Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Cocrystallization: Cutting Edge Tool for Physicochemical Modulation of Active Pharmaceutical Ingredients

Author(s): Nimmy Kumari and Animesh Ghosh*

Volume 26 , Issue 38 , 2020

Page: [4858 - 4882] Pages: 25

DOI: 10.2174/1381612826666200720114638

Price: $65

Abstract

Cocrystallization is a widely accepted and clinically relevant technique that has prospered very well over the past decades to potentially modify the physicochemical properties of existing active pharmaceutic ingredients (APIs) without compromising their therapeutic benefits. Over time, it has become an integral part of the pre-formulation stage of drug development because of its ability to yield cocrystals with improved properties in a way that other traditional methods cannot easily achieve. Cocrystals are solid crystalline materials composed of two or more than two molecules which are non-covalently bonded in the same crystal lattice. Due to the continuous efforts of pharmaceutical scientists and crystal engineers, today cocrystals have emerged as a cutting edge tool to modulate poor physicochemical properties of APIs such as solubility, permeability, bioavailability, improving poor mechanical properties and taste masking. The success of cocrystals can be traced back by looking at the number of products that are getting regulatory approval. At present, many cocrystals have obtained regulatory approval and they successfully made into the market place followed by a fair number of cocrystals that are currently in the clinical phases. Considering all these facts about cocrystals, the formulation scientists have been inspired to undertake more relevant research to extract out maximum benefits. Here in this review cocrystallization technique will be discussed in detail with respect to its background, different synthesis approaches, synthesis mechanism, application and improvements in drug delivery systems and its regulatory perspective.

Keywords: Cocrystals, crystal engineering, cocrystallization, regulatory implications, permeability, pharmaceutical.

[1]
Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B 2015; 5(5): 442-53.
[http://dx.doi.org/10.1016/j.apsb.2015.07.003 ] [PMID: 26579474]
[2]
Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Deliv Rev 2007; 59(7): 603-16.
[http://dx.doi.org/10.1016/j.addr.2007.05.010 ] [PMID: 17619064]
[3]
Dwichandra Putra O, Umeda D, Fujita E, et al. Solubility improvement of benexate through salt formation using artificial sweetener. Pharmaceutics 2018; 10(2): 64.
[http://dx.doi.org/10.3390/pharmaceutics10020064 ] [PMID: 29861459]
[4]
Isaac J, Kaity S, Ganguly S, Ghosh A. Microwave-induced solid dispersion technology to improve bioavailability of glipizide. J Pharm Pharmacol 2013; 65(2): 219-29.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01595.x ] [PMID: 23278689]
[5]
Sugandha K, Kaity S, Mukherjee S, Isaac J, Ghosh A. Solubility enhancement of ezetimibe by a cocrystal engineering technique. Cryst Growth Des 2014; 14(9): 4475-86.
[http://dx.doi.org/10.1021/cg500560w]
[6]
Kumari N, Bhattacharya B, Roy P, Michalchuk AA, Emmerling F, Ghosh A. Enhancing the pharmaceutical properties of Pirfenidone by mechanochemical cocrystallisation. Cryst Growth Des 2019; 19(11): 6482-92.
[http://dx.doi.org/10.1021/acs.cgd.9b00932]
[7]
Kundu S, Kumari N, Soni SR, et al. Enhanced solubility of telmisartan phthalic acid cocrystals within the pH range of a systemic absorption site. ACS Omega 2018; 3(11): 15380-8.
[http://dx.doi.org/10.1021/acsomega.8b02144 ] [PMID: 31458196]
[8]
Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 2014; 9(6): 304-16.
[9]
Becket G, Schep LJ, Tan MY. Improvement of the in vitro dissolution of praziquantel by complexation with α-, β- and γ-cyclodextrins. Int J Pharm 1999; 179(1): 65-71.
[http://dx.doi.org/10.1016/S0378-5173(98)00382-2 ] [PMID: 10053203]
[10]
Rawat S, Jain SK. Solubility enhancement of celecoxib using β-cyclodextrin inclusion complexes. Eur J Pharm Biopharm 2004; 57(2): 263-7.
[http://dx.doi.org/10.1016/j.ejpb.2003.10.020 ] [PMID: 15018983]
[11]
Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 1996; 21(2): 107-16.
[http://dx.doi.org/10.1016/S0169-409X(96)00401-2]
[12]
Ahmad Z, Shah A, Siddiq M, Kraatz H-B. Polymeric micelles as drug delivery vehicles. RSC Advances 2014; 4(33): 17028-38.
[http://dx.doi.org/10.1039/C3RA47370H]
[13]
Hu L, Tang X, Cui F. Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol 2004; 56(12): 1527-35.
[http://dx.doi.org/10.1211/0022357044959 ] [PMID: 15563759]
[14]
Lawrence MJ. Microemulsions as drug delivery vehicles. Curr Opin Colloid Interface Sci 1996; 1(6): 826-32.
[http://dx.doi.org/10.1016/S1359-0294(96)80087-2]
[15]
Charman SA, Charman WN, Rogge MC, Wilson TD, Dutko FJ, Pouton CW. Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm Res 1992; 9(1): 87-93.
[http://dx.doi.org/10.1023/A:1018987928936 ] [PMID: 1589415]
[16]
Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry, U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) February. Pharmaceutical Quality/CMC Revision 2018; 1
[17]
Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun (Camb) 2016; 52(4): 640-55.
[http://dx.doi.org/10.1039/C5CC08216A ] [PMID: 26565650]
[18]
Almarsson O, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem Commun (Camb) 2004; (17): 1889-96.
[http://dx.doi.org/10.1039/b402150a ] [PMID: 15340589]
[19]
Bunn CW. Adsorption, oriented overgrowth and mixed crystal formation. Proc R Soc Lond, A Contain Pap Math Phys Character 1933; 141(845): 567-93.
[http://dx.doi.org/10.1098/rspa.1933.0140]
[20]
Wohler F. Untersuchungen über des chinons. Ann Chem Pharm 1844; 51: 145-63.
[http://dx.doi.org/10.1002/jlac.18440510202]
[21]
Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 1990; 23(4): 120-6.
[http://dx.doi.org/10.1021/ar00172a005]
[22]
Etter MC, Urbanczyk-Lipkowska Z, Zia-Ebrahimi M, Panunto TW. Hydrogen bond-directed cocrystallization and molecular recognition properties of diarylureas. J Am Chem Soc 1990; 112(23): 8415-26.
[http://dx.doi.org/10.1021/ja00179a028]
[23]
Desiraju GR. Supramolecular synthons in crystal engineering-a new organic synthesis. Angew Chem Int Ed Engl 1995; 34(21): 2311-27.
[http://dx.doi.org/10.1002/anie.199523111]
[24]
Allen FH. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 2002; 58(Pt 3 Pt 1): 380-8.
[http://dx.doi.org/10.1107/S0108768102003890] [PMID: 12037359]
[25]
Bolla G, Nangia A. Pharmaceutical cocrystals: walking the talk. Chem Commun (Camb) 2016; 52(54): 8342-60.
[http://dx.doi.org/10.1039/C6CC02943D ] [PMID: 27278109]
[26]
Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm 2011; 419(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.037 ] [PMID: 21827842]
[27]
Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 2007; 59(7): 617-30.
[http://dx.doi.org/10.1016/j.addr.2007.05.011 ] [PMID: 17597252]
[28]
Hasa D, Rauber GS, Voinovich D, Jones W. Cocrystal formation through mechanochemistry: from neat and liquid-assisted grinding to polymer-assisted grinding. Angew Chem Int Ed Engl 2015; 54(25): 7371-5.
[http://dx.doi.org/10.1002/anie.201501638 ] [PMID: 25939405]
[29]
Holaň J, Stěpánek F, Billot P, Ridvan L. The construction, prediction and measurement of co-crystal ternary phase diagrams as a tool for solvent selection. Eur J Pharm Sci 2014; 63: 124-31.
[http://dx.doi.org/10.1016/j.ejps.2014.06.017 ] [PMID: 24995701]
[30]
Childs SL, Rodríguez-Hornedo N, Reddy LS, et al. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm 2008; 10(7): 856-64.
[http://dx.doi.org/10.1039/b715396a]
[31]
Ainouz A, Authelin J-R, Billot P, Lieberman H. Modeling and prediction of cocrystal phase diagrams. Int J Pharm 2009; 374(1-2): 82-9.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.016 ] [PMID: 19446763]
[32]
Chiarella RA, Davey RJ, Peterson ML. Making co-crystals the utility of ternary phase diagrams. Cryst Growth Des 2007; 7(7): 1223-6.
[http://dx.doi.org/10.1021/cg070218y]
[33]
Karimi-Jafari M, Padrela L, Walker GM, Croker DM. Creating cocrystals: a review of pharmaceutical cocrystal preparation routes and applications. Cryst Growth Des 2018; 18(10): 6370-87.
[http://dx.doi.org/10.1021/acs.cgd.8b00933]
[34]
Aitipamula S, Wong AB, Chow PS, Tan RB. Cocrystallization with flufenamic acid: comparison of physicochemical properties of two pharmaceutical cocrystals. CrystEngComm 2014; 16(26): 5793-801.
[http://dx.doi.org/10.1039/c3ce42182a]
[35]
Chow SF, Chen M, Shi L, Chow AH, Sun CC. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharm Res 2012; 29(7): 1854-65.
[http://dx.doi.org/10.1007/s11095-012-0709-5 ] [PMID: 22359146]
[36]
Rodríguez-Hornedo N, Nehm SJ, Seefeldt KF, Pagan-Torres Y, Falkiewicz CJ. Reaction crystallization of pharmaceutical molecular complexes. Mol Pharm 2006; 3(3): 362-7.
[http://dx.doi.org/10.1021/mp050099m ] [PMID: 16749868]
[37]
Li H, Li H, Guo Z, Liu Y. The application of power ultrasound to reaction crystallization. Ultrason Sonochem 2006; 13(4): 359-63.
[http://dx.doi.org/10.1016/j.ultsonch.2006.01.002 ] [PMID: 16540361]
[38]
Kostenbauder H, Higuchi T. Formation of molecular complexes by somewater-soluble amides I: Interaction of several amides with p-hydroxybenzoic acid, salicylic acid, chloramphenicol, and phenol. J Am Pharm Assoc (Sci Ed) 1956; 45(8): 518-22.
[http://dx.doi.org/10.1002/jps.3030450804]
[39]
Poole JW, Higuchi T. Complexes formed in aqueous solutions by sarcosine anhydride; interactions with organic acids, phenols, and aromatic alcohols. Am J Pharm Sci Support Public Health 1959; 48(10): 592-601.
[http://dx.doi.org/10.1002/jps.3030481010 ] [PMID: 13854386]
[40]
Reddy LS, Bethune SJ, Kampf JW, Rodriguez-Hornedo N. Cocrystals and salts of gabapentin: pH dependent cocrystal stability and solubility. Cryst Growth Des 2008; 9(1): 378-85.
[http://dx.doi.org/10.1021/cg800587y]
[41]
Malamatari M, Ross SA, Douroumis D, Velaga SP. Experimental cocrystal screening and solution based scale-up cocrystallization methods. Adv Drug Deliv Rev 2017; 117: 162-77.
[http://dx.doi.org/10.1016/j.addr.2017.08.006 ] [PMID: 28811184]
[42]
McNamara DP, Childs SL, Giordano J, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res 2006; 23(8): 1888-97.
[http://dx.doi.org/10.1007/s11095-006-9032-3 ] [PMID: 16832611]
[43]
Hickey MB, Peterson ML, Scoppettuolo LA, et al. Performance comparison of a co-crystal of carbamazepine with marketed product. Eur J Pharm Biopharm 2007; 67(1): 112-9.
[http://dx.doi.org/10.1016/j.ejpb.2006.12.016 ] [PMID: 17292592]
[44]
Sheikh AY, Rahim SA, Hammond RB, Roberts KJ. Scalable solution cocrystallization: case of carbamazepine-nicotinamide I. CrystEngComm 2009; 11(3): 501-9.
[http://dx.doi.org/10.1039/B813058B]
[45]
Douroumis D, Ross SA, Nokhodchi A. Advanced methodologies for cocrystal synthesis. Adv Drug Deliv Rev 2017; 117: 178-95.
[http://dx.doi.org/10.1016/j.addr.2017.07.008 ] [PMID: 28712924]
[46]
Saerens L, Vervaet C, Remon JP, De Beer T. Process monitoring and visualization solutions for hot-melt extrusion: a review. J Pharm Pharmacol 2014; 66(2): 180-203.
[http://dx.doi.org/10.1111/jphp.12123 ] [PMID: 24433422]
[47]
Medina C, Daurio D, Nagapudi K, Alvarez-Nunez F. Manufacture of pharmaceutical co-crystals using twin screw extrusion: a solvent-less and scalable process. J Pharm Sci 2010; 99(4): 1693-6.
[http://dx.doi.org/10.1002/jps.21942 ] [PMID: 19774652]
[48]
Dhumal RS, Kelly AL, York P, Coates PD, Paradkar A. Cocrystalization and simultaneous agglomeration using hot melt extrusion. Pharm Res 2010; 27(12): 2725-33.
[http://dx.doi.org/10.1007/s11095-010-0273-9 ] [PMID: 20872053]
[49]
Moradiya HG, Islam MT, Halsey S, Maniruzzaman M, Chowdhry BZ, Snowden MJ, et al. Continuous cocrystallisation of carbamazepine and trans-cinnamic acid via melt extrusion processing. CrystEngComm 2014; 16(17): 3573-83.
[http://dx.doi.org/10.1039/C3CE42457J]
[50]
Rodrigues M, Baptista B, Lopes JA, Sarraguça MC. Pharmaceutical cocrystallization techniques. Advances and challenges. Int J Pharm 2018; 547(1-2): 404-20.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.024 ] [PMID: 29890258]
[51]
Hsu P-C, Lin H-L, Wang S-L, Lin S-Y. Solid-state thermal behavior and stability studies of theophylline-citric acid cocrystals prepared by neat cogrinding or thermal treatment. J Solid State Chem 2012; 192: 238-45.
[http://dx.doi.org/10.1016/j.jssc.2012.04.010]
[52]
Trask AV, Motherwell WS, Jones W. Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst Growth Des 2005; 5(3): 1013-21.
[http://dx.doi.org/10.1021/cg0496540]
[53]
Rehder S, Klukkert M, Löbmann KA, et al. Investigation of the formation process of two piracetam cocrystals during grinding. Pharmaceutics 2011; 3(4): 706-22.
[http://dx.doi.org/10.3390/pharmaceutics3040706 ] [PMID: 24309304]
[54]
Ross SA, Lamprou DA, Douroumis D. Engineering and manufacturing of pharmaceutical co-crystals: a review of solvent-free manufacturing technologies. Chem Commun (Camb) 2016; 52(57): 8772-86.
[http://dx.doi.org/10.1039/C6CC01289B ] [PMID: 27302311]
[55]
Braga D, Giaffreda SL, Rubini K, Grepioni F, Chierotti MR, Gobetto R. Making crystals from crystals: three solvent-free routes to the hydrogen bonded co-crystal between 1, 1′-di-pyridyl-ferrocene and anthranilic acid. CrystEngComm 2007; 9(1): 39-45.
[http://dx.doi.org/10.1039/B613569B]
[56]
Childs SL, Hardcastle KI. Cocrystals of piroxicam with carboxylic acids. Cryst Growth Des 2007; 7(7): 1291-304.
[http://dx.doi.org/10.1021/cg060742p]
[57]
Chadha K, Karan M, Bhalla Y, et al. Cocrystals of hesperetin: structural, pharmacokinetic, and pharmacodynamic evaluation. Cryst Growth Des 2017; 17(5): 2386-405.
[http://dx.doi.org/10.1021/acs.cgd.6b01769]
[58]
Trask AV, Motherwell WD, Jones W. Solvent-drop grinding: green polymorph control of cocrystallisation. Chem Commun (Camb) 2004; (7): 890-1.
[http://dx.doi.org/10.1039/b400978a ] [PMID: 15045115]
[59]
Friscic T, Jones W. Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst Growth Des 2009; 9(3): 1621-37.
[http://dx.doi.org/10.1021/cg800764n]
[60]
Rastogi R, Bassi PS, Chadha S. Mechanism of the reaction between hydrocarbons and picric acid in the solid state. J Phys Chem 1963; 67(12): 2569-73.
[http://dx.doi.org/10.1021/j100806a016]
[61]
Kuroda R, Higashiguchi K, Hasebe S, Imai Y. Crystal to crystal transformation in the solid state. CrystEngComm 2004; 6(76): 464-8.
[http://dx.doi.org/10.1039/b408971e]
[62]
Chadwick K, Davey R, Cross W. How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine. CrystEngComm 2007; 9(9): 732-4.
[http://dx.doi.org/10.1039/b709411f]
[63]
Descamps M, Willart JF, Dudognon E, Caron V. Transformation of pharmaceutical compounds upon milling and comilling: the role of T(g). J Pharm Sci 2007; 96(5): 1398-407.
[http://dx.doi.org/10.1002/jps.20939 ] [PMID: 17455353]
[64]
Alhalaweh A, Kaialy W, Buckton G, Gill H, Nokhodchi A, Velaga SP. Theophylline cocrystals prepared by spray drying: physicochemical properties and aerosolization performance. AAPS PharmSciTech 2013; 14(1): 265-76.
[http://dx.doi.org/10.1208/s12249-012-9883-3 ] [PMID: 23297166]
[65]
Tanaka R, Hattori Y, Otsuka M, Ashizawa K. Application of spray freeze drying to theophylline-oxalic acid cocrystal engineering for inhaled dry powder technology. Drug Development and Industrial Pharmacy 2020; (just-accepted): 1-21.
[http://dx.doi.org/10.1080/03639045.2020.1716367]
[66]
Weng J, Wong SN, Xu X, et al. Cocrystal engineering of itraconazole with suberic acid via rotary evaporation and spray drying. Cryst Growth Des 2019; 19(5): 2736-45.
[http://dx.doi.org/10.1021/acs.cgd.8b01873]
[67]
Chun N-H, Wang I-C, Lee M-J, et al. Characteristics of indomethacin-saccharin (IMC-SAC) co-crystals prepared by an anti-solvent crystallization process. Eur J Pharm Biopharm 2013; 85(3 Pt B): 854-61.
[http://dx.doi.org/10.1016/j.ejpb.2013.02.007 ] [PMID: 23454054]
[68]
Homayouni A, Amini M, Sohrabi M, Varshosaz J, Nokhodchi A. Curcumin nanoparticles containing poloxamer or soluplus tailored by high pressure homogenization using antisolvent crystallization. Int J Pharm 2019; 562: 124-34.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.038 ] [PMID: 30898640]
[69]
Ober CA, Gupta RB. Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization. AAPS PharmSciTech 2012; 13(4): 1396-406.
[http://dx.doi.org/10.1208/s12249-012-9866-4 ] [PMID: 23054991]
[70]
Eddleston MD, Patel B, Day GM, Jones W. Cocrystallization by freeze-drying: preparation of novel multicomponent crystal forms. Cryst Growth Des 2013; 13(10): 4599-606.
[http://dx.doi.org/10.1021/cg401179s]
[71]
Childs S, Mougin-Andres P, Stahly B. Screening for solid forms by ultrasound crystallization and cocrystallization using ultrasound. Google Patents 2007.
[72]
Aher S, Dhumal R, Mahadik K, Paradkar A, York P. Ultrasound assisted cocrystallization from solution (USSC) containing a non congruently soluble cocrystal component pair: Caffeine/maleic acid. Eur J Pharm Sci 2010; 41(5): 597-602.
[http://dx.doi.org/10.1016/j.ejps.2010.08.012 ] [PMID: 20801215]
[73]
Bučar DK, Elliott JA, Eddleston MD, Cockcroft JK, Jones W. Sonocrystallization yields monoclinic paracetamol with significantly improved compaction behavior. Angew Chem Int Ed Engl 2015; 54(1): 249-53.
[http://dx.doi.org/10.1002/anie.201408894 ] [PMID: 25370777]
[74]
Padrela L, Rodrigues MA, Tiago J, Velaga SP, Matos HA, de Azevedo EG. Tuning physicochemical properties of theophylline by cocrystallization using the supercritical fluid enhanced atomization technique. J Supercrit Fluids 2014; 86: 129-36.
[http://dx.doi.org/10.1016/j.supflu.2013.12.011]
[75]
Michalchuk AAL, Hope KS, Kennedy SR, Blanco MV, Boldyreva EV, Pulham CR. Ball-free mechanochemistry: in situ real-time monitoring of pharmaceutical co-crystal formation by resonant acoustic mixing. Chem Commun (Camb) 2018; 54(32): 4033-6.
[http://dx.doi.org/10.1039/C8CC02187B ] [PMID: 29619475]
[76]
am Ende DJ, Anderson SR, Salan JS. Development and scale-up of cocrystals using resonant acoustic mixing. Org Process Res Dev 2014; 18(2): 331-41.
[http://dx.doi.org/10.1021/op4003399]
[77]
Weber CC, Kunov-Kruse AJ, Rogers RD, Myerson AS. Manipulation of ionic liquid anion-solute-antisolvent interactions for the purification of acetaminophen. Chem Commun (Camb) 2015; 51(20): 4294-7.
[http://dx.doi.org/10.1039/C5CC00198F ] [PMID: 25673089]
[78]
Bica K, Rogers RD. Confused ionic liquid ions--a “liquification” and dosage strategy for pharmaceutically active salts. Chem Commun (Camb) 2010; 46(8): 1215-7.
[http://dx.doi.org/10.1039/b925147b ] [PMID: 20449254]
[79]
Xu P, Zhang J, Bandari S, Repka MA. A novel acetaminophen soft-chew formulation produced via hot-melt extrusion with in-line near-infrared monitoring as a process analytical technology tool. AAPS PharmSciTech 2020; 21(2): 37.
[http://dx.doi.org/10.1208/s12249-019-1596-4 ] [PMID: 31897804]
[80]
Hwang I, Renuka V, Lee J-H, et al. Preparation of celecoxib tablet by hot melt extrusion technology and application of process analysis technology to discriminate solubilization effect. Pharm Dev Technol 2020; 25(5): 525-34.
[http://dx.doi.org/10.1080/10837450.2020.1723023 ] [PMID: 31985320]
[81]
Fan W, Zhu W, Zhang X, Di L. The preparation of curcumin sustained-release solid dispersion by hot melt extrusion-I. optimization of the formulation. J Pharm Sci 2020; 109(3): 1242-52.
[http://dx.doi.org/10.1016/j.xphs.2019.11.019 ] [PMID: 31809744]
[82]
Alhalaweh A, Velaga SP. Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst Growth Des 2010; 10(8): 3302-5.
[http://dx.doi.org/10.1021/cg100451q]
[83]
Karashima M, Sano N, Yamamoto S, et al. Enhanced pulmonary absorption of poorly soluble itraconazole by micronized cocrystal dry powder formulations. Eur J Pharm Biopharm 2017; 115: 65-72.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.013 ] [PMID: 28223260]
[84]
Childs SL, Kandi P, Lingireddy SR. Formulation of a danazol cocrystal with controlled supersaturation plays an essential role in improving bioavailability. Mol Pharm 2013; 10(8): 3112-27.
[http://dx.doi.org/10.1021/mp400176y ] [PMID: 23822591]
[85]
Cuadra IA, Cabañas A, Cheda JA, Türk M, Pando C. Cocrystallization of the anticancer drug 5-fluorouracil and coformers urea, thiourea or pyrazinamide using supercritical CO2 as an antisolvent (SAS) and as a solvent (CSS). J Supercrit Fluids 2020.: 104813.
[http://dx.doi.org/10.1016/j.supflu.2020.104813]
[86]
Wang B-C, Su C-S. Solid solubility measurement of ipriflavone in supercritical carbon dioxide and microparticle production through the rapid expansion of supercritical solutions process. J CO2 Utilization 2020; 37: 285-94.
[http://dx.doi.org/10.1016/j.jcou.2019.12.012]
[87]
Maheshwari C, André V, Reddy S, Roy L, Duarte T, Rodríguez-Hornedo N. Tailoring aqueous solubility of a highly soluble compound via cocrystallization: effect of coformer ionization, pH max and solute-solvent interactions. CrystEngComm 2012; 14(14): 4801-11.
[http://dx.doi.org/10.1039/c2ce06615g]
[88]
Guzmán HR, Tawa M, Zhang Z, et al. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci 2007; 96(10): 2686-702.
[http://dx.doi.org/10.1002/jps.20906 ] [PMID: 17518357]
[89]
Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des 2011; 11(7): 2662-79.
[http://dx.doi.org/10.1021/cg200492w]
[90]
Maddileti D, Jayabun S, Nangia A. Soluble cocrystals of the xanthine oxidase inhibitor febuxostat. Cryst Growth Des 2013; 13(7): 3188-96.
[http://dx.doi.org/10.1021/cg400583z]
[91]
Kang Y, Gu J, Hu X. Syntheses, structure characterization and dissolution of two novel cocrystals of febuxostat. J Mol Struct 2017; 1130: 480-6.
[http://dx.doi.org/10.1016/j.molstruc.2016.10.044]
[92]
Li A-Y, Xu L-L, Chen J-M, Lu T-B. Solubility and dissolution rate enhancement of triamterene by a cocrystallization method. Cryst Growth Des 2015; 15(8): 3785-91.
[http://dx.doi.org/10.1021/acs.cgd.5b00439]
[93]
Bhandaru JS, Malothu N, Akkinepally RR. Characterization and solubility studies of pharmaceutical cocrystals of eprosartan mesylate. Cryst Growth Des 2015; 15(3): 1173-9.
[http://dx.doi.org/10.1021/cg501532k]
[94]
Yan Y, Chen J-M, Geng N, Lu T-B. Improving the solubility of agomelatine via cocrystals. Cryst Growth Des 2012; 12(5): 2226-33.
[http://dx.doi.org/10.1021/cg201423q]
[95]
Bolla G, Nangia A. Clofazimine mesylate: a high solubility stable salt. Cryst Growth Des 2012; 12(12): 6250-9.
[http://dx.doi.org/10.1021/cg301463z]
[96]
Martin FA, Pop MM, Borodi G, Filip X, Kacso I. Ketoconazole salt and co-crystals with enhanced aqueous solubility. Cryst Growth Des 2013; 13(10): 4295-304.
[http://dx.doi.org/10.1021/cg400638g]
[97]
Xu L-L, Chen J-M, Yan Y, Lu T-B. Improving the solubility of 6-Mercaptopurine via cocrystals and salts. Cryst Growth Des 2012; 12(12): 6004-11.
[http://dx.doi.org/10.1021/cg3010745]
[98]
Chaves Júnior JV, Dos Santos JAB, Lins TB, et al. A new ferulic acid-nicotinamide cocrystal with improved solubility and dissolution performance. J Pharm Sci 2020; 109(3): 1330-7.
[http://dx.doi.org/10.1016/j.xphs.2019.12.002 ] [PMID: 31821823]
[99]
Tomar S, Chakraborti S, Jindal A, Grewal MK, Chadha R. Cocrystals of diacerein: Towards the development of improved biopharmaceutical parameters. Int J Pharm 2020; 574: 118942.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118942 ] [PMID: 31830577]
[100]
Kuminek G, Cavanagh KL, da Piedade MFM, Rodríguez-Hornedo N. Posaconazole cocrystal with superior solubility and dissolution behavior. Cryst Growth Des 2019; 19(11): 6592-602.
[http://dx.doi.org/10.1021/acs.cgd.9b01026]
[101]
Ma X-Q, Zhuang C, Wang B-C, Huang Y-F, Chen Q, Lin N. Cocrystal of apigenin with higher solubility, enhanced oral bioavailability, and anti-inflammatory effect. Cryst Growth Des 2019; 19(10): 5531-7.
[http://dx.doi.org/10.1021/acs.cgd.9b00249]
[102]
Liu M, Hong C, Yao Y, et al. Development of a pharmaceutical cocrystal with solution crystallization technology: Preparation, characterization, and evaluation of myricetin-proline cocrystals. Eur J Pharm Biopharm 2016; 107: 151-9.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.008 ] [PMID: 27395394]
[103]
Lu Q, Dun J, Chen J-M, Liu S, Sun CC. Improving solid-state properties of berberine chloride through forming a salt cocrystal with citric acid. Int J Pharm 2019; 554: 14-20.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.062 ] [PMID: 30385378]
[104]
Sanphui P, Goud NR, Khandavilli UR, Nangia A. Fast dissolving curcumin cocrystals. Cryst Growth Des 2011; 11(9): 4135-45.
[http://dx.doi.org/10.1021/cg200704s]
[105]
Chen J-Y, Wu H, Guo C-Y, Zhu B, Ren G-B. Enhancing the solubility of natural compound xanthotoxin by modulating stability via cocrystallization engineering. Int J Pharm 2019; 572: 118776.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118776 ] [PMID: 31678374]
[106]
Luo Y, Chen S, Zhou J, et al. Luteolin cocrystals: characterization, evaluation of solubility, oral bioavailability and theoretical calculation. J Drug Deliv Sci Technol 2019; 50: 248-54.
[http://dx.doi.org/10.1016/j.jddst.2019.02.004]
[107]
Ghadi R, Dand N. BCS class IV drugs: Highly notorious candidates for formulation development. J Control Release 2017; 248: 71-95.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.014 ] [PMID: 28088572]
[108]
Sanphui P, Devi VK, Clara D, Malviya N, Ganguly S, Desiraju GR. Cocrystals of hydrochlorothiazide: solubility and diffusion/permeability enhancements through drug-coformer interactions. Mol Pharm 2015; 12(5): 1615-22.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00020 ] [PMID: 25800383]
[109]
Yan Y, Chen J-M, Lu T-B. Simultaneously enhancing the solubility and permeability of acyclovir by crystal engineering approach. CrystEngComm 2013; 15(33): 6457-60.
[http://dx.doi.org/10.1039/c3ce41017j]
[110]
Banik M, Gopi SP, Ganguly S, Desiraju GR. Cocrystal and salt forms of furosemide: solubility and diffusion variations. Cryst Growth Des 2016; 16(9): 5418-28.
[http://dx.doi.org/10.1021/acs.cgd.6b00902]
[111]
Jung MS, Kim JS, Kim MS, et al. Bioavailability of indomethacin-saccharin cocrystals. J Pharm Pharmacol 2010; 62(11): 1560-8.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01189.x ] [PMID: 21039541]
[112]
Huang Y, Zhang B, Gao Y, Zhang J, Shi L. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability. J Pharm Sci 2014; 103(8): 2330-7.
[http://dx.doi.org/10.1002/jps.24048 ] [PMID: 24903146]
[113]
Yoshimura M, Miyake M, Kawato T, et al. Impact of the dissolution profile of the cilostazol cocrystal with supersaturation on the oral bioavailability. Cryst Growth Des 2017; 17(2): 550-7.
[http://dx.doi.org/10.1021/acs.cgd.6b01425]
[114]
Sanphui P, Tothadi S, Ganguly S, Desiraju GR. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt. Mol Pharm 2013; 10(12): 4687-97.
[http://dx.doi.org/10.1021/mp400516b ] [PMID: 24168322]
[115]
Xuan B, Wong SN, Zhang Y, et al. Extended release of highly water soluble isoniazid attained through cocrystallization with curcumin. Cryst Growth Des 2020; 20(3): 1951-60.
[http://dx.doi.org/10.1021/acs.cgd.9b01619]
[116]
Batisai E, Ayamine A, Kilinkissa OE, Báthori NB. Melting point-solubility-structure correlations in multicomponent crystals containing fumaric or adipic acid. CrystEngComm 2014; 16(43): 9992-8.
[http://dx.doi.org/10.1039/C4CE01298D]
[117]
Yu X-Z, Wang L-Y, Liu F, Li Y-T, Wu Z-Y, Yan C-W. Sustained-Release Dual-Drug Ternary Salt Cocrystal of Piperazine Ferulate with Pyrazinamide: Synthesis, Structure, and Hirshfeld Surface Analysis. Cryst Growth Des 2020; 20(3): 2064-73.
[http://dx.doi.org/10.1021/acs.cgd.9b01710]
[118]
Goud NR, Khan RA, Nangia A. Modulating the solubility of sulfacetamide by means of cocrystals. CrystEngComm 2014; 16(26): 5859-69.
[http://dx.doi.org/10.1039/C4CE00103F]
[119]
ShanáChow P. Cocrystals of zonisamide: physicochemical characterization and sustained release solid forms. CrystEngComm 2018; 20(21): 2923-31.
[http://dx.doi.org/10.1039/C8CE00084K]
[120]
Chen J-M, Li S, Lu T-B. Pharmaceutical cocrystals of ribavirin with reduced release rates. Cryst Growth Des 2014; 14(12): 6399-408.
[http://dx.doi.org/10.1021/cg501247x]
[121]
Nachaegari SK, Bansal AK. Coprocessed excipients for solid dosage forms. Pharm Technol 2004; 28(1): 52-65.
[122]
Hiendrawan S, Veriansyah B, Widjojokusumo E, Soewandhi SN, Wikarsa S, Tjandrawinata RR. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid. Int J Pharm 2016; 497(1-2): 106-13.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.001 ] [PMID: 26657269]
[123]
Ainurofiq A, Mauludin R, Mudhakir D, et al. Improving mechanical properties of desloratadine via multicomponent crystal formation. Eur J Pharm Sci 2018; 111: 65-72.
[http://dx.doi.org/10.1016/j.ejps.2017.09.035 ] [PMID: 28958892]
[124]
Chattoraj S, Shi L, Chen M, Alhalaweh A, Velaga S, Sun CC. Origin of deteriorated crystal plasticity and compaction properties of a 1: 1 cocrystal between piroxicam and saccharin. Cryst Growth Des 2014; 14(8): 3864-74.
[http://dx.doi.org/10.1021/cg500388s]
[125]
Krishna GR, Shi L, Bag PP, Sun CC, Reddy CM. Correlation among crystal structure, mechanical behavior, and tabletability in the co-crystals of vanillin isomers. Cryst Growth Des 2015; 15(4): 1827-32.
[http://dx.doi.org/10.1021/cg5018642]
[126]
Liu L, Wang C, Dun J, Chow AH, Sun CC. Lack of dependence of mechanical properties of baicalein cocrystals on those of the constituent components. CrystEngComm 2018; 20(37): 5486-9.
[http://dx.doi.org/10.1039/C8CE00787J]
[127]
Dhakate CS, Upadhye KP, Dixit GR, Bakhale SS, Umate RM. Taste masking by co-crystallization: A review. World J Pharm Res 2017.
[128]
Aitipamula S, Wong ABH, Kanaujia P. Evaluating suspension formulations of theophylline cocrystals with artificial sweeteners. J Pharm Sci 2018; 107(2): 604-11.
[http://dx.doi.org/10.1016/j.xphs.2017.09.013 ] [PMID: 28987500]
[129]
Vandelli MA, Salvioli G, Mucci A, Panini R, Malmusi L, Forni F. 2-Hydroxypropyl-β-cyclodextrin complexation with ursodeoxycholic acid. Int J Pharm 1995; 118(1): 77-83.
[http://dx.doi.org/10.1016/0378-5173(94)00342-3]
[130]
Szejtli J, Szente L. Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 2005; 61(3): 115-25.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.006 ] [PMID: 16185857]
[131]
Agarwal R, Mittal R, Singh A. Studies of ion-exchange resin complex of chloroquine phosphate. Drug Dev Ind Pharm 2000; 26(7): 773-6.
[http://dx.doi.org/10.1081/DDC-100101297 ] [PMID: 10872097]
[132]
Lu MY, Borodkin S, Woodward L, et al. A polymer carrier system for taste masking of macrolide antibiotics. Pharm Res 1991; 8(6): 706-12.
[http://dx.doi.org/10.1023/A:1015889631314 ] [PMID: 1829521]
[133]
Bastin RJ, Bowker MJ, Slater BJ. Salt selection and optimisation procedures for pharmaceutical new chemical entities. Org Process Res Dev 2000; 4(5): 427-35.
[http://dx.doi.org/10.1021/op000018u]
[134]
Ogata T, Tanaka D, Ozeki T. Enhancing the solubility and masking the bitter taste of propiverine using crystalline complex formation. Drug Dev Ind Pharm 2014; 40(8): 1084-91.
[http://dx.doi.org/10.3109/03639045.2013.807280 ] [PMID: 23789589]
[135]
Wang C, Perumalla SR, Lu R, Fang J, Sun CC. Sweet berberine. Cryst Growth Des 2016; 16(2): 933-9.
[http://dx.doi.org/10.1021/acs.cgd.5b01484]
[136]
Bandari S, Dronam VR, Eedara BB. Development and preliminary characterization of levofloxacin pharmaceutical cocrystals for dissolution rate enhancement. J Pharm Investig 2017; 47(6): 583-91.
[http://dx.doi.org/10.1007/s40005-016-0302-8]
[137]
Maeno Y, Fukami T, Kawahata M, et al. Novel pharmaceutical cocrystal consisting of paracetamol and trimethylglycine, a new promising cocrystal former. Int J Pharm 2014; 473(1-2): 179-86.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.008 ] [PMID: 25010838]
[138]
Thipparaboina R, Kumar D, Chavan RB, Shastri NR. Multidrug co-crystals: towards the development of effective therapeutic hybrids. Drug Discov Today 2016; 21(3): 481-90.
[http://dx.doi.org/10.1016/j.drudis.2016.02.001 ] [PMID: 26869329]
[139]
Wan X, Ma P, Zhang X. A promising choice in hypertension treatment: Fixed-dose combinations. Asian J Pharm Sci 2014; 9(1): 1-7.
[140]
Cheney ML, Weyna DR, Shan N, Hanna M, Wojtas L, Zaworotko MJ. Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J Pharm Sci 2011; 100(6): 2172-81.
[http://dx.doi.org/10.1002/jps.22434 ] [PMID: 21491441]
[141]
Jiang L, Huang Y, Zhang Q, He H, Xu Y, Mei X. Preparation and solid-state characterization of dapsone drug-drug co-crystals. Cryst Growth Des 2014; 14(9): 4562-73.
[http://dx.doi.org/10.1021/cg500668a]
[142]
Évora AO, Castro RA, Maria TM, et al. Pyrazinamide-diflunisal: a new dual-drug co-crystal. Cryst Growth Des 2011; 11(11): 4780-8.
[http://dx.doi.org/10.1021/cg200288b]
[143]
Sokal A, Pindelska E, Szeleszczuk L, Kolodziejski W. Pharmaceutical properties of two ethenzamide-gentisic acid cocrystal polymorphs: Drug release profiles, spectroscopic studies and theoretical calculations. Int J Pharm 2017; 522(1-2): 80-9.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.004 ] [PMID: 28274662]
[144]
Drozd KV, Manin AN, Churakov AV, Perlovich GL. Drug-drug cocrystals of antituberculous 4-aminosalicylic acid: Screening, crystal structures, thermochemical and solubility studies. Eur J Pharm Sci 2017; 99: 228-39.
[http://dx.doi.org/10.1016/j.ejps.2016.12.016 ] [PMID: 28011126]
[145]
Li D, Li J, Deng Z, Zhang H. Piroxicam-clonixin drug-drug cocrystal solvates with enhanced hydration stability. CrystEngComm 2019; 21(28): 4145-9.
[http://dx.doi.org/10.1039/C9CE00666D]
[146]
Shinozaki T, Ono M, Higashi K, Moribe K. A novel drug-drug cocrystal of levofloxacin and metacetamol: Reduced hygroscopicity and improved photostability of levofloxacin. J Pharm Sci 2019; 108(7): 2383-90.
[http://dx.doi.org/10.1016/j.xphs.2019.02.014 ] [PMID: 30807761]
[147]
Bhattacharya B, Das S, Lal G, et al. Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine. J Mol Struct 2020; 1199: 127028.
[http://dx.doi.org/10.1016/j.molstruc.2019.127028]
[148]
Kale DP, Zode SS, Bansal AK. Challenges in translational development of pharmaceutical cocrystals. J Pharm Sci 2017; 106(2): 457-70.
[http://dx.doi.org/10.1016/j.xphs.2016.10.021 ] [PMID: 27914793]
[149]
Wang J-R, Zhou C, Yu X, Mei X. Stabilizing vitamin D(3) by conformationally selective co-crystallization. Chem Commun (Camb) 2014; 50(7): 855-8.
[http://dx.doi.org/10.1039/C3CC47747A ] [PMID: 24296723]
[150]
Babu NJ, Sanphui P, Nangia A. Crystal engineering of stable temozolomide cocrystals. Chem Asian J 2012; 7(10): 2274-85.
[http://dx.doi.org/10.1002/asia.201200205 ] [PMID: 22615256]
[151]
Trask AV, Motherwell WD, Jones W. Physical stability enhancement of theophylline via cocrystallization. Int J Pharm 2006; 320(1-2): 114-23.
[http://dx.doi.org/10.1016/j.ijpharm.2006.04.018 ] [PMID: 16769188]
[152]
Yousef MA, Vangala VR. Pharmaceutical cocrystals: molecules, crystals, formulations, medicines. Cryst Growth Des 2019; 19(12): 7420-38.
[http://dx.doi.org/10.1021/acs.cgd.8b01898]
[153]
Duggirala NK, LaCasse SM, Zaworotko MJ, Krzyzaniak JF, Arora KK. Pharmaceutical cocrystals: Formulation approaches to develop robust drug products. Cryst Growth Des 2019; 20: 617-27.
[154]
Aitipamula S, Das S. Cocrystal formulations: A case study of topical formulations consisting of ferulic acid Cocrystals. Eur J Pharm Biopharm 2020; 149: 95-104.
[http://dx.doi.org/10.1016/j.ejpb.2020.01.021 ] [PMID: 32035236]
[155]
Trask AV. An overview of pharmaceutical cocrystals as intellectual property. Mol Pharm 2007; 4(3): 301-9.
[http://dx.doi.org/10.1021/mp070001z ] [PMID: 17477544]
[156]
Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry, U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) February. Pharmaceutical Quality/CMC Revision 2018; 1
[157]
Guidance for Industry Applications Covered by Section 505(b)(2) US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) October 1999.
[158]
Reflection paper on the use of cocrystals of active substances in medicinal products, European Medicines Agency, 2015. May.
[159]
O’Nolan D, Perry ML, Zaworotko MJ. Chloral hydrate polymorphs and cocrystal revisited: Solving two pharmaceutical cold cases. Cryst Growth Des 2016; 16(4): 2211-7.
[http://dx.doi.org/10.1021/acs.cgd.6b00032]
[160]
Butler TC. The introduction of chloral hydrate into medical practice. Bull Hist Med 1970; 44(2): 168-72.
[PMID: 4914358]
[161]
Petruševski G, Naumov P, Jovanovski G, Ng SW. Unprecedented sodium-oxygen clusters in the solid-state structure of trisodium hydrogentetravalproate monohydrate: A model for the physiological activity of the anticonvulsant drug Epilim®. Inorg Chem Commun 2008; 11(1): 81-4.
[http://dx.doi.org/10.1016/j.inoche.2007.10.024]
[162]
Bauer JF, Shada DM. Acid salts of valproic acid. Google Patents 1985.
[163]
Department of Health and Human Services. Food and drug administration, Center for drug evaluation and research, Highlights of Prescribing Information 1983; 1-54(new drug application number): 018723.
[164]
Department of Health and Human Services. Food and drug administration, Center for drug evaluation and research, Highlights of Prescribing Information 1999; 1-15(nnew drug application number): 20- 793.
[165]
Karki S, Friscić T, Jones W, Motherwell WD. Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. Mol Pharm 2007; 4(3): 347-54.
[http://dx.doi.org/10.1021/mp0700054 ] [PMID: 17497885]
[166]
Kavanagh ON, Croker DM, Walker GM, Zaworotko MJ. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov Today 2019; 24(3): 796-804.
[http://dx.doi.org/10.1016/j.drudis.2018.11.023 ] [PMID: 30521935]
[167]
Department of Health and Human Services. Food and drug administration, Center for drug evaluation and research, Highlights of Prescribing Information 2002. 1-25(new drug application number): 21- 323.
[168]
Harrison WT, Yathirajan HS, Bindya S, Anilkumar HG. Devaraju. Escitalopram oxalate: co-existence of oxalate dianions and oxalic acid molecules in the same crystal. Acta Crystallogr C 2007; 63(Pt 2): o129-31.
[http://dx.doi.org/10.1107/S010827010605520X ] [PMID: 17348096]
[169]
Evaluation and Licensing Division. Pharmaceutical and Food Safety Bureau Ministry of Health, Labour and Welfare, Review Report, November 08, 2013, Suglat Tablets 25 mg and 50 mg. Pharmaceuticals and Medical Devices Agency: Japan 2013.
[170]
Assessment Report EMA. EMA. Odomzo. 2015.
[171]
Department of Health and Human Services. Food and drug administration, Center for drug evaluation and research, Highlights of Prescribing Information 2015; 1-14(new drug application number: 205266)
[172]
Department of Health and Human Services. Food and drug administration, Center for drug evaluation and research, Highlights of Prescribing Information 2015; 1-18(new drug application number: 207620)
[173]
Department of Health and Human Services. Food and drug administration, Center for drug evaluation and research, Highlights of Prescribing Information 2017; 1-27(new drug application number: 209803)

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy