Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Therapeutic and Mechanistic Approaches of Tridax Procumbens Flavonoids for the Treatment of Osteoporosis

Author(s): Md. Abdul Alim Al-Bari*, Showna Hossain, Ujjal Mia and Md. Abdullah Al Mamun

Volume 21 , Issue 16 , 2020

Page: [1687 - 1702] Pages: 16

DOI: 10.2174/1389450121666200719012116

Price: $65

Abstract

Homeostasis of bone is closely regulated by the balanced activities between the bone resorbing activity of osteoclast cells and bone-forming ability of osteoblast cells. Multinucleated osteoclasts degrade bone matrix and involve in the dynamic bone remodelling in coordination with osteoblasts. Disruption of this regulatory balance between these cells or any imbalance in bone remodelling caused by a higher rate of resorption over construction of bone results in a decrease of bone matrix including bone mineral density (BMD). These osteoclast-dominant effects result in a higher risk of bone crack and joint demolition in several bone-related diseases, including osteoporosis and rheumatoid arthritis (RA). Tridax procumbens is a very interesting perennial plant and its secondary metabolites called here T. procumbens flavonoids (TPFs) are well‐known phytochemical agents owing to various therapeutic practices such as anti-inflammatory, anti-anaemic and anti-diabetic actions. This review designed to focus the systematic convention concerning the medicinal property and mechanism of actions of TPFs for the management of bone-related diseases. Based on the current literature, the review offers evidence-based information of TPFs for basic researchers and clinicians for the prevention and treatment of bone related diseases, including osteoporosis. It also emphasizes the medical significance for more research to comprehend the cellular signalling pathways of TPFs for the regulation of bone remodelling and discusses the possible promising ethnobotanical resource that can convey the preclinical and clinical clues to develop the next generation therapeutic agents for the treatment of bonerelated disorders.

Keywords: TPFs, bone remodelling, osteoclast differentiation, osteoporosis, NFATc1, Bone Mineral Density (BMD).

Graphical Abstract
[1]
Chotiyarnwong P, McCloskey EV. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol 2020; 16(8): 437-47.
[http://dx.doi.org/10.1038/s41574-020-0341-0 ] [PMID: 32286516]
[2]
Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002; 2(4): 389-406.
[http://dx.doi.org/10.1016/S1534-5807(02)00157-0 ] [PMID: 11970890]
[3]
Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 2007; 7(4): 292-304.
[http://dx.doi.org/10.1038/nri2062 ] [PMID: 17380158]
[4]
Phan TCA, Xu J, Zheng MH. Interaction between osteoblast and osteoclast: impact in bone disease. Histol Histopathol 2004; 19(4): 1325-44.
[http://dx.doi.org/10.14670/HH-19.1325 ] [PMID: 15375775]
[5]
Crockett JC, Mellis DJ, Scott DI, Helfrich MH. New knowledge on critical osteoclast formation and activation pathways from study of rare genetic diseases of osteoclasts: focus on the RANK/RANKL axis. Osteoporos Int 2011; 22(1): 1-20.
[http://dx.doi.org/10.1007/s00198-010-1272-8 ] [PMID: 20458572]
[6]
Brylka LJ, Schinke T. Chemokines in physiological and pathological bone remodeling. Front Immunol 2019; 10: 2182.
[http://dx.doi.org/10.3389/fimmu.2019.02182 ] [PMID: 31572390]
[7]
Khosla S, Riggs BL. Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin North Am 2005; 34(4): 1015-30. xi.
[http://dx.doi.org/10.1016/j.ecl.2005.07.009] [PMID: 16310636]
[8]
Teitelbaum SL. Bone resorption by osteoclasts. Science 2000; 289(5484): 1504-8.
[http://dx.doi.org/10.1126/science.289.5484.1504 ] [PMID: 10968780]
[9]
Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000; 289(5484): 1508-14.
[http://dx.doi.org/10.1126/science.289.5484.1508 ] [PMID: 10968781]
[10]
Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 2002; 20: 795-823.
[http://dx.doi.org/10.1146/annurev.immunol.20.100301.064753 ] [PMID: 11861618]
[11]
Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol 2009; 5(12): 667-76.
[http://dx.doi.org/10.1038/nrrheum.2009.217 ] [PMID: 19884898]
[12]
van Vollenhoven RF. Treatment of rheumatoid arthritis: state of the art 2009. Nat Rev Rheumatol 2009; 5(10): 531-41.
[http://dx.doi.org/10.1038/nrrheum.2009.182 ] [PMID: 19798027]
[13]
Nakashima T, Hayashi M, Takayanagi H. New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab 2012; 23(11): 582-90.
[http://dx.doi.org/10.1016/j.tem.2012.05.005 ] [PMID: 22705116]
[14]
Okamoto K, Nakashima T, Shinohara M, et al. Osteoimmunology: The conceptual framework unifying the immune and skeletal systems. Physiol Rev 2017; 97(4): 1295-349.
[http://dx.doi.org/10.1152/physrev.00036.2016 ] [PMID: 28814613]
[15]
Edwards JR, Mundy GR. Advances in osteoclast biology: old findings and new insights from mouse models. Nat Rev Rheumatol 2011; 7(4): 235-43.
[http://dx.doi.org/10.1038/nrrheum.2011.23 ] [PMID: 21386794]
[16]
Bai S, Kitaura H, Zhao H, et al. FHL2 inhibits the activated osteoclast in a TRAF6-dependent manner. J Clin Invest 2005; 115(10): 2742-51.
[http://dx.doi.org/10.1172/JCI24921 ] [PMID: 16184196]
[17]
Lamothe B, Webster WK, Gopinathan A, Besse A, Campos AD, Darnay BG. TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem Biophys Res Commun 2007; 359(4): 1044-9.
[http://dx.doi.org/10.1016/j.bbrc.2007.06.017 ] [PMID: 17572386]
[18]
Naito A, Azuma S, Tanaka S, et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 1999; 4(6): 353-62.
[http://dx.doi.org/10.1046/j.1365-2443.1999.00265.x ] [PMID: 10421844]
[19]
Wada T, Nakashima T, Oliveira-dos-Santos AJ, et al. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med 2005; 11(4): 394-9.
[http://dx.doi.org/10.1038/nm1203 ] [PMID: 15750601]
[20]
Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89(2): 309-19.
[http://dx.doi.org/10.1016/S0092-8674(00)80209-3 ] [PMID: 9108485]
[21]
Lacey DL, Tan HL, Lu J, et al. Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 2000; 157(2): 435-48.
[http://dx.doi.org/10.1016/S0002-9440(10)64556-7 ] [PMID: 10934148]
[22]
Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998; 95(7): 3597-602.
[http://dx.doi.org/10.1073/pnas.95.7.3597 ] [PMID: 9520411]
[23]
Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle Cell 2002; 109(S): S81-96.
[24]
Yamashita T, Yao Z, Li F, et al. NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 2007; 282(25): 18245-53.
[http://dx.doi.org/10.1074/jbc.M610701200 ] [PMID: 17485464]
[25]
Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002; 3(6): 889-901.
[http://dx.doi.org/10.1016/S1534-5807(02)00369-6 ] [PMID: 12479813]
[26]
Sato K, Suematsu A, Nakashima T, et al. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med 2006; 12(12): 1410-6.
[http://dx.doi.org/10.1038/nm1515 ] [PMID: 17128269]
[27]
Asagiri M, Sato K, Usami T, et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 2005; 202(9): 1261-9.
[http://dx.doi.org/10.1084/jem.20051150 ] [PMID: 16275763]
[28]
Cao H, Yu S, Yao Z, et al. Activating transcription factor 4 regulates osteoclast differentiation in mice. J Clin Invest 2010; 120(8): 2755-66.
[http://dx.doi.org/10.1172/JCI42106 ] [PMID: 20628199]
[29]
Maruyama K, Fukasaka M, Vandenbon A, et al. The transcription factor Jdp2 controls bone homeostasis and antibacterial immunity by regulating osteoclast and neutrophil differentiation. Immunity 2012; 37(6): 1024-36.
[http://dx.doi.org/10.1016/j.immuni.2012.08.022 ] [PMID: 23200825]
[30]
Matsuo K, Galson DL, Zhao C, et al. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 2004; 279(25): 26475-80.
[http://dx.doi.org/10.1074/jbc.M313973200 ] [PMID: 15073183]
[31]
Kim K, Lee S-H, Ha Kim J, Choi Y, Kim N. NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol Endocrinol 2008; 22(1): 176-85.
[http://dx.doi.org/10.1210/me.2007-0237 ] [PMID: 17885208]
[32]
Matsumoto M, Kogawa M, Wada S, et al. Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem 2004; 279(44): 45969-79.
[http://dx.doi.org/10.1074/jbc.M408795200 ] [PMID: 15304486]
[33]
Ikeda F, Nishimura R, Matsubara T, et al. Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest 2004; 114(4): 475-84.
[http://dx.doi.org/10.1172/JCI200419657 ] [PMID: 15314684]
[34]
Miyamoto H, Suzuki T, Miyauchi Y, et al. Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells. J Bone Miner Res 2012; 27(6): 1289-97.
[http://dx.doi.org/10.1002/jbmr.1575 ] [PMID: 22337159]
[35]
Crotti TN, Flannery M, Walsh NC, Fleming JD, Goldring SR, McHugh KP. NFATc1 directly induces the human beta3 integrin gene in osteoclast differentiation. J Musculoskelet Neuronal Interact 2005; 5(4): 335-7.
[PMID: 16340127]
[36]
Kim K, Kim JH, Lee J, et al. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem 2005; 280(42): 35209-16.
[http://dx.doi.org/10.1074/jbc.M505815200 ] [PMID: 16109714]
[37]
Kim Y, Sato K, Asagiri M, Morita I, Soma K, Takayanagi H. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J Biol Chem 2005; 280(38): 32905-13.
[http://dx.doi.org/10.1074/jbc.M505820200 ] [PMID: 16046394]
[38]
McHugh KP, Hodivala-Dilke K, Zheng MH, et al. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 2000; 105(4): 433-40.
[http://dx.doi.org/10.1172/JCI8905 ] [PMID: 10683372]
[39]
Koga T, Inui M, Inoue K, et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004; 428(6984): 758-63.
[http://dx.doi.org/10.1038/nature02444 ] [PMID: 15085135]
[40]
Joyce-Shaikh B, Bigler ME, Chao C-C, et al. Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis. J Exp Med 2010; 207(3): 579-89.
[http://dx.doi.org/10.1084/jem.20090516 ] [PMID: 20212065]
[41]
Kameda Y, Takahata M, Komatsu M, et al. Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling Adaptor DAP12. J Bone Miner Res 2013; 28(12): 2463-75.
[http://dx.doi.org/10.1002/jbmr.1989 ] [PMID: 23677868]
[42]
Negishi-Koga T, Gober H-J, Sumiya E, et al. Immune complexes regulate bone metabolism through FcRγ signalling. Nat Commun 2015; 6: 6637.
[http://dx.doi.org/10.1038/ncomms7637 ] [PMID: 25824719]
[43]
Aliprantis AO, Ueki Y, Sulyanto R, et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest 2008; 118(11): 3775-89.
[http://dx.doi.org/10.1172/JCI35711 ] [PMID: 18846253]
[44]
Ross FP, Teitelbaum SL. alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev 2005; 208: 88-105.
[http://dx.doi.org/10.1111/j.0105-2896.2005.00331.x ] [PMID: 16313343]
[45]
Athanasou NA, Quinn J. Immunophenotypic differences between osteoclasts and macrophage polykaryons: immunohistological distinction and implications for osteoclast ontogeny and function. J Clin Pathol 1990; 43(12): 997-1003.
[http://dx.doi.org/10.1136/jcp.43.12.997 ] [PMID: 2266187]
[46]
Samura A, Wada S, Suda S, Iitaka M, Katayama S. Calcitonin receptor regulation and responsiveness to calcitonin in human osteoclast-like cells prepared in vitro using receptor activator of nuclear factor-kappaB ligand and macrophage colony-stimulating factor. Endocrinology 2000; 141(10): 3774-82.
[http://dx.doi.org/10.1210/endo.141.10.7715 ] [PMID: 11014233]
[47]
Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature 2012; 481(7381): 314-20.
[http://dx.doi.org/10.1038/nature10763 ] [PMID: 22258610]
[48]
Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells 2013; 5(4): 136-48.
[http://dx.doi.org/10.4252/wjsc.v5.i4.136 ] [PMID: 24179602]
[49]
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
[http://dx.doi.org/10.1126/science.284.5411.143 ] [PMID: 10102814]
[50]
Lian JB, Javed A, Zaidi SK, et al. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr 2004; 14(1-2): 1-41.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.v14.i12.10 ] [PMID: 15104525]
[51]
Lee KS, Kim HJ, Li QL, et al. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 2000; 20(23): 8783-92.
[http://dx.doi.org/10.1128/MCB.20.23.8783-8792.2000 ] [PMID: 11073979]
[52]
Lee M-H, Kim Y-J, Kim H-J, et al. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem 2003; 278(36): 34387-94.
[http://dx.doi.org/10.1074/jbc.M211386200 ] [PMID: 12815054]
[53]
Miyama K, Yamada G, Yamamoto TS, et al. A BMP-inducible gene, dlx5, regulates osteoblast differentiation and mesoderm induction. Dev Biol 1999; 208(1): 123-33.
[http://dx.doi.org/10.1006/dbio.1998.9197 ] [PMID: 10075846]
[54]
Lee M-H, Kim Y-J, Yoon W-J, et al. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J Biol Chem 2005; 280(42): 35579-87.
[http://dx.doi.org/10.1074/jbc.M502267200 ] [PMID: 16115867]
[55]
Newberry EP, Latifi T, Towler DA. Reciprocal regulation of osteocalcin transcription by the homeodomain proteins Msx2 and Dlx5. Biochemistry 1998; 37(46): 16360-8.
[http://dx.doi.org/10.1021/bi981878u ] [PMID: 9819228]
[56]
Shirakabe K, Terasawa K, Miyama K, Shibuya H, Nishida E. Regulation of the activity of the transcription factor Runx2 by two homeobox proteins, Msx2 and Dlx5. Genes Cells 2001; 6(10): 851-6.
[http://dx.doi.org/10.1046/j.1365-2443.2001.00466.x ] [PMID: 11683913]
[57]
Yang X, Matsuda K, Bialek P, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 2004; 117(3): 387-98.
[http://dx.doi.org/10.1016/S0092-8674(04)00344-7 ] [PMID: 15109498]
[58]
Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006; 133(16): 3231-44.
[http://dx.doi.org/10.1242/dev.02480 ] [PMID: 16854976]
[59]
Celil AB, Campbell PG. BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 2005; 280(36): 31353-9.
[http://dx.doi.org/10.1074/jbc.M503845200 ] [PMID: 16000303]
[60]
Celil AB, Hollinger JO, Campbell PG. Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling. J Cell Biochem 2005; 95(3): 518-28.
[http://dx.doi.org/10.1002/jcb.20429 ] [PMID: 15786511]
[61]
Lemonnier J, Ghayor C, Guicheux J, Caverzasio J. Protein kinase C-independent activation of protein kinase D is involved in BMP-2-induced activation of stress mitogen-activated protein kinases JNK and p38 and osteoblastic cell differentiation. J Biol Chem 2004; 279(1): 259-64.
[http://dx.doi.org/10.1074/jbc.M308665200 ] [PMID: 14573624]
[62]
Soltanoff CS, Yang S, Chen W, Li YP. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr 2009; 19(1): 1-46.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v19.i1.10 ] [PMID: 19191755]
[63]
Gronthos S, Zannettino AC, Graves SE, Ohta S, Hay SJ, Simmons PJ. Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J Bone Miner Res 1999; 14(1): 47-56.
[http://dx.doi.org/10.1359/jbmr.1999.14.1.47 ] [PMID: 9893065]
[64]
Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M. Transcriptional control of osteoblast growth and differentiation. Physiol Rev 1996; 76(2): 593-629.
[http://dx.doi.org/10.1152/physrev.1996.76.2.593 ] [PMID: 8618964]
[65]
Jiang T, Ge S, Shim YH, Zhang C, Cao D. Bone morphogenetic protein is required for fibroblast growth factor 2-dependent later-stage osteoblastic differentiation in cranial suture cells. Int J Clin Exp Pathol 2015; 8(3): 2946-54.
[PMID: 26045803]
[66]
Naganawa T, Xiao L, Coffin JD, et al. Reduced expression and function of bone morphogenetic protein-2 in bones of Fgf2 null mice. J Cell Biochem 2008; 103(6): 1975-88.
[http://dx.doi.org/10.1002/jcb.21589 ] [PMID: 17955502]
[67]
Agas D, Sabbieti MG, Marchetti L, Xiao L, Hurley MM. FGF-2 enhances Runx-2/Smads nuclear localization in BMP-2 canonical signaling in osteoblasts. J Cell Physiol 2013; 228(11): 2149-58.
[http://dx.doi.org/10.1002/jcp.24382 ] [PMID: 23559326]
[68]
Winkler DG, Sutherland MK, Geoghegan JC, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 2003; 22(23): 6267-76.
[http://dx.doi.org/10.1093/emboj/cdg599 ] [PMID: 14633986]
[69]
Divieti Pajevic P, Krause DS. Osteocyte regulation of bone and blood. Bone 2019; 119: 13-8.
[http://dx.doi.org/10.1016/j.bone.2018.02.012 ] [PMID: 29458123]
[70]
Stier S, Ko Y, Forkert R, et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 2005; 201(11): 1781-91.
[http://dx.doi.org/10.1084/jem.20041992 ] [PMID: 15928197]
[71]
Spatz JM, Wein MN, Gooi JH, et al. The Wnt inhibitor Sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. J Biol Chem 2015; 290(27): 16744-58.
[http://dx.doi.org/10.1074/jbc.M114.628313 ] [PMID: 25953900]
[72]
Bellido T, Ali AA, Gubrij I, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 2005; 146(11): 4577-83.
[http://dx.doi.org/10.1210/en.2005-0239 ] [PMID: 16081646]
[73]
Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone 2005; 37(2): 148-58.
[http://dx.doi.org/10.1016/j.bone.2005.03.018 ] [PMID: 15946907]
[74]
Chang MK, Kramer I, Huber T, et al. Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels. Proc Natl Acad Sci USA 2014; 111(48): E5187-95.
[http://dx.doi.org/10.1073/pnas.1413828111 ] [PMID: 25404300]
[75]
Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 2011; 17(10): 1231-4.
[http://dx.doi.org/10.1038/nm.2452 ] [PMID: 21909105]
[76]
Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med 2011; 17(10): 1235-41.
[http://dx.doi.org/10.1038/nm.2448 ] [PMID: 21909103]
[77]
Harris SE, MacDougall M, Horn D, et al. Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects. Bone 2012; 50(1): 42-53.
[http://dx.doi.org/10.1016/j.bone.2011.09.038 ] [PMID: 21958845]
[78]
Bonewald LF. The amazing osteocyte. J Bone Miner Res 2011; 26(2): 229-38.
[http://dx.doi.org/10.1002/jbmr.320 ] [PMID: 21254230]
[79]
Lieben L, Carmeliet G. Vitamin D signaling in osteocytes: effects on bone and mineral homeostasis. Bone 2013; 54(2): 237-43.
[http://dx.doi.org/10.1016/j.bone.2012.10.007 ] [PMID: 23072922]
[80]
Quarles LD. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat Rev Endocrinol 2012; 8(5): 276-86.
[http://dx.doi.org/10.1038/nrendo.2011.218 ] [PMID: 22249518]
[81]
Chen H, Senda T, Kubo K-Y. The osteocyte plays multiple roles in bone remodeling and mineral homeostasis. Med Mol Morphol 2015; 48(2): 61-8.
[http://dx.doi.org/10.1007/s00795-015-0099-y ] [PMID: 25791218]
[82]
Edmonston D, Wolf M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol 2020; 16(1): 7-19.
[http://dx.doi.org/10.1038/s41581-019-0189-5 ] [PMID: 31519999]
[83]
Sapir-Koren R, Livshits G. Bone mineralization is regulated by signaling cross talk between molecular factors of local and systemic origin: the role of fibroblast growth factor 23. Biofactors 2014; 40(6): 555-68.
[http://dx.doi.org/10.1002/biof.1186 ] [PMID: 25352227]
[84]
Pereira RC, Juppner H, Azucena-Serrano CE, Yadin O, Salusky IB, Wesseling-Perry K. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone 2009; 45(6): 1161-8.
[http://dx.doi.org/10.1016/j.bone.2009.08.008 ] [PMID: 19679205]
[85]
Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 2013; 75: 503-33.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183727 ] [PMID: 23398153]
[86]
Nagamani S, Singh KhD, Muthusamy K. Combined sequence and sequence-structure based methods for analyzing FGF23, CYP24A1 and VDR genes. Meta Gene 2016; 9: 26-36.
[http://dx.doi.org/10.1016/j.mgene.2016.03.005 ] [PMID: 27114920]
[87]
Selvaraman N, Selvam SK, Muthusamy K. The binding mode prediction and similar ligand potency in the active site of vitamin d receptor with QM/MM interaction, MESP, and MD simulation. Chem Biol Drug Des 2016; 88(2): 272-80.
[http://dx.doi.org/10.1111/cbdd.12754 ] [PMID: 26945790]
[88]
Nagamani S, Muthusamy K. A theoretical insight to understand the molecular mechanism of dual target ligand CTA-018 in the chronic kidney disease pathogenesis. PLoS One 2018; 13(10)e0203194
[http://dx.doi.org/10.1371/journal.pone.0203194 ] [PMID: 30286109]
[89]
Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006; 17(12): 1726-33.
[http://dx.doi.org/10.1007/s00198-006-0172-4 ] [PMID: 16983459]
[90]
Gupta T, Das N, Imran S. The prevention and therapy of osteoporosis: a review on emerging trends from hormonal therapy to synthetic drugs to plant-based bioactives. J Diet Suppl 2019; 16(6): 699-713.
[http://dx.doi.org/10.1080/19390211.2018.1472715 ] [PMID: 29985715]
[91]
Reid IR. A broader strategy for osteoporosis interventions. Nat Rev Endocrinol 2020; 16(6): 333-9.
[http://dx.doi.org/10.1038/s41574-020-0339-7 ] [PMID: 32203407]
[92]
Shoback D, Rosen CJ, Black DM, Cheung AM, Murad MH, Eastell R. Pharmacological management of osteoporosis in postmenopausal women: an endocrine society guideline update J Clin Endocrinol Metab 2020; 105(3)dgaa048
[93]
Milat F, Ebeling PR. Osteoporosis treatment: a missed opportunity. Med J Aust 2016; 205(4): 185-90.
[http://dx.doi.org/10.5694/mja16.00568 ] [PMID: 27510350]
[94]
Khosla S, Hofbauer LC. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol 2017; 5(11): 898-907.
[http://dx.doi.org/10.1016/S2213-8587(17)30188-2 ] [PMID: 28689769]
[95]
Chen L-R, Ko N-Y, Chen K-H. Medical treatment for osteoporosis: from molecular to clinical opinions. Int J Mol Sci 2019; 20(9): 2213.
[http://dx.doi.org/10.3390/ijms20092213 ] [PMID: 31064048]
[96]
Lozano O, Torres-Quintanilla A, García-Rivas G. Nanomedicine for the cardiac myocyte: Where are we? J Control Release 2018; 271: 149-65.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.018 ] [PMID: 29273321]
[97]
Lozano O, Lázaro-Alfaro A, Silva-Platas C, et al. Nanoencapsulated quercetin improves cardioprotection during hypoxia-reoxygenation injury through preservation of mitochondrial function. Oxid Med Cell Longev 2019.20197683051
[http://dx.doi.org/10.1155/2019/7683051 ] [PMID: 31341535]
[98]
Li Y, Liu C. Nanomaterial-based bone regeneration. Nanoscale 2017; 9(15): 4862-74.
[http://dx.doi.org/10.1039/C7NR00835J ] [PMID: 28358401]
[99]
J Hill M, Qi B, Bayaniahangar R, et al.. Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine (Lond) 2019; 14(22): 2987-3006.
[http://dx.doi.org/10.2217/nnm-2018-0445 ] [PMID: 31779522]
[100]
Funda G, Taschieri S, Bruno GA, et al. Nanotechnology scaffolds for alveolar bone regeneration. Materials (Basel) 2020; 13(1): 201.
[http://dx.doi.org/10.3390/ma13010201 ] [PMID: 31947750]
[101]
Ha S-W, Weitzmann MN, Beck GR Jr. Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and p62. ACS Nano 2014; 8(6): 5898-910.
[http://dx.doi.org/10.1021/nn5009879 ] [PMID: 24806912]
[102]
Ha S-W, Sikorski JA, Weitzmann MN, Beck GR Jr. Bio-active engineered 50 nm silica nanoparticles with bone anabolic activity: therapeutic index, effective concentration, and cytotoxicity profile in vitro. Toxicol In Vitro 2014; 28(3): 354-64.
[http://dx.doi.org/10.1016/j.tiv.2013.12.001 ] [PMID: 24333519]
[103]
Beck GR Jr, Ha S-W, Camalier CE, et al. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine (Lond) 2012; 8(6): 793-803.
[http://dx.doi.org/10.1016/j.nano.2011.11.003 ] [PMID: 22100753]
[104]
Khushnud T, Mousa SA. Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer. Mol Biotechnol 2013; 55(1): 78-86.
[http://dx.doi.org/10.1007/s12033-012-9623-7 ] [PMID: 23371307]
[105]
Sak K. Site-specific anticancer effects of dietary flavonoid quercetin. Nutr Cancer 2014; 66(2): 177-93.
[http://dx.doi.org/10.1080/01635581.2014.864418 ] [PMID: 24377461]
[106]
Park EJ, Pezzuto JM. Flavonoids in cancer prevention. Anticancer Agents Med Chem 2012; 12(8): 836-51.
[http://dx.doi.org/10.2174/187152012802650075 ] [PMID: 22292763]
[107]
Welch AA, Hardcastle AC. The effects of flavonoids on bone. Curr Osteoporos Rep 2014; 12(2): 205-10.
[http://dx.doi.org/10.1007/s11914-014-0212-5 ] [PMID: 24671371]
[108]
Bhagat VC, Kondawar MS. A comprehensive review on phytochemistry and pharmacological use of Tridax procumbens Linn J Pharmacog Phytochem 2019; 8(4): 01-10.
[109]
Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 2002; 22: 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957 ] [PMID: 12055336]
[110]
Welch A, MacGregor A, Jennings A, Fairweather-Tait S, Spector T, Cassidy A. Habitual flavonoid intakes are positively associated with bone mineral density in women. J Bone Miner Res 2012; 27(9): 1872-8.
[http://dx.doi.org/10.1002/jbmr.1649 ] [PMID: 22549983]
[111]
Ma D-F, Qin L-Q, Wang P-Y, Katoh R. Soy isoflavone intake increases bone mineral density in the spine of menopausal women: meta-analysis of randomized controlled trials. Clin Nutr 2008; 27(1): 57-64.
[http://dx.doi.org/10.1016/j.clnu.2007.10.012 ] [PMID: 18063230]
[112]
Mulligan AA, Welch AA, McTaggart AA, Bhaniani A, Bingham SA. Intakes and sources of soya foods and isoflavones in a UK population cohort study (EPIC-Norfolk). Eur J Clin Nutr 2007; 61(2): 248-54.
[http://dx.doi.org/10.1038/sj.ejcn.1602509 ] [PMID: 16943849]
[113]
Pandey K, Shevkar C, Bairwa K, Kate AS. Pharmaceutical perspective on bioactives from Alstonia scholaris: ethnomedicinal knowledge, phytochemistry, clinical status, patent space, and future directions. Phytochem Rev 2020; 19: 191-23.
[http://dx.doi.org/10.1007/s11101-020-09662-z]
[114]
Shen C-L, Yeh JK, Cao JJ, Chyu MC, Wang JS. Green tea and bone health: Evidence from laboratory studies. Pharmacol Res 2011; 64(2): 155-61.
[http://dx.doi.org/10.1016/j.phrs.2011.03.012 ] [PMID: 21473914]
[115]
Al Mamun MA, Asim MMH, Sahin MAZ, Al-Bari MAA. Flavonoids compounds from Tridax procumbens inhibit osteoclast differentiation by down-regulating c-Fos activation. J Cell Mol Med 2020; 24(4): 2542-51.
[http://dx.doi.org/10.1111/jcmm.14948 ] [PMID: 31919976]
[116]
Suvarna V, Sarkar M, Chaubey P, et al. Bone health and natural products- an insight. Front Pharmacol 2018; 9: 981.
[http://dx.doi.org/10.3389/fphar.2018.00981 ] [PMID: 30283334]
[117]
Jia M, Nie Y, Cao D-P, et al. Potential antiosteoporotic agents from plants: a comprehensive review. Evid Based Complement Alternat Med 2012.2012364604
[http://dx.doi.org/10.1155/2012/364604 ] [PMID: 23365596]
[118]
Chen KM, Ge BF, Ma HP, Liu XY, Bai MH, Wang Y. Icariin, a flavonoid from the herb Epimedium enhances the osteogenic differentiation of rat primary bone marrow stromal cells. Pharmazie 2005; 60(12): 939-42.
[PMID: 16398272]
[119]
Yin X-X, Chen Z-Q, Liu Z-J, Ma Q-J, Dang G-T. Icariine stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2. Chin Med J (Engl) 2007; 120(3): 204-10.
[http://dx.doi.org/10.1097/00029330-200702010-00006 ] [PMID: 17355822]
[120]
Zhao J, Ohba S, Shinkai M, Chung U-I, Nagamune T. Icariin induces osteogenic differentiation in vitro in a BMP- and Runx2-dependent manner. Biochem Biophys Res Commun 2008; 369(2): 444-8.
[http://dx.doi.org/10.1016/j.bbrc.2008.02.054 ] [PMID: 18295595]
[121]
Habauzit V, Nielsen I-L, Gil-Izquierdo A, et al. Increased bioavailability of hesperetin-7-glucoside compared with hesperidin results in more efficient prevention of bone loss in adult ovariectomised rats. Br J Nutr 2009; 102(7): 976-84.
[http://dx.doi.org/10.1017/S0007114509338830 ] [PMID: 19393110]
[122]
Chiba H, Uehara M, Wu J, et al. Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J Nutr 2003; 133(6): 1892-7.
[http://dx.doi.org/10.1093/jn/133.6.1892 ] [PMID: 12771335]
[123]
Nielsen ILF, Chee WSS, Poulsen L, et al. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: a randomized, double-blind, crossover trial. J Nutr 2006; 136(2): 404-8.
[http://dx.doi.org/10.1093/jn/136.2.404 ] [PMID: 16424119]
[124]
Kim I-R, Kim S-E, Baek H-S, et al. The role of kaempferol-induced autophagy on differentiation and mineralization of osteoblastic MC3T3-E1 cells. BMC Complement Altern Med 2016; 16(1): 333.
[http://dx.doi.org/10.1186/s12906-016-1320-9 ] [PMID: 27581091]
[125]
Lee W-S, Lee E-G, Sung M-S, Yoo W-H. Kaempferol inhibits IL-1β-stimulated, RANKL-mediated osteoclastogenesis via downregulation of MAPKs, c-Fos, and NFATc1. Inflammation 2014; 37(4): 1221-30.
[http://dx.doi.org/10.1007/s10753-014-9849-6 ] [PMID: 24696323]
[126]
Zhuang Z, Ye G, Huang B. Kaempferol alleviates the interleukin-1β-induced inflammation in rat osteoarthritis chondrocytes via suppression of NF-κB. Med Sci Monit 2017; 23: 3925-31.
[http://dx.doi.org/10.12659/MSM.902491 ] [PMID: 28806392]
[127]
Beck S, Mathison H, Todorov T, Calderon-Juarez E-A, Kopp O. A review of medicinal uses and pharmacological activities of Tridax Procumbens (L.). J Plant Stud 2018; 7(1)
[http://dx.doi.org/10.5539/jps.v7n1p19]
[128]
Agrawal S, Talele G. Bioactivity guided isolation and characterization of the phytoconstituents from the Tridax procumbens. Rev Bras Farmacogn 2011; 21(1): 58-62.
[http://dx.doi.org/10.1590/S0102-695X2011005000011]
[129]
Ali MS, Jahangir M. A bis-bithiophene from Tridax procumbens L. (Asteraceae). Nat Prod Lett 2002; 16(4): 217-21.
[http://dx.doi.org/10.1080/10575630290020451 ] [PMID: 12168754]
[130]
Chen W-H, Ma X-M, Wu Q-X, Shi Y-P. Chemical constituent diversity of Tridax procumbens. Can J Chem 2008; 86(9): 892-8.
[http://dx.doi.org/10.1139/v08-097]
[131]
Ikewuchi JC, Catherine I, Ngozi MI. Chemical profile of Tridax procumbens Linn. Pak J Nutr 2009; 8(5): 548-50.
[http://dx.doi.org/10.3923/pjn.2009.548.550]
[132]
Kuldeep G, Pathak AK. Pharmacognostic and phytochemical evaluation of Tridax procumbens Linn. J Pharmacog Phytochem 2013; 1(5): 42-6.
[133]
Xu R, Zhang J, Yuan K. Two new flavones from Tridax procumbens Linn. Molecules 2010; 15(9): 6357-64.
[http://dx.doi.org/10.3390/molecules15096357 ] [PMID: 20877227]
[134]
Diwan PV, Tilloo LD, Kulkarni DR. Influence of Tridax procumbens on wound healing. Indian J Med Res 1982; 75: 460-4.
[PMID: 7106884]
[135]
Udupa AL, Kulkarni DR, Udupa SL. Effect of Tridax procumbens extracts on wound healing. Pharm Biol 1995; 33: 37-40.
[http://dx.doi.org/10.3109/13880209509088145]
[136]
Prabhu VV, Nalini G, Chidambaranathan N, Sudarshankisan S. Evaluation of anti-inflammatory and analgesic activity of Tridax procumbens Linn. against formalin, acetic acid and CFA induced pain models. Int J Pharm Pharm Sci 2011; 3(2): 126-30.
[137]
Nash LA, Sullivan PJ, Peters SJ, Ward WE. Rooibos flavonoids, orientin and luteolin, stimulate mineralization in human osteoblasts through the Wnt pathway. Mol Nutr Food Res 2015; 59(3): 443-53.
[http://dx.doi.org/10.1002/mnfr.201400592 ] [PMID: 25488131]
[138]
Petchi RR, Vijaya C, Parasuraman S. Anti-arthritic activity of ethanolic extract of Tridax procumbens (Linn.) in Sprague Dawley rats. Pharmacognosy Res 2013; 5(2): 113-7.
[http://dx.doi.org/10.4103/0974-8490.110541 ] [PMID: 23798886]
[139]
Al Mamun MA, Hosen MJ, Khatun A, Alam MM, Al-Bari MAA. Tridax procumbens flavonoids: a prospective bioactive compound increased osteoblast differentiation and trabecular bone formation. Biol Res 2017; 50(1): 28.
[http://dx.doi.org/10.1186/s40659-017-0134-7 ] [PMID: 28886722]
[140]
Prasad MH, Ramesh C, Jayakumar N, Ragunathan V, Kalpana D. Biosynthesis of bimetallic Ag/Cu2O nanocomposites using Tridax procumbens leaf extract. Adv Sci Eng Med 2012; 4: 85-8.
[http://dx.doi.org/10.1166/asem.2012.1124]
[141]
Erick ON, Padmanabhan MN. Antimicrobial activity of biogenic silver nanoparticles synthesized using Tridax procumbens L. Int J Curr Res Acad Rev 2014; 2(7): 32-40.
[142]
Al Mamun MA, Islam K, Alam MJ, et al. Flavonoids isolated from Tridax procumbens (TPF) inhibit osteoclasts differentiation and bone resorption. Biol Res 2015; 48(1): 51.
[http://dx.doi.org/10.1186/s40659-015-0043-6 ] [PMID: 26363910]
[143]
Al Mamun MA, Hosen MJ, Islam K, Khatun A, Alam MM, Al-Bari MAA. Tridax procumbens flavonoids promote osteoblast differentiation and bone formation. Biol Res 2015; 48: 65.
[http://dx.doi.org/10.1186/s40659-015-0056-1 ] [PMID: 26581452]
[144]
Al Mamun MA, Asim MMH, Sahin MAZ, Alam MM, Al-Bari MAA. Tridax procumbens flavonoids stimulated synergistic effects on BMP-2-induced bone regeneration in critical-sized of calvarial defect. J Dent Oral Health 2019; 6(204): 1-8.
[145]
Abubakar A, Ogbadoyi EO, Okogun JI, Gbodi TI, Tifin UF. Acute and sub chronic toxicity of Tridax procumbens in experimental animals. IOSR J Environ Sci Toxicol Food Technol 2012; 1: 19-27.
[http://dx.doi.org/10.9790/2402-0161927]
[146]
Babayi H, Alabi RO, Amali ED, Baba E. Effects of oral administration of aqueous extract of Tridax procumbens leaves on some haematological variables in rats. Mod Chem Appl 2018; 6: 1.
[http://dx.doi.org/10.4172/2329-6798.1000245]
[147]
Pareek H, Sharma S, Khajja BS, Jain K, Jain GC. Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens (Linn.). BMC Complement Altern Med 2009; 9: 48.
[http://dx.doi.org/10.1186/1472-6882-9-48 ] [PMID: 19943967]
[148]
Taddei A, Rosas-Romero AJ. Bioactivity studies of extracts from Tridax procumbens. Phytomedicine 2000; 7(3): 235-8.
[http://dx.doi.org/10.1016/S0944-7113(00)80009-4 ] [PMID: 11185735]
[149]
Byavu N, Hnrard C, Dubois M, Malaisse F. Phytothérapie traditionelle des bovins dans les élevages de la plaine de la Ruzizi. Biotechnol Agron Soc Environ 2000; 4(3): 135-56.
[150]
Agyare C, Boakye YD, Bekoe EO, Hensel A, Dapaah SO, Appiah T. Review: African medicinal plants with wound healing properties. J Ethnopharmacol 2016; 177: 85-100.
[http://dx.doi.org/10.1016/j.jep.2015.11.008 ] [PMID: 26549271]
[151]
Appiah-Opong R, Nyarko AK, Dodoo D, Gyang FN, Koram KA, Ayisi NK. Antiplasmodial activity of extracts of Tridax procumbens and Phyllanthus amarus in in vitro Plasmodium falciparum culture systems. Ghana Med J 2011; 45(4): 143-50.
[PMID: 22359419]
[152]
Komlaga G, Agyare C, Dickson RA, et al. Medicinal plants and finished marketed herbal products used in the treatment of malaria in the Ashanti region. Ghana J Ethnopharmacol 2015; 172: 333-46.
[http://dx.doi.org/10.1016/j.jep.2015.06.041 ] [PMID: 26151245]
[153]
Soladoye MO, Ikotun T, Chukwuna EC, et al. Our plants, our heritage: Preliminary survey of some medicinal plant species of Southwestern University Nigeria Campus, Ogun State, Nigeria. Ann Biol Res 2013; 4(12): 27-34.
[154]
Agban A, Gbogbo KA, Amana EK, et al. Evaluation des activités antimicrobiennes de Tridax procumbens (Asteraceae), Jatropha multifidi (Euphorbiaceae) et de Chromolaena odorata (Asteraceae). Eur Sci J 2013; 9(36): 278-90.
[155]
Cáceres A, López B, González S, Berger I, Tada I, Maki J. Plants used in Guatemala for the treatment of protozoal infections. I. Screening of activity to bacteria, fungi and American trypanosomes of 13 native plants. J Ethnopharmacol 1998; 62(3): 195-202.
[http://dx.doi.org/10.1016/S0378-8741(98)00140-8 ] [PMID: 9849628]
[156]
Gamboa-Leon R, Vera-Ku M, Peraza-Sanchez SR, Ku-Chulim C, Horta-Baas A, Rosado-Vallado M. Antileishmanial activity of a mixture of Tridax procumbens and Allium sativum in mice. Parasite 2014; 21: 15.
[http://dx.doi.org/10.1051/parasite/2014016 ] [PMID: 24717526]
[157]
Ebiloma GU, Igoli JO, Katsoulis E, et al. Bioassay-guided isolation of active principles from Nigerian medicinal plants identifies new trypanocides with low toxicity and no cross-resistance to diamidines and arsenicals. J Ethnopharmacol 2017; 202: 256-64.
[http://dx.doi.org/10.1016/j.jep.2017.03.028 ] [PMID: 28336470]
[158]
Ikewuchi JC. Alteration of plasma biochemical, haematological and ocular oxidative indices of alloxan induced diabetic rats by aqueous extract of Tridax procumbens Linn (Asteraceae). EXCLI J 2012; 11: 291-308.
[PMID: 27418906]
[159]
Sawant R, Godghate A. Preliminary phytochemical analysis of leaves of Tridax procumbens Linn. Int J Sci Environ Technol 2013; 2(3): 388-94.
[160]
Kumar L, Prasad A, Iyer S, Vaidya S. Pharmacognostical, phytochemical and pharmacological review on Tridax procumbens. Int J Pharm Biol Arch 2012; 3(4): 747-51.
[161]
Harborne JB. Indian Medicinal Plants. A Compendium of 500 Species In: Edited by In: Warrier PK, Nambiar VPK, Ramankutty C, Eds. J Pharm Pharmacol. 1994. 46(11), 935 1994; 46: p. (11)935.
[162]
Policegoudra RS, Chattopadhyay P, Aradhya SM, Shivaswamy R, Sing L, Veer V. Inhibitory effect of Tridax procumbens against human skin pathogens. J Herb Med 2014; 4(2): 83-8.
[http://dx.doi.org/10.1016/j.hermed.2014.01.004]
[163]
Jindal A, Kumar P. Antimicrobial activity of alkaloids of Tridax procumbens L. against human pathogens. Int J Pharm Sci Res 2012; 3(9): 3481-5.
[164]
Saxena M, Mir AH, Sharma M, et al. Phytochemical screening and in-vitro antioxidant activity isolated bioactive compounds from Tridax procumbens Linn. Pak J Biol Sci 2013; 16(24): 1971-7.
[http://dx.doi.org/10.3923/pjbs.2013.1971.1977 ] [PMID: 24517014]
[165]
Tiwari U, Rastogi B, Singh P, Saraf DK, Vyas SP. Immunomodulatory effects of aqueous extract of Tridax procumbens in experimental animals. J Ethnopharmacol 2004; 92(1): 113-9.
[http://dx.doi.org/10.1016/j.jep.2004.02.001 ] [PMID: 15099857]
[166]
Kethamakka SRP, Deogade MS. Javanti veda (Tridax procumbens) unnoticed medicinal plant by Ayurveda. J Indian System Med 2014; 2(1): 6-20.
[167]
Saxena V, Albert S. B-Sitosterol-3-O-β-D-xylopyranoside from the flowers of Tridax procumbens Linn. J Chem Sci 2005; 117(3): 263-6.
[http://dx.doi.org/10.1007/BF02709296]
[168]
Jhariya S, Rai G, Yadav AK, Jain AP, Lodhi S. Protective effects of Tridax procumbens Linn. leaves on experimentally induced gastric ulcers in rats. J Herbs Spices Med Plants 2015; 21(3): 308-20.
[http://dx.doi.org/10.1080/10496475.2014.973083]
[169]
Manjamalai A, Valavil S, Grace VMB. Evaluation of essential oil of Tridax Procumbens L. for anti-microbial and anti-inflammatory activity Int J Pharm Pharmaceutical Sci 2012; 4(3): 0975-1491.
[170]
Kamble SI, Dahake PR. Preliminary phytochemical investigation and study on antimicrobial activity of Tridax Procumbens Linn. Int Refereed Multidisc J Contemp Res 2015; 2(3): 388-94.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy