Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Identification of Maple Anthocyanin and its Antiproliferative Activity against LLC, T47D and C3H10T1/2 Cells

Author(s): Yumi Fujiwara*, Mako Miwa, Akito Nagatsu and Atsushi Honma

Volume 21, Issue 7, 2021

Published on: 21 July, 2020

Page: [894 - 901] Pages: 8

DOI: 10.2174/1871520620666200721103935

Price: $65

Abstract

Background: The genus Acer contains around 200 species, with more than 400 garden varieties. There is considerable diversity in these species and garden varieties, and each can be characterized by morphology and chemical composition. The red appearance of Acer leaves is due to anthocyanin compounds, including cyanidin glycosides, delphinidin glycosides, and galloylated anthocyanins. Few studies have investigated the diversity of anthocyanin compounds in garden varieties, and no studies have examined the pharmacological effects of these compounds.

Objective: The purpose of this study was to identify the anthocyanins of Acer palmatum cv. ‘Chishio’, a garden variety of A. palmatum and evaluate their antiproliferative and antioxidant activities.

Methods: A methanol extract of fresh leaves was partitioned with ethyl acetate. The extract was purified by column chromatography and compounds were subsequently identified by 1H and 13C NMR and ESI-HRMS. Antiproliferative activity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2H-tetrazolium, inner salt (MTS) colorimetric assay. The antioxidant assay was evaluated by scavenging activity using the stable radical DPPH.

Results: The anthocyanins cyanidin-3-O-(6''-O-α-rhamnopyranosyl- β-glucopyranoside), cyanidin-3-O- β- glucopyranoside, cyanidin-3-O-[2''-O-(galloyl)-6''-O-(rhamnosyl)-β-glucoside], and cyanidin-3-O-[2''-O-(galloyl)- β-glucopyranoside] were isolated from A. palmatum cv. ‘Chishio’. All four anthocyanin compounds showed antiproliferative activity against LLC and T47D cells, and galloylated anthocyanin showed antiproliferative activity against C3H10T1/2 cells. All four anthocyanins inhibited the activity of DPPH radicals in a dosedependent manner.

Conclusion: Maple anthocyanins could be a new cancer therapeutic agent or prophylactic medicine.

Keywords: Anthocyanin, Acer, garden varieties, antiproliferative activity, antioxidant activity, galloylated anthocyanin.

Graphical Abstract
[1]
Ji, S.B.; Yokoi, M.; Saito, N.; Mao, L.S. Distribution of anthocyanins in Aceraceae leaves. Biochem. Syst. Ecol., 1992, 20, 771-781.
[http://dx.doi.org/10.1016/0305-1978(92)90036-D]
[2]
Ji, S.B.; Saito, N.; Yokoi, M.; Shigihara, A.; Honda, T. Galloylcyanidin glycosides from Acer. Phytochemistry, 1992, 31, 655-657.
[http://dx.doi.org/10.1016/0031-9422(92)90054-T]
[3]
Fossen, T.; Andersen, Ø.M. Cyanidin 3-(2”,3”-digalloylglucoside) from red leaves of Acer platanoides. Phytochemistry, 1999, 52, 1697-1700.
[http://dx.doi.org/10.1016/S0031-9422(99)00188-0]
[4]
Fujiwara, Y.; Kono, M.; Ito, A.; Ito, M. Anthocyanins in perilla plants and dried leaves. Phytochemistry, 2018, 147, 158-166.
[http://dx.doi.org/10.1016/j.phytochem.2018.01.003] [PMID: 29331904]
[5]
Konczak-Islam, I.; Yoshimoto, M.; Hou, D.X.; Terahara, N.; Yamakawa, O. Potential chemopreventive properties of anthocyanin-rich aqueous extracts from in vitro produced tissue of sweetpotato (Ipomoea batatas L.). J. Agric. Food Chem., 2003, 51(20), 5916-5922.
[http://dx.doi.org/10.1021/jf030066o] [PMID: 13129295]
[6]
Srivastava, J.; Vankar, P.S. Methylated anthocyanidin glycosides from flowers of Canna indica. Carbohydr. Res., 2010, 345(14), 2023-2029.
[http://dx.doi.org/10.1016/j.carres.2010.07.015] [PMID: 20692649]
[7]
Delazar, A.; Khodaie, L.; Afshar, J.; Nahar, L.; Sarker, S.D. Isolation and free-radical-scavenging properties of cyanidin 3-O-glycosides from the fruits of Ribes biebersteinii Berl. Acta Pharm., 2010, 60(1), 1-11.
[http://dx.doi.org/10.2478/v10007-010-0007-x] [PMID: 20228037]
[8]
Reiersen, B.; Kiremire, B.T.; Byamukama, R.; Andersen, Ø.M. Anthocyanins acylated with gallic acid from chenille plant, Acalypha hispida. Phytochemistry, 2003, 64(4), 867-871.
[http://dx.doi.org/10.1016/S0031-9422(03)00494-1] [PMID: 14559283]
[9]
Schmitzer, V.; Stampar, F.; Veberic, R.; Osterc, G. Phase change modifies anthocyanin synthesis in Acer palmatum Thunb. (Japanese maple) cultivars. Acta Physiol. Plant., 2009, 31, 415-418.
[http://dx.doi.org/10.1007/s11738-008-0237-4]
[10]
Liao, Z-H.; Zhu, H-Q.; Chen, Y-Y.; Chen, R-L.; Fu, L-X.; Li, L.; Zhou, H.; Zhou, J-L.; Liang, G. The epigallocatechin gallate derivative Y6 inhibits human hepatocellular carcinoma by inhibiting angiogenesis in MAPK/ERK1/2 and PI3K/AKT/HIF-1α/VEGF dependent pathways. J. Ethnopharmacol., 2020, 259, 112852.
[http://dx.doi.org/10.1016/j.jep.2020.112852] [PMID: 32278759]
[11]
Zhu, W.; Li, M.C.; Wang, F.R.; Mackenzie, G.G.; Oteiza, P.I. The inhibitory effect of ECG and EGCG dimeric procyanidins on colorectal cancer cells growth is associated with their actions at lipid rafts and the inhibition of the epidermal growth factor receptor signaling. Biochem. Pharmacol., 2020, 175, 113923.
[http://dx.doi.org/10.1016/j.bcp.2020.113923] [PMID: 32217102]
[12]
Namiki, K.; Wongsirisin, P.; Yokoyama, S.; Sato, M.; Rawangkan, A.; Sakai, R.; Iida, K.; Suganuma, M. (-)-Epigallocatechin gallate inhibits stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells. Sci. Rep., 2020, 10(1), 2444.
[http://dx.doi.org/10.1038/s41598-020-59281-z] [PMID: 32051483]
[13]
Sheng, J.; Shi, W.; Guo, H.; Long, W.; Wang, Y.; Qi, J.; Liu, J.; Xu, Y. The inhibitory effect of (−)-Epigallocatechin-3-gallate on breast cancer progression via reducing SCUBE2 methylation and DNMT activity. Molecules, 2019, 24(16), 2899.
[http://dx.doi.org/10.3390/molecules24162899] [PMID: 31404982]
[14]
Sun, X.; Song, J.; Li, E.; Geng, H.; Li, Y.; Yu, D.; Zhong, C. (-)-Epigallocatechin-3-gallate inhibits bladder cancer stem cells via suppression of sonic hedgehog pathway. Oncol. Rep., 2019, 42(1), 425-435.
[http://dx.doi.org/10.3892/or.2019.7170] [PMID: 31180522]
[15]
Seeram, N.P.; Zhang, Y.; Nair, M.G. Inhibition of proliferation of human cancer cells and cyclooxygenase enzymes by anthocyanidins and catechins. Nutr. Cancer, 2003, 46(1), 101-106.
[http://dx.doi.org/10.1207/S15327914NC4601_13] [PMID: 12925310]
[16]
Ju, J.; Hong, J.; Zhou, J.; Pan, Z.; Bose, M.; Liao, J.; Yang, G-Y.; Liu, Y.Y.; Hou, Z.; Lin, Y.; Ma, J.; Shih, W.J.; Carothers, A.M.; Yang, C.S. Inhibition of intestinal tumorigenesis in Apc min/+ mice by (−)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Res., 2005, 65, 10623-10631.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1949] [PMID: 16288056]
[17]
Hou, D.X. Potential mechanisms of cancer chemoprevention by anthocyanins. Curr. Mol. Med., 2003, 3(2), 149-159.
[http://dx.doi.org/10.2174/1566524033361555] [PMID: 12630561]
[18]
Lage, N.N.; Layosa, M.A.A.; Arbizu, S.; Chew, B.P.; Pedrosa, M.L.; Mertens-Talcott, S.; Talcott, S.; Noratto, G.D. Dark sweet cherry (Prunus avium) phenolics enriched in anthocyanins exhibit enhanced activity against the most aggressive breast cancer subtypes without toxicity to normal breast cells. J. Funct. Foods, 2020, 64, 103710.
[http://dx.doi.org/10.1016/j.jff.2019.103710]
[19]
Guo, J.; Yang, Z.; Zhou, H.; Yue, J.; Mu, T.; Zhang, Q.; Bi, X. Upregulation of DKK3 by miR-483-3p plays an important role in the chemoprevention of colorectal cancer mediated by black raspberry anthocyanins. Mol. Carcinog., 2020, 59(2), 168-178.
[http://dx.doi.org/10.1002/mc.23138] [PMID: 31763724]
[20]
Herrera-Sotero, M.Y.; Cruz-Hernández, C.D.; Oliart-Ros, R.M.; Chávez-Servia, J.L.; Guzmán-Gerónimo, R.I.; González-Covarrubias, V.; Cruz-Burgos, M.; Rodríguez-Dorantes, M. Anthocyanins of blue corn and tortilla arrest cell cycle and induce apoptosis on breast and prostate cancer cells. Nutr. Cancer, 2020, 72(5), 768-777.
[http://dx.doi.org/10.1080/01635581.2019.1654529] [PMID: 31448633]
[21]
Wang, Y.; Lin, J.; Tian, J.; Si, X.; Jiao, X.; Zhang, W.; Gong, E.; Li, B. Blueberry malvidin-3-galactoside suppresses hepatocellular carcinoma by regulating apoptosis, proliferation, and metastasis pathways in vivo and in vitro. J. Agric. Food Chem., 2019, 67(2), 625-636.
[http://dx.doi.org/10.1021/acs.jafc.8b06209] [PMID: 30586992]
[22]
Wang, H.; Cao, G.; Prior, R.L. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem., 1997, 45(2), 304-309.
[http://dx.doi.org/10.1021/jf960421t]
[23]
Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant activity of apple peels. J. Agric. Food Chem., 2003, 51(3), 609-614.
[http://dx.doi.org/10.1021/jf020782a] [PMID: 12537430]
[24]
Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem., 2000, 48(8), 3597-3604.
[http://dx.doi.org/10.1021/jf000220w] [PMID: 10956156]
[25]
Wang, H.; Nair, M.G.; Strasburg, G.M.; Chang, Y-C.; Booren, A.M.; Gray, J.I.; DeWitt, D.L. Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J. Nat. Prod., 1999, 62(2), 294-296.
[http://dx.doi.org/10.1021/np980501m] [PMID: 10075763]
[26]
Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem., 2007, 102(3), 777-783.
[http://dx.doi.org/10.1016/j.foodchem.2006.06.021]
[27]
Brand-WIlliams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. (Campinas), 1995, 28, 25-30.
[28]
Salah, N.; Miller, N.J.; Paganga, G.; Tijburg, L.; Bolwell, G.P.; Rice-Evans, C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys., 1995, 322(2), 339-346.
[http://dx.doi.org/10.1006/abbi.1995.1473] [PMID: 7574706]
[29]
Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem., 2002, 50(7), 2161-2168.
[http://dx.doi.org/10.1021/jf011348w] [PMID: 11902973]
[30]
Yilmaz, Y.; Toledo, R.T. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem., 2004, 52(2), 255-260.
[http://dx.doi.org/10.1021/jf030117h] [PMID: 14733505]
[31]
Duan, X-J.; Zhang, W-W.; Li, X-M.; Wang, B-G. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chem., 2005, 95(1), 37-43.
[http://dx.doi.org/10.1016/j.foodchem.2004.12.015]
[32]
Stohs, S.J. The role of free radicals in toxicity and disease. J. Basic Clin. Physiol. Pharmacol., 1995, 6(3-4), 205-228.
[http://dx.doi.org/10.1515/JBCPP.1995.6.3-4.205] [PMID: 8852268]
[33]
Valavanidis, A.; Rallis, M.; Papaioannou, G.; Xenos, K.; Katsarou, A. Studies in vivo by electron spin resonance of free radical mechanisms implicated in UV-induced skin photocarcinogenesis. Int. J. Cosmet. Sci., 1995, 17(4), 157-163.
[http://dx.doi.org/10.1111/j.1467-2494.1995.tb00118.x] [PMID: 19245484]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy