 13041-13045.
[http://dx.doi.org/10.1002/anie.201207781] [PMID: 23161665]
(e)Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S. A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chem., 2003, 5, 497-507.
[http://dx.doi.org/10.1039/B304963A]
(f)Laserna, V.; Fiorani, G.; Whiteoak, C.J.; Martin, E.; Escudero-Adán, E.; Kleij, A.W. Carbon dioxide as a protecting group: highly efficient and selective catalytic access to cyclic cis-diol scaffolds. Angew. Chem. Int. Ed. Engl., 2014, 53(39), 10416-10419.
[http://dx.doi.org/10.1002/anie.201406645] [PMID: 25132290]
(g)Beattie, C.; North, M.; Villuendas, P.; Young, C. Influence of temperature and pressure on cyclic carbonate synthesis catalyzed by bimetallic aluminum complexes and application to overall syn-bis-hydroxylation of alkenes. J. Org. Chem., 2013, 78(2), 419-426.
[http://dx.doi.org/10.1021/jo302317w] [PMID: 23256882]
(h)Kim, S.H.; Hong, S.H. Transfer hydrogenation of organic formates and cyclic carbonates: an alternative route to methanol from carbon dioxide. ACS Catal., 2014, 4, 3630-3636.
[http://dx.doi.org/10.1021/cs501133m]
(i)Khan, A.; Yang, L.; Xu, J.; Jin, L.Y.; Zhang, Y.J. Palladium-catalyzed asymmetric decarboxylative cycloaddition of vinylethylene carbonates with Michael acceptors: construction of vicinal quaternary stereocenters. Angew. Chem. Int. Ed. Engl., 2014, 53(42), 11257-11260.
[http://dx.doi.org/10.1002/anie.201407013] [PMID: 25168969]
(j)Liu, H.; Huang, Z.; Han, Z.; Ding, K.; Liu, H.; Xia, C.; Chen, J. Efficient production of methanol and diols via the hydrogenation of cyclic carbonates using copper-silica nanocomposite catalysts. Green Chem., 2015, 17, 4281-4290.
[http://dx.doi.org/10.1039/C5GC00810G]
(k) Guo, W.; Gónzalez-Fabra, J.; Bandeira, N.A.G.; Bo, C.; Kleij, A.W. A Metal-Free Synthesis of N-Aryl Carbamates under Ambient Conditions. Angew. Chem. Int. Ed. Engl., 2015, 54(40), 11686-11690.
[http://dx.doi.org/10.1002/anie.201504956] [PMID: 26385130]
[http://dx.doi.org/10.1021/acssuschemeng.7b01650]
[http://dx.doi.org/10.1016/S0006-8993(98)01329-8] [PMID: 10082862]
(b)Mederski, W.W.K.R.; Osswald, M.; Dorsch, D.; Christadler, M.; Schmitges, C-J.; Wilm, C. 1, 4-Diaryl-2-oxo-1, 2-dihydro-quinoline-3-carboxylic acids as endothelin receptor antagonists. Bioorg. Med. Chem. Lett., 1997, 7, 1883-1886.
[http://dx.doi.org/10.1016/S0960-894X(97)00319-3]
[http://dx.doi.org/10.1016/j.bmcl.2004.01.073] [PMID: 15026035]
(b)Hewawasam, P.; Fan, W.; Ding, M.; Flint, K.; Cook, D.; Goggins, G.D.; Myers, R.A.; Gribkoff, V.K.; Boissard, C.G.; Dworetzky, S.I.; Starrett, J.E., Jr; Lodge, N.J. 4-Aryl-3-(hydroxyalkyl)quinolin-2-ones: novel maxi-K channel opening relaxants of corporal smooth muscle targeted for erectile dysfunction. J. Med. Chem., 2003, 46(14), 2819-2822.
[http://dx.doi.org/10.1021/jm030005h] [PMID: 12825925]
(c)Hewawasam, P.; Fan, W.; Knipe, J.; Moon, S.L.; Boissard, C.G.; Gribkoff, V.K.; Starrett, J.E. The synthesis and structure-activity relationships of 4-aryl-3-aminoquinolin-2-ones: a new class of calcium-dependent, large conductance, potassium (maxi-K) channel openers targeted for post-stroke neuroprotection. Bioorg. Med. Chem. Lett., 2002, 12(13), 1779-1783.
[http://dx.doi.org/10.1016/S0960-894X(02)00240-8] [PMID: 12067560]
(d)Raitio, K.H.; Savinainen, J.R.; Vepsäläinen, J.; Laitinen, J.T.; Poso, A.; Järvinen, T.; Nevalainen, T. Synthesis and SAR studies of 2-oxoquinoline derivatives as CB2 receptor inverse agonists. J. Med. Chem., 2006, 49(6), 2022-2027.
[http://dx.doi.org/10.1021/jm050879z] [PMID: 16539390]
(e)Cordi, A.A.; Desos, P.; Randle, J.C.R.; Lepagnol, J. Structure-activity relationships in a series of 3-sulfonylamino-2-(1H)-quinolones, as new AMPA/kainate and glycine antagonists. Bioorg. Med. Chem., 1995, 3(2), 129-141.
[http://dx.doi.org/10.1016/0968-0896(95)00007-4] [PMID: 7540921]
(f)Desos, P.; Lepagnol, J.M.; Morain, P.; Lestage, P.; Cordi, A.A. Structure-activity relationships in a series of 2(1H)-quinolones bearing different acidic function in the 3-position: 6,7-dichloro-2(1H)-oxoquinoline-3-phosphonic acid, a new potent and selective AMPA/kainate antagonist with neuroprotective properties. J. Med. Chem., 1996, 39(1), 197-206.
[http://dx.doi.org/10.1021/jm950323j] [PMID: 8568808]
(g)Carling, R.W.; Leeson, P.D.; Moore, K.W.; Smith, J.D.; Moyes, C.R.; Mawer, I.M.; Thomas, S.; Chan, T.; Baker, R.; Foster, A.C.; Grimwood, S.; Kemp, J.A.; Marshall, G.R.; Tricklebank, M.D.; Saywell, K.L. 3-Nitro-3,4-dihydro-2(1H)-quinolones. Excitatory amino acid antagonists acting at glycine-site NMDA and (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. J. Med. Chem., 1993, 36(22), 3397-3408.
[http://dx.doi.org/10.1021/jm00074a021] [PMID: 8230130]
[http://dx.doi.org/10.1021/jm00241a017] [PMID: 1151993]
[http://dx.doi.org/10.1016/j.bmcl.2008.05.065] [PMID: 18524583]
[http://dx.doi.org/10.1002/adsc.201000149]
[http://dx.doi.org/10.2174/1389557513666131119204126] [PMID: 24251802]
[http://dx.doi.org/10.1093/jac/47.1.1] [PMID: 11152426]
[http://dx.doi.org/10.18433/J3Q01V] [PMID: 25877440]
[http://dx.doi.org/10.1016/S0020-1693(98)00035-8]
[http://dx.doi.org/10.1016/S0223-5234(02)01374-0] [PMID: 12204478]
[http://dx.doi.org/10.1021/jm950564r] [PMID: 8676337]
(b)Otokesh, S.; Koukabi, N.; Kolvari, E.; Amoozadeh, A.; Malmir, M.; Azhari, S. A solvent-free synthesis of polyhydroquinolines via Hantzsch multicomponent condensation catalyzed by nanomagnetic-supported sulfonic acid. S. Afr. J. Chem., 2015, 68, 15-20.
(b)Shen, Y-B.; Wang, G-W. Solvent-free synthesis of xanthenediones and acridinediones. ARKIVOC, 2008, xvi, 1-8.
(c)Davoodnia, A.; Khashi, M.; Tavakoli-Hoseini, N. Tetrabutylammonium hexatungstate [TBA]2[W6O19]: Novel and reusable heterogeneous catalyst for rapid solvent-free synthesis of polyhydroquinoline via unsymmetrical Hantzsch reaction. Chin. J. Catal., 2013, 34, 1173-1178.
[http://dx.doi.org/10.1016/S1872-2067(12)60547-6]
(d)Khalafi-Nezhad, A.; Panahi, F.; Mohammadi, S.; Foroughi, H.O. A green and efficient procedure for one-pot synthesis of xanthenes and acridines using silica boron–sulfuric acid nanoparticles (SBSANs) as a solid Lewis-protic acid. J. Iran Chem. Soc., 2013, 10, 109-200.
[http://dx.doi.org/10.1007/s13738-012-0140-1]
(e)Soliman, H.A.; Mubarak, A.Y.; El-Merakabi, A.; Elmorsy, S.A. SiO2/ZnCl2-Catalyzed Heterocyclic Synthesis: Green, Rapid and Efficient One-Pot Synthesis of 14-H-dibenzo [a,j]Xanthenes, 1,8-Dioxo-octahydroxanthenes and 1,8-DioxoDecahydroacridines Under Solvent-Free Conditions. Chem. Sci. Trans., 2014, 3, 819-825.
(f)Vahdat, S.M.; Akbari, M. Orient. An Efficient One-Pot Synthesis of 1, 8-dioxo-Decahydroacridines by Ionic Liquid with Multi-SO3H Groups Under Ambient Temperature in Water. J. Chem., 2011, 27, 1573-1580.
(g)Tajbakhsh, M.; Alinezhad, H.; Norouzi, M.; Baghery, S.; Akbari, M. Protic pyridinium ionic liquid as a green and highly efficient catalyst for the synthesis of polyhydroquinoline derivatives via Hantzsch condensation in water. J. Mol. Liq., 2013, 177, 44-48.
[http://dx.doi.org/10.1016/j.molliq.2012.09.017]
(h)Ko, S.; Yao, C-F. Ceric ammonium nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron, 2006, 62, 7293-7299.
[http://dx.doi.org/10.1016/j.tet.2006.05.037]
[http://dx.doi.org/10.1080/00397911.2017.1316406]
[http://dx.doi.org/10.1039/C6RA10191G]
(b)Brasche, G.; Buchwald, S.L. C–H functionalization/C–N bond formation: copper-catalyzed synthesis of benzimidazoles from amidines. Angew. Chem., 2008, 120, 1958-1960.
(c)Xiao, Q.; Wang, W-H.; Liu, G.; Meng, F-K.; Chen, J-H.; Yang, Z.; Shi, Z-J. Direct imidation to construct 1H-Benzo[d]imidazole through PdII-Catalyzed C-H activation promoted by thiourea. Chem. Eur. J., 2009, 15, 7292-7296.
(d)Blacker, A.J.; Farah, M.M.; Hall, M.I.; Marsden, S.P.; Saidi, O.; Williams, J.M.J. Synthesis of benzazoles by hydrogen-transfer catalysis. Org. Lett., 2009, 11, 2039-2042.
(e)Shiraishi, Y.; Sugano, Y.; Tanaka, S.; Hirai, T. One-Pot synthesis of benzimidazoles by simultaneous photocatalytic and catalytic reactions on Pt@ TiO2 nanoparticles. Angew. Chem., 122, 1700-1704.
(f)Moorthy, J.N.; Neogi, I. IBX-mediated one-pot synthesis of benzimidazoles from primary alcohols and arylmethyl bromides. Tetrahedron Lett., 2011, 52, 3868-3871.
(g)Wilfred, C.D.; Taylor, R.J.K. Preparation of 2-substituted benzimidazoles and related heterocycles directly from activated alcohols using TOP methodology. Synlett, 2004, 1628-1630.
(h)Ruiz, V.R.; Corma, A.; Sabater, M.J. New route for the synthesis of benzimidazoles by a one-pot multistep process with mono and bifunctional solid catalysts. Tetrahedron, 2010, 66, 730-735.
(i)Kondo, T.; Yang, S.; Huh, K-T.; Kobayashi, M.; Kotachi, S.; Watanabe, Y. Ruthenium complex-catalyzed facile synthesis of 2-substituted benzo-azoles. Chem. Lett., 1991, 20, 1275-1278.
(j)Raghavendra, G.M.; Ramesha, A.B.; Revanna, C.N.; Nandeesh, K.N.; Mantelingu, K.; Rangappa, K.S. One-pot tandem approach for the synthesis of benzimidazoles and benzothiazoles from alcohols. Tetrahedron Lett., 2011, 52, 5571-5574.
(k) Zhu, Y.; Jia, F.; Liu, M.; Wu, A. A multipathway coupled domino strategy: metal-free oxidative cyclization for one-pot synthesis of 2-acylbenzothiazoles from multiform substrates. Org. Lett., 2012, 14, 4414-4417.
[http://dx.doi.org/10.1007/s10562-017-2232-0]
[http://dx.doi.org/10.1021/jm101330h] [PMID: 21678971]
(b)Engelhardt, F.C.; Shi, Y-J.; Cowden, C.J.; Conlon, D.A.; Pipik, B.; Zhou, G.; McNamara, J.M.; Dolling, U-H. Synthesis of a NO-releasing prodrug of rofecoxib. J. Org. Chem., 2006, 71(2), 480-491.
[http://dx.doi.org/10.1021/jo051712g] [PMID: 16408954]
(c)Grzybowska, K.; Chmiel, K.; Knapik-Kowalczuk, J.; Grzybowski, A.; Jurkiewicz, K.; Paluch, M. Molecular factors governing the liquid and glassy states recrystallization of celecoxib in binary mixtures with excipients of different molecular weights. Mol. Pharm., 2017, 14(4), 1154-1168.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01056] [PMID: 28241116]
(d)Bhardwaj, A.; Huang, Z.; Kaur, J.; Knaus, E.E. Rofecoxib analogues possessing a nitric oxide donor sulfohydroxamic acid (SO2NHOH) cyclooxygenase-2 pharmacophore: synthesis, molecular modeling, and biological evaluation as anti-inflammatory agents. ChemMedChem, 2012, 7(1), 62-67.
[http://dx.doi.org/10.1002/cmdc.201100393] [PMID: 21990143]
(e)Di Nunno, L.; Vitale, P.; Scilimati, A.; Tacconelli, S.; Patrignani, P. Novel synthesis of 3,4-diarylisoxazole analogues of valdecoxib: reversal cyclooxygenase-2 selectivity by sulfonamide group removal. J. Med. Chem., 2004, 47(20), 4881-4890.
[http://dx.doi.org/10.1021/jm040782x] [PMID: 15369392]
(f)Uddin, M.J.; Elleman, A.V.; Ghebreselasie, K.; Daniel, C.K.; Crews, B.C.; Nance, K.D.; Huda, T.; Marnett, L.J. Design of Fluorine-Containing 3,4-Diarylfuran-2(5H)-ones as Selective COX-1 Inhibitors. ACS Med. Chem. Lett., 2014, 5(11), 1254-1258.
[http://dx.doi.org/10.1021/ml500344j] [PMID: 25408841]
[http://dx.doi.org/10.1021/jm3004174] [PMID: 22715973]
(b)Lima, C.G.S.; Ali, A.; van Berkel, S.S.; Westermann, B.; Paixão, M.W. Emerging approaches for the synthesis of triazoles: beyond metal-catalyzed and strain-promoted azide-alkyne cycloaddition. Chem. Commun. (Camb.), 2015, 51(54), 10784-10796.
[http://dx.doi.org/10.1039/C5CC04114G] [PMID: 26066359]
(c)Barve, I.J.; Thikekar, T.U.; Sun, C-M. Silver(I)-Catalyzed Regioselective Synthesis of Triazole Fused-1,5-Benzoxazocinones. Org. Lett., 2017, 19(9), 2370-2373.
[http://dx.doi.org/10.1021/acs.orglett.7b00907] [PMID: 28409630]
(d)Krasiński, A.; Fokin, V.V.; Sharpless, K.B. Direct synthesis of 1,5-disubstituted-4-magnesio-1,2,3-triazoles, revisited. Org. Lett., 2004, 6(8), 1237-1240.
[http://dx.doi.org/10.1021/ol0499203] [PMID: 15070306]
(e)Zhang, L.; Chen, X.; Xue, P.; Sun, H.H.Y.; Williams, I.D.; Sharpless, K.B.; Fokin, V.V.; Jia, G. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc., 2005, 127(46), 15998-15999.
[http://dx.doi.org/10.1021/ja054114s] [PMID: 16287266]
(f)Cheng, G.; Zeng, X.; Shen, J.; Wang, X.; Cui, X. A metal-free multicomponent cascade reaction for the regiospecific synthesis of 1,5-disubstituted 1,2,3-triazoles. Angew. Chem. Int. Ed. Engl., 2013, 52(50), 13265-13268.
[http://dx.doi.org/10.1002/anie.201307499] [PMID: 24227395]
(g)Kim, W.G.; Kang, M.E.; Lee, J.B.; Jeon, M.H.; Lee, S.; Lee, J.; Choi, B.; Cal, P.M.S.D.; Kang, S.; Kee, J-M.; Bernardes, G.J.L.; Rohde, J-U.; Choe, W.; Hong, S.Y. Nickel-catalyzed azide–alkyne cycloaddition to access 1, 5-disubstituted 1, 2, 3-triazoles in air and water. J. Am. Chem. Soc., 2017, 139(35), 12121-12124.
[http://dx.doi.org/10.1021/jacs.7b06338] [PMID: 28814075]
[http://dx.doi.org/10.1039/C7CC09934G] [PMID: 29468231]
[http://dx.doi.org/10.1007/s13738-019-01655-w]
[http://dx.doi.org/10.2174/1389557514666141106131425] [PMID: 25373848]
[http://dx.doi.org/10.1021/cr60256a004]
(b)Shaabani, A.; Maleki, A.; Mofakham, H. Novel multicomponent one-pot synthesis of tetrahydro-1H-1,5-benzodiazepine-2-carboxamide derivatives. J. Comb. Chem., 2008, 10(4), 595-598.
[http://dx.doi.org/10.1021/cc8000635] [PMID: 18553983]
[http://dx.doi.org/10.1021/ol036496h] [PMID: 14986971]
(b)Deres, K.; Schröder, C.H.; Paessens, A.; Goldmann, S.; Hacker, H.J.; Weber, O.; Krämer, T.; Niewöhner, U.; Pleiss, U.; Stoltefuss, J.; Graef, E.; Koletzki, D.; Masantschek, R.N.; Reimann, A.; Jaeger, R.; Gross, R.; Beckermann, B.; Schlemmer, K.H.; Haebich, D.; Rübsamen-Waigmann, H. Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science, 2003, 299(5608), 893-896.
[http://dx.doi.org/10.1126/science.1077215] [PMID: 12574631]
[http://dx.doi.org/10.1021/jm00106a048] [PMID: 1995904]
(b)Bahekar, S.S.; Shinde, D.B. Synthesis and anti-inflammatory activity of some [4,6-(4-substituted aryl)-2-thioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl]-acetic acid derivatives. Bioorg. Med. Chem. Lett., 2004, 14(7), 1733-1736.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.039] [PMID: 15026060]
(c)Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
(d)Kappe, C.O. The generation of dihydropyrimidine libraries utilizing Biginelli multicomponent chemistry. QSAR Comb. Sci., 2003, 22, 630-645.
[http://dx.doi.org/10.1002/qsar.200320001]
(e)Rovnyak, G.C.; Atwal, K.S.; Hedberg, A.; Kimball, S.D.; Moreland, S.; Gougoutas, J.Z.; O’Reilly, B.C.; Schwartz, J.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. J. Med. Chem., 1992, 35(17), 3254-3263.
[http://dx.doi.org/10.1021/jm00095a023] [PMID: 1387168]
[http://dx.doi.org/10.1021/jm990200p] [PMID: 10579840]
(b)Bigdeli, M.A.; Jafari, S.; Mahdavinia, G.H.; Hazarkhan, H. Trichloroisocyanuric acid, a new and efficient catalyst for the synthesis of dihydropyrimidinones. Catal. Commun., 2007, 8, 1641-1644.
[http://dx.doi.org/10.1016/j.catcom.2007.01.022]
(c)De, S.K.; Gibbs, R.A. Ruthenium (III) chloride-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. Synthesis, 2005, 1748-1450.
[http://dx.doi.org/10.1055/s-2005-869899]
(d)Sharghi, H.; Jokar, M. Al2O3/MeSO3H: A Novel and Recyclable Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidinones or Their Sulfur Derivatives in Biginelli Condensation. Lett. Org. Chem., 2012, 9, 12-18.
(e)Mandhane, P.G.; Joshi, R.S.; Nagargoje, D.R.; Gill, C.H. An efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by thiamine hydrochloride in water under ultrasound irradiation. Tetrahedron Lett., 2010, 51, 3138-3140.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.037]
(f)Murata, H.; Ishitani, H.; Iwamoto, M. Synthesis of Biginelli dihydropyrimidinone derivatives with various substituents on aluminium-planted mesoporous silica catalyst. Org. Biomol. Chem., 2010, 8(5), 1202-1211.
[http://dx.doi.org/10.1039/b920821f] [PMID: 20165814]
(g)Lu, J.; Bai, Y. Catalysis of the Biginelli reaction by ferric and nickel chloride hexahydrates. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Synthesis, 2002, 4, 466-470.
[http://dx.doi.org/10.1055/s-2002-20956]
[http://dx.doi.org/10.2174/15701786113109990014]