Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Downregulation of miR-140 is Correlated with Poor Prognosis and Progression of Thyroid Cancer

Author(s): Qianqian Yu, Wenhai Sun, Hui Hua, Yulian Chi, Xiaomin Liu, Anbing Dong, Yinghe Sun, Jianhua Zhang and Ge Guan*

Volume 21, Issue 4, 2021

Published on: 24 July, 2020

Page: [749 - 755] Pages: 7

DOI: 10.2174/1871530320666200724180742

Price: $65

Abstract

Background: The incidence of thyroid cancer is increasing rapidly and there is an urgent need to explore novel therapeutic targets for thyroid cancer. MiR-140 has been reported to affect the progression of various cancers, which makes it possible to play a role in thyroid cancer. This study aimed to investigate the expression and role of miR-140 in thyroid cancer.

Methods: The expression of miR-140 was investigated by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) in thyroid cancer tissues and cell lines. The prognostic value of miR- 140 in thyroid cancer was evaluated by Kaplan-Meier survival and Cox regression. Moreover, the effects of miR-140 on cell proliferation, migration, and invasion of thyroid cancer were investigated by CCK-8 and Transwell assay.

Results: MiR-140 was downregulated in thyroid cancer tissues and cells, which correlated with TNM stage and lymph node metastasis of patients. Patients with low miR-140 expression had a shorter survival time compared with that in patients with high miR-140 expression. Furthermore, miR-140 acts as an independent factor for the prognosis of thyroid cancer. Overexpression of miR-140 inhibited cell proliferation, migration, and invasion of thyroid cancer.

Conclusion: MiR-140 can serve as a potential prognostic factor for patients with thyroid cancer and suppress the progression of thyroid cancer, which provides new insight for the therapeutic target for thyroid cancer.

Keywords: microRNA-140, thyroid cancer, prognosis, progression, therapeutic target, proliferation.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[2]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[3]
Roth, M.Y.; Witt, R.L.; Steward, D.L. Molecular testing for thyroid nodules: Review and current state. Cancer, 2018, 124(5), 888-898.
[http://dx.doi.org/10.1002/cncr.30708] [PMID: 29278433]
[4]
Regalbuto, C.; Frasca, F.; Pellegriti, G.; Malandrino, P.; Marturano, I.; Di Carlo, I.; Pezzino, V. Update on thyroid cancer treatment. Future Oncol., 2012, 8(10), 1331-1348.
[http://dx.doi.org/10.2217/fon.12.123] [PMID: 23130931]
[5]
Erol, V.; Makay, O.; Icoz, G.; Kose, T.; Yararbas, U.; Kumanlioglu, K.; Akyildiz, M. Prognostic factors of survival and recurrence pattern in differentiated thyroid cancer: a retrospective study from Western Turkey. Endocr. Regul., 2014, 48(4), 173-181.
[http://dx.doi.org/10.4149/endo_2014_04_173] [PMID: 25512190]
[6]
Xu, G.; Wu, T.; Ge, L.; Li, W. A systematic review of adjuvant interventions for radioiodine in patients with thyroid cancer. Oncol. Res. Treat., 2015, 38(7-8), 368-372.
[http://dx.doi.org/10.1159/000433486] [PMID: 26278581]
[7]
Curtale, G. MiRNAs at the crossroads between innate immunity and cancer: focus on macrophages. Cells, 2018, 7(2)E12
[http://dx.doi.org/10.3390/cells7020012] [PMID: 29419779]
[8]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[9]
Fu, W.; Wu, X.; Yang, Z.; Mi, H. The effect of miR-124-3p on cell proliferation and apoptosis in bladder cancer by targeting EDNRB. Arch. Med. Sci., 2019, 15(5), 1154-1162.
[http://dx.doi.org/10.5114/aoms.2018.78743] [PMID: 31572460]
[10]
Wu, G.; Zheng, H.; Xu, J.; Guo, Y.; Zheng, G.; Ma, C.; Hao, S.; Liu, X.; Chen, H.; Wei, S.; Song, X.; Wang, X. miR-429 suppresses cell growth and induces apoptosis of human thyroid cancer cell by targeting ZEB1. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 548-554.
[http://dx.doi.org/10.1080/21691401.2018.1564320] [PMID: 30849921]
[11]
Fang, L.; Kong, D.; Xu, W. MicroRNA-625-3p promotes the proliferation, migration and invasion of thyroid cancer cells by up-regulating astrocyte elevated gene 1. Biomed. Pharmacother., 2018, 102, 203-211.
[http://dx.doi.org/10.1016/j.biopha.2018.03.043] [PMID: 29558717]
[12]
Rosignolo, F.; Memeo, L.; Monzani, F.; Colarossi, C.; Pecce, V.; Verrienti, A.; Durante, C.; Grani, G.; Lamartina, L.; Forte, S.; Martinetti, D.; Giuffrida, D.; Russo, D.; Basolo, F.; Filetti, S.; Sponziello, M. MicroRNA-based molecular classification of papillary thyroid carcinoma. Int. J. Oncol., 2017, 50(5), 1767-1777.
[http://dx.doi.org/10.3892/ijo.2017.3960] [PMID: 28393181]
[13]
Li, M.; Song, Q.; Li, H.; Lou, Y.; Wang, L. Circulating miR-25-3p and miR-451a may be potential biomarkers for the diagnosis of papillary thyroid carcinoma. PLoS One, 2015, 10(7)e0132403
[http://dx.doi.org/10.1371/journal.pone.0132403] [PMID: 26168287]
[14]
Salem, O.; Erdem, N.; Jung, J.; Münstermann, E.; Wörner, A.; Wilhelm, H.; Wiemann, S.; Körner, C. The highly expressed 5'isomiR of hsa-miR-140-3p contributes to the tumor-suppressive effects of miR-140 by reducing breast cancer proliferation and migration. BMC Genomics, 2016, 17, 566.
[http://dx.doi.org/10.1186/s12864-016-2869-x] [PMID: 27502506]
[15]
Zhou, Y.; Wang, B.; Wang, Y.; Chen, G.; Lian, Q.; Wang, H. miR-140-3p inhibits breast cancer proliferation and migration by directly regulating the expression of tripartite motif 28. Oncol. Lett., 2019, 17(4), 3835-3841.
[http://dx.doi.org/10.3892/ol.2019.10038] [PMID: 30881504]
[16]
Jiang, W.; Li, T.; Wang, J.; Jiao, R.; Shi, X.; Huang, X.; Ji, G. miR-140-3p suppresses cell growth and induces apoptosis in colorectal cancer by targeting PD-L1. OncoTargets Ther., 2019, 12, 10275-10285.
[http://dx.doi.org/10.2147/OTT.S226465] [PMID: 31819512]
[17]
Fagin, J.A.; Wells Jr, S.A. Biologic and clinical perspectives on thyroid cancer. N. Engl. J. Med., 2016, 375(11), 1054-1067.
[http://dx.doi.org/10.1056/NEJMra1501993] [PMID: 27626519]
[18]
Zou, P.; Zhu, M.; Lian, C.; Wang, J.; Chen, Z.; Zhang, X.; Yang, Y.; Chen, X.; Cui, X.; Liu, J.; Wang, H.; Wen, Q.; Yi, J. miR-192-5p suppresses the progression of lung cancer bone metastasis by targeting TRIM44. Sci. Rep., 2019, 9(1), 19619.
[http://dx.doi.org/10.1038/s41598-019-56018-5] [PMID: 31873114]
[19]
Ohno, R.; Uozaki, H.; Kikuchi, Y.; Kumagai, A.; Aso, T.; Watanabe, M.; Watabe, S.; Muto, S.; Yamaguchi, R. Both cancerous miR-21 and stromal miR-21 in urothelial carcinoma are related to tumour progression. Histopathology, 2016, 69(6), 993-999.
[http://dx.doi.org/10.1111/his.13032] [PMID: 27383043]
[20]
Lin, Y.; Cheng, K.; Wang, T.; Xie, Q.; Chen, M.; Chen, Q.; Wen, Q. miR-217 inhibits proliferation, migration, and invasion via targeting AKT3 in thyroid cancer. Biomed. Pharmacother., 2017, 95, 1718-1724.
[http://dx.doi.org/10.1016/j.biopha.2017.09.074] [PMID: 28962076]
[21]
Zhao, P.; Ma, W.; Hu, Z.; Zhang, Y.; Zhang, S.; Wang, Y. Up-regulation of miR-340-5p promotes progression of thyroid cancer by inhibiting BMP4. J. Endocrinol. Invest., 2018, 41(10), 1165-1172.
[http://dx.doi.org/10.1007/s40618-018-0848-6] [PMID: 29441462]
[22]
Li, D.; Bai, L.; Wang, T.; Xie, Q.; Chen, M.; Fu, Y.; Wen, Q. Function of miR-212 as a tumor suppressor in thyroid cancer by targeting SIRT1. Oncol. Rep., 2018, 39(2), 695-702.
[http://dx.doi.org/10.1007/s12094-017-1772-5] [PMID: 29207181]
[23]
Lan, H.; Chen, W.; He, G.; Yang, S. miR-140-5p inhibits ovarian cancer growth partially by repression of PDGFRA. Biomed. Pharmacother., 2015, 75, 117-122.
[http://dx.doi.org/10.1016/j.biopha.2015.07.035] [PMID: 26297547]
[24]
Flamini, V.; Jiang, W.G.; Cui, Y. Therapeutic role of MiR-140-5p for the treatment of non-small cell lung cancer. Anticancer Res., 2017, 37(8), 4319-4327.
[PMID: 28739724]
[25]
Zou, M.X.; Huang, W.; Wang, X.B.; Lv, G.H.; Li, J.; Deng, Y.W. Identification of miR-140-3p as a marker associated with poor prognosis in spinal chordoma. Int. J. Clin. Exp. Pathol., 2014, 7(8), 4877-4885.
[PMID: 25197358]
[26]
Zhao, K.; Li, X.; Chen, X.; Zhu, Q.; Yin, F.; Ruan, Q.; Xia, J.; Niu, Z. Inhibition of miR-140-3p or miR-155-5p by antagomir treatment sensitize chordoma cells to chemotherapy drug treatment by increasing PTEN expression. Eur. J. Pharmacol., 2019, 854, 298-306.
[http://dx.doi.org/10.1016/j.ejphar.2019.03.034] [PMID: 30980798]
[27]
Li, C.; Zhou, D.; Hong, H.; Yang, S.; Zhang, L.; Li, S.; Hu, P.; Ren, H.; Mei, Z.; Tang, H. TGFβ1- miR-140-5p axis mediated up-regulation of flap endonuclease 1 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Aging (Albany NY), 2019, 11(15), 5593-5612.
[http://dx.doi.org/10.18632/aging.102140] [PMID: 31402791]
[28]
Fang, Z.; Yin, S.; Sun, R.; Zhang, S.; Fu, M.; Wu, Y.; Zhang, T.; Khaliq, J.; Li, Y. miR-140-5p suppresses the proliferation, migration and invasion of gastric cancer by regulating YES1. Mol. Cancer, 2017, 16(1), 139.
[http://dx.doi.org/10.1186/s12943-017-0708-6] [PMID: 28818100]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy