Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

General Review Article

Precision Medicine in the Renin-Angiotensin System: Therapeutic Targets and Biological Variability

Author(s): Guillermo Alberto Keller*, Maria Laura Ferreiros-Gago, Hector Di-Salvo and Guillermo Di Girolamo

Volume 21 , Issue 15 , 2020

Page: [1625 - 1637] Pages: 13

DOI: 10.2174/1389450121666200719010849

Price: $65

Abstract

Pathologies linked to the renin-angiotensin system are frequent, and the drugs used in them are numerous and show great variability in therapeutic effects and adverse reactions. Genetic variants have been detected in the angiotensinogen gene (6), angiotensin-converting enzyme (9), angiotensinconverting enzyme 2 (1), and angiotensin receptor Type 1 (4) among others. However, the large number of studies that have analyzed each of them makes it complex and almost impossible to consider all the existing information. This manuscript aims to review the effects of the different known variants on the expected response of different drugs as a basis for the future development of therapeutic guidelines that seek to implement therapeutic individualization strategies on the renin-angiotensin system.

Keywords: Precision medicine, renin-angiotensin-aldosterone system, aldosterone, population biological variations, angiotensinogen gene, angiotensin receptor.

Graphical Abstract
[1]
Tigerstedt, R.; Bergman, P. Niere and Kreislauf. Scand Arch Physiol (Germany), 1898, 8, 223-271.
[http://dx.doi.org/10.1111/j.1748-1716.1898.tb00272.x]
[2]
Goldblatt, H.; Lynch, J.; Hanzal, R.F.; Summerville, W.W. Studies on experimental hypertension: i. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J. Exp. Med., 1934, 59(3), 347-379.
[http://dx.doi.org/10.1084/jem.59.3.347] [PMID: 19870251]
[3]
Braun-Menendez, E.; Fasciolo, J.C.; Leloir, L.F.; Muñoz, J.M. The substance causing renal hypertension. J. Physiol., 1940, 98(3), 283-298.
[http://dx.doi.org/10.1113/jphysiol.1940.sp003850] [PMID: 16995204]
[4]
Braun-Menendez, E.; Page, I.H. Suggested Revision of Nomenclature-Angiotensin. Science, 1958, 127(3292), 242.
[http://dx.doi.org/10.1126/science.127.3292.242-a] [PMID: 17750687]
[5]
Page, I.H.; Helmer, O.M. A crystalline pressor substance (angiotonin) resulting from the reaction between renin and renin-activator. J. Exp. Med., 1940, 71(1), 29-42.
[http://dx.doi.org/10.1084/jem.71.1.29] [PMID: 19870942]
[6]
Skeggs, L.T., Jr; Kahn, J.R.; Lentz, K.; Shumway, N.P. The preparation, purification, and amino acid sequence of a polypeptide renin substrate. J. Exp. Med., 1957, 106(3), 439-453.
[http://dx.doi.org/10.1084/jem.106.3.439] [PMID: 13463253]
[7]
Timmermans, P.B.; Wong, P.C.; Chiu, A.T.; Herblin, W.F.; Benfield, P.; Carini, D.J.; Lee, R.J.; Wexler, R.R.; Saye, J.A.; Smith, R.D. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol. Rev., 1993, 45(2), 205-251.
[PMID: 8372104]
[8]
Oudart, N. The renin-angiotensin system: current data. Ann. Pharm. Fr., 2005, 63(2), 144-153.
[http://dx.doi.org/10.1016/S0003-4509(05)82265-5] [PMID: 15976682]
[9]
Garrido-Gil, P.; Valenzuela, R.; Villar-Cheda, B.; Lanciego, J.L.; Labandeira-Garcia, J.L. Expression of angiotensinogen and receptors for angiotensin and prorenin in the monkey and human substantia nigra: an intracellular renin-angiotensin system in the nigra. Brain Struct. Funct., 2013, 218(2), 373-388.
[http://dx.doi.org/10.1007/s00429-012-0402-9] [PMID: 22407459]
[10]
Ribeiro-Oliveira, A., Jr; Nogueira, A.I.; Pereira, R.M.; Boas, W.W.; Dos Santos, R.A.; Simões e Silva, A.C. The renin-angiotensin system and diabetes: an update. Vasc. Health Risk Manag., 2008, 4(4), 787-803.
[PMID: 19065996]
[11]
Simões e Silva, A.C.; Silveira, K.D.; Ferreira, A.J.; Teixeira, M.M. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br. J. Pharmacol., 2013, 169(3), 477-492.
[http://dx.doi.org/10.1111/bph.12159] [PMID: 23488800]
[12]
Jankowski, V.; Vanholder, R.; van der Giet, M.; Tölle, M.; Karadogan, S.; Gobom, J.; Furkert, J.; Oksche, A.; Krause, E.; Tran, T.N.; Tepel, M.; Schuchardt, M.; Schlüter, H.; Wiedon, A.; Beyermann, M.; Bader, M.; Todiras, M.; Zidek, W.; Jankowski, J. Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler. Thromb. Vasc. Biol., 2007, 27(2), 297-302.
[http://dx.doi.org/10.1161/01.ATV.0000253889.09765.5f] [PMID: 17138938]
[13]
Yang, R.; Smolders, I.; Vanderheyden, P.; Demaegdt, H.; Van Eeckhaut, A.; Vauquelin, G.; Lukaszuk, A.; Tourwé, D.; Chai, S.Y.; Albiston, A.L.; Nahmias, C.; Walther, T.; Dupont, A.G. Pressor and renal hemodynamic effects of the novel angiotensin A peptide are angiotensin II type 1A receptor dependent. Hypertension, 2011, 57(5), 956-964.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.161836] [PMID: 21464395]
[14]
Villela, D.C.; Passos-Silva, D.G.; Santos, R.A. Alamandine: a new member of the angiotensin family. Curr. Opin. Nephrol. Hypertens., 2014, 23(2), 130-134.
[http://dx.doi.org/10.1097/01.mnh.0000441052.44406.92] [PMID: 24389733]
[15]
Schleifenbaum, J. Alamandine and Its Receptor MrgD Pair Up to Join the Protective Arm of the Renin-Angiotensin System. Front. Med. (Lausanne), 2019, 6, 107.
[http://dx.doi.org/10.3389/fmed.2019.00107] [PMID: 31245374]
[16]
Kramkowski, K.; Mogielnicki, A.; Buczko, W. The physiological significance of the alternative pathways of angiotensin II production. J. Physiol. Pharmacol., 2006, 57(4), 529-539.
[PMID: 17229979]
[17]
Lu, H.; Cassis, L.A.; Kooi, C.W.; Daugherty, A. Structure and functions of angiotensinogen. Hypertens. Res., 2016, 39(7), 492-500.
[http://dx.doi.org/10.1038/hr.2016.17] [PMID: 26888118]
[18]
Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther., 2012, 92(4), 414-417.
[http://dx.doi.org/10.1038/clpt.2012.96] [PMID: 22992668]
[19]
Su, X.; Lee, L.; Li, X.; Lv, J.; Hu, Y.; Zhan, S.; Cao, W.; Mei, L.; Tang, Y.M.; Wang, D.; Krauss, R.M.; Taylor, K.D.; Rotter, J.I.; Yang, H. Association between angiotensinogen, angiotensin II receptor genes, and blood pressure response to an angiotensin-converting enzyme inhibitor. Circulation, 2007, 115(6), 725-732.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.642058] [PMID: 17261659]
[20]
Yu, H.; Lin, S.; Zhong, J.; He, M.; Jin, L.; Zhang, Y.; Liu, G. A core promoter variant of angiotensinogen gene and interindividual variation in response to angiotensin-converting enzyme inhibitors. J. Renin Angiotensin Aldosterone Syst., 2014, 15(4), 540-546.
[http://dx.doi.org/10.1177/1470320313506481] [PMID: 25143324]
[21]
Kurland, L.; Liljedahl, U.; Karlsson, J.; Kahan, T.; Malmqvist, K.; Melhus, H.; Syvänen, A.C.; Lind, L. Angiotensinogen gene polymorphisms: relationship to blood pressure response to antihypertensive treatment. Results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial. Am. J. Hypertens., 2004, 17(1), 8-13.
[http://dx.doi.org/10.1016/j.amjhyper.2003.09.009] [PMID: 14700505]
[22]
Frazier, L.; Turner, S.T.; Schwartz, G.L.; Chapman, A.B.; Boerwinkle, E. Multilocus effects of the renin-angiotensin-aldosterone system genes on blood pressure response to a thiazide diuretic. Pharmacogenomics J., 2004, 4(1), 17-23.
[http://dx.doi.org/10.1038/sj.tpj.6500215] [PMID: 14735111]
[23]
Kurland, L.; Melhus, H.; Karlsson, J.; Kahan, T.; Malmqvist, K.; Ohman, K.P.; Nyström, F.; Hägg, A.; Lind, L. Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) Trial. Angiotensin converting enzyme gene polymorphism predicts blood pressure response to angiotensin II receptor type 1 antagonist treatment in hypertensive patients. J. Hypertens., 2001, 19(10), 1783-1787.
[http://dx.doi.org/10.1097/00004872-200110000-00012] [PMID: 11593098]
[24]
Bis, J.C.; Smith, N.L.; Psaty, B.M.; Heckbert, S.R.; Edwards, K.L.; Lemaitre, R.N.; Lumley, T.; Rosendaal, F.R. Angiotensinogen Met235Thr polymorphism, angiotensin-converting enzyme inhibitor therapy, and the risk of nonfatal stroke or myocardial infarction in hypertensive patients. Am. J. Hypertens., 2003, 16(12), 1011-1017.
[http://dx.doi.org/10.1016/j.amjhyper.2003.07.018] [PMID: 14643574]
[25]
St Germaine, C.G.; Bogaty, P.; Boyer, L.; Hanley, J.; Engert, J.C.; Brophy, J.M. Genetic polymorphisms and the cardiovascular risk of non-steroidal anti-inflammatory drugs. Am. J. Cardiol., 2010, 105(12), 1740-1745.
[http://dx.doi.org/10.1016/j.amjcard.2010.01.352] [PMID: 20538124]
[26]
Liljedahl, U.; Kahan, T.; Malmqvist, K.; Melhus, H.; Syvänen, A.C.; Lind, L.; Kurland, L. Single nucleotide polymorphisms predict the change in left ventricular mass in response to antihypertensive treatment. J. Hypertens., 2004, 22(12), 2321-2328.
[http://dx.doi.org/10.1097/00004872-200412000-00014] [PMID: 15614026]
[27]
Toyofyuku, M.; Imazu, M.; Sumii, K.; Yamamoto, H.; Hayashi, Y.; Hiyama, K.; Kohno, N. Influence of angiotensinogen M253T gene polymorphism and an angiotensin converting enzyme inhibitor on restenosis after percutaneous coronary intervention. Atherosclerosis, 2002, 160(2), 339-344.
[http://dx.doi.org/10.1016/S0021-9150(01)00592-5] [PMID: 11849656]
[28]
Shiotani, A.; Nishi, R.; Yamanaka, Y.; Murao, T.; Matsumoto, H.; Tarumi, K.; Kamada, T.; Sakakibara, T.; Haruma, K. Renin-angiotensin system associated with risk of upper GI mucosal injury induced by low dose aspirin: renin angiotensin system genes’ polymorphism. Dig. Dis. Sci., 2011, 56(2), 465-471.
[http://dx.doi.org/10.1007/s10620-010-1382-3] [PMID: 20824505]
[29]
Ellis, K.L.; Palmer, B.R.; Frampton, C.M.; Troughton, R.W.; Doughty, R.N.; Whalley, G.A.; Ellis, C.J.; Pilbrow, A.P.; Skelton, L.; Yandle, T.G.; Richards, A.M.; Cameron, V.A. Genetic variation in the renin-angiotensin-aldosterone system is associated with cardiovascular risk factors and early mortality in established coronary heart disease. J. Hum. Hypertens., 2013, 27(4), 237-244.
[http://dx.doi.org/10.1038/jhh.2012.24] [PMID: 22739771]
[30]
Do, A.N.; Irvin, M.R.; Lynch, A.I.; Claas, S.A.; Boerwinkle, E.; Davis, B.R.; Ford, C.E.; Eckfeldt, J.H.; Tiwari, H.K.; Limdi, N.A.; Arnett, D.K. The effects of angiotensinogen gene polymorphisms on cardiovascular disease outcomes during antihypertensive treatment in the GenHAT study. Front. Pharmacol., 2014, 5, 210.
[http://dx.doi.org/10.3389/fphar.2014.00210] [PMID: 25278896]
[31]
Eleni, S.; Dimitrios, K.; Vaya, P.; Areti, M.; Norma, V.; Magdalini, G. Angiotensin-I converting enzyme gene and I/D polymorphism distribution in the Greek population and a comparison with other European populations. J. Genet., 2008, 87(1), 91-93.
[http://dx.doi.org/10.1007/s12041-008-0013-7] [PMID: 18560180]
[32]
Parving, H.H.; Jacobsen, P.; Tarnow, L.; Rossing, P.; Lecerf, L.; Poirier, O.; Cambien, F. Effect of deletion polymorphism of angiotensin converting enzyme gene on progression of diabetic nephropathy during inhibition of angiotensin converting enzyme: observational follow up study. BMJ, 1996, 313(7057), 591-594.
[http://dx.doi.org/10.1136/bmj.313.7057.591] [PMID: 8806248]
[33]
Mizuiri, S.; Hemmi, H.; Inoue, A.; Takano, M.; Kadomatsu, S.; Tanimoto, H.; Tanegashima, M.; Hayashi, I.; Fushimi, T.; Hasegawa, A. Renal hemodynamic changes induced by captopril and angiotensin-converting enzyme gene polymorphism. Nephron, 1997, 75(3), 310-314.
[http://dx.doi.org/10.1159/000189554] [PMID: 9069453]
[34]
Jacobsen, P.; Rossing, K.; Rossing, P.; Tarnow, L.; Mallet, C.; Poirier, O.; Cambien, F.; Parving, H.H. Angiotensin converting enzyme gene polymorphism and ACE inhibition in diabetic nephropathy. Kidney Int., 1998, 53(4), 1002-1006.
[http://dx.doi.org/10.1111/j.1523-1755.1998.00847.x] [PMID: 9551410]
[35]
O’Toole, L.; Stewart, M.; Padfield, P.; Channer, K. Effect of the insertion/deletion polymorphism of the angiotensin-converting enzyme gene on response to angiotensin-converting enzyme inhibitors in patients with heart failure. J. Cardiovasc. Pharmacol., 1998, 32(6), 988-994.
[http://dx.doi.org/10.1097/00005344-199812000-00017] [PMID: 9869506]
[36]
Kanazawa, H.; Hirata, K.; Yoshikawa, J. Effects of captopril administration on pulmonary haemodynamics and tissue oxygenation during exercise in ACE gene subtypes in patients with COPD: a preliminary study. Thorax, 2003, 58(7), 629-631.
[http://dx.doi.org/10.1136/thorax.58.7.629] [PMID: 12832683]
[37]
Volkan-Salanci, B.; Dagdelen, S.; Alikasifoglu, M.; Erbas, T.; Hayran, M.; Erbas, B. Impact of renin-angiotensin system polymorphisms on renal haemodynamic responsiveness to acute angiotensin-converting enzyme inhibition in type 2 diabetes mellitus. J. Renin Angiotensin Aldosterone Syst., 2009, 10(1), 41-50.
[http://dx.doi.org/10.1177/1470320309102326] [PMID: 19286758]
[38]
Felehgari, V.; Rahimi, Z.; Mozafari, H.; Vaisi-Raygani, A. ACE gene polymorphism and serum ACE activity in Iranians type II diabetic patients with macroalbuminuria. Mol. Cell. Biochem., 2011, 346(1-2), 23-30.
[http://dx.doi.org/10.1007/s11010-010-0587-2] [PMID: 20830509]
[39]
Penno, G.; Chaturvedi, N.; Talmud, P.J.; Cotroneo, P.; Manto, A.; Nannipieri, M.; Luong, L.A.; Fuller, J.H. Effect of angiotensin-converting enzyme (ACE) gene polymorphism on progression of renal disease and the influence of ACE inhibition in IDDM patients: findings from the EUCLID randomized controlled trial. EURODIAB controlled trial of lisinopril in IDDM. Diabetes, 1998, 47(9), 1507-1511.
[http://dx.doi.org/10.2337/diabetes.47.9.1507] [PMID: 9726242]
[40]
van Essen, G.G.; Rensma, P.L.; de Zeeuw, D.; Sluiter, W.J.; Scheffer, H.; Apperloo, A.J.; de Jong, P.E. Association between angiotensin-converting-enzyme gene polymorphism and failure of renoprotective therapy. Lancet, 1996, 347(8994), 94-95.
[http://dx.doi.org/10.1016/S0140-6736(96)90213-5] [PMID: 8538349]
[41]
Sasaki, M.; Oki, T.; Iuchi, A.; Tabata, T.; Yamada, H.; Manabe, K.; Fukuda, K.; Abe, M.; Ito, S. Relationship between the angiotensin converting enzyme gene polymorphism and the effects of enalapril on left ventricular hypertrophy and impaired diastolic filling in essential hypertension: M-mode and pulsed Doppler echocardiographic studies. J. Hypertens., 1996, 14(12), 1403-1408.
[http://dx.doi.org/10.1097/00004872-199612000-00003] [PMID: 8986921]
[42]
Haas, M.; Yilmaz, N.; Schmidt, A.; Neyer, U.; Arneitz, K.; Stummvoll, H.K.; Wallner, M.; Auinger, M.; Arias, I.; Schneider, B.; Mayer, G. Austrian study group of the effects of enalapril treatment in proteinuric renal disease. angiotensin-converting enzyme gene polymorphism determines the antiproteinuric and systemic hemodynamic effect of enalapril in patients with proteinuric renal disease. Kidney Blood Press. Res., 1998, 21(1), 66-69.
[http://dx.doi.org/10.1159/000025845] [PMID: 9661139]
[43]
Prasad, A.; Narayanan, S.; Husain, S.; Padder, F.; Waclawiw, M.; Epstein, N.; Quyyumi, A.A. Insertion-deletion polymorphism of the ACE gene modulates reversibility of endothelial dysfunction with ACE inhibition. Circulation, 2000, 102(1), 35-41.
[http://dx.doi.org/10.1161/01.CIR.102.1.35] [PMID: 10880412]
[44]
Trevelyan, J.; Needham, E.W.; Morris, A.; Mattu, R.K. Comparison of the effect of enalapril and losartan in conjunction with surgical coronary revascularisation versus revascularisation alone on systemic endothelial function. Heart, 2005, 91(8), 1053-1057.
[http://dx.doi.org/10.1136/hrt.2004.036897] [PMID: 16020596]
[45]
Pérez-Castrillón, J.L.; Silva, J.; Justo, I.; Sanz, A.; Martín-Luquero, M.; Igea, R.; Escudero, P.; Pueyo, C.; Díaz, C.; Hernández, G.; Dueñas, A. Effect of quinapril, quinapril-hydrochlorothiazide, and enalapril on the bone mass of hypertensive subjects: relationship with angiotensin converting enzyme polymorphisms. Am. J. Hypertens., 2003, 16(6), 453-459.
[http://dx.doi.org/10.1016/S0895-7061(03)00845-8] [PMID: 12799093]
[46]
Woo, K.T.; Chan, C.M.; Choong, H.L.; Tan, H.K.; Foo, M.; Lee, E.J.; Tan, C.C.; Lee, G.S.; Tan, S.H.; Vathsala, A.; Lim, C.H.; Chiang, G.S.; Fook-Chong, S.; Yi, Z.; Tan, H.B.; Wong, K.S. High dose Losartan and ACE gene polymorphism in IgA nephritis. Genomic Med., 2008, 2(3-4), 83-91.
[http://dx.doi.org/10.1007/s11568-009-9030-8] [PMID: 19319668]
[47]
Potaczek, D.P.; Undas, A.; Iwaniec, T.; Szczeklik, A. The angiotensin-converting enzyme gene insertion/deletion polymorphism and effects of quinapril and atorvastatin on haemostatic parameters in patients with coronary artery disease. Thromb. Haemost., 2005, 94(1), 224-225.
[http://dx.doi.org/10.1055/s-0037-1614312] [PMID: 16116691]
[48]
Cicoira, M.; Rossi, A.; Bonapace, S.; Zanolla, L.; Perrot, A.; Francis, D.P.; Golia, G.; Franceschini, L.; Osterziel, K.J.; Zardini, P. Effects of ACE gene insertion/deletion polymorphism on response to spironolactone in patients with chronic heart failure. Am. J. Med., 2004, 116(10), 657-661.
[http://dx.doi.org/10.1016/j.amjmed.2003.12.033] [PMID: 15121491]
[49]
Butler, R.; Morris, A.D.; Burchell, B.; Struthers, A.D. DD angiotensin-converting enzyme gene polymorphism is associated with endothelial dysfunction in normal humans. Hypertension, 1999, 33(5), 1164-1168.
[http://dx.doi.org/10.1161/01.HYP.33.5.1164] [PMID: 10334805]
[50]
Li, Y.; Zhou, Y.; Yang, P.; Niu, J.Q.; Wu, Y.; Zhao, D.D.; Wu, S.L. Interaction of ACE and CYP11B2 genes on blood pressure response to hydrochlorothiazide in Han Chinese hypertensive patients. Clin. Exp. Hypertens., 2011, 33(3), 141-146.
[http://dx.doi.org/10.3109/10641963.2010.531838] [PMID: 21269061]
[51]
Schwartz, G.L.; Turner, S.T.; Chapman, A.B.; Boerwinkle, E. Interacting effects of gender and genotype on blood pressure response to hydrochlorothiazide. Kidney Int., 2002, 62(5), 1718-1723.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00624.x] [PMID: 12371972]
[52]
Ha, S.K.; Yong, Lee S.; Su Park, H.; Ho Shin, J.; Jung Kim, S.; Hun Kim, D.; Rae Kim, K.; Yung Lee, H.; Suk Han, D. ACE DD genotype is more susceptible than ACE II and ID genotypes to the antiproteinuric effect of ACE inhibitors in patients with proteinuric non-insulin-dependent diabetes mellitus. Nephrol. Dial. Transplant., 2000, 15(10), 1617-1623.
[http://dx.doi.org/10.1093/ndt/15.10.1617] [PMID: 11007831]
[53]
He, H.; Li, L.M.; Cao, W.H.; Sun, N.L.; Liu, M.Z.; Hu, Y.H. A study of the relationships between angiotensin- converting enzyme gene, chymase gene polymorphisms, pharmacological treatment with ACE inhibitor and regression of left ventricular hypertrophy in essential hypertension patients treated with benazepril. Ann. Hum. Biol., 2005, 32(1), 30-43.
[http://dx.doi.org/10.1080/03014460400027458] [PMID: 15788353]
[54]
Marian, A.J.; Safavi, F.; Ferlic, L.; Dunn, J.K.; Gotto, A.M.; Ballantyne, C.M. Interactions between angiotensin-I converting enzyme insertion/deletion polymorphism and response of plasma lipids and coronary atherosclerosis to treatment with fluvastatin: the lipoprotein and coronary atherosclerosis study. J. Am. Coll. Cardiol., 2000, 35(1), 89-95.
[http://dx.doi.org/10.1016/S0735-1097(99)00535-5] [PMID: 10636265]
[55]
Mulder, H.J.; van Geel, P.P.; Schalij, M.J.; van Gilst, W.H.; Zwinderman, A.H.; Bruschke, A.V. PREFACE trial. DD ACE gene polymorphism is associated with increased coronary artery endothelial dysfunction: the PREFACE trial. Heart, 2003, 89(5), 557-558.
[http://dx.doi.org/10.1136/heart.89.5.557] [PMID: 12695469]
[56]
Bahramali, E.; Firouzabadi, N.; Yavarian, I.; Shayesteh, M.R.; Erfani, N.; Shoushtari, A.A.; Asadpour, R. Influence of ACE gene on differential response to sertraline versus fluoxetine in patients with major depression: a randomized controlled trial. Eur. J. Clin. Pharmacol., 2016, 72(9), 1059-1064.
[http://dx.doi.org/10.1007/s00228-016-2079-0] [PMID: 27262302]
[57]
Arnett, D.K.; Claas, S.A.; Glasser, S.P. Pharmacogenetics of antihypertensive treatment. Vascul. Pharmacol., 2006, 44(2), 107-118.
[http://dx.doi.org/10.1016/j.vph.2005.09.010] [PMID: 16356784]
[58]
Palmirotta, R.; Barbanti, P.; Ludovici, G.; De Marchis, M.L.; Ialongo, C.; Egeo, G.; Aurilia, C.; Fofi, L.; Abete, P.; Spila, A.; Ferroni, P.; Della-Morte, D.; Guadagni, F. Association between migraine and ACE gene (insertion/deletion) polymorphism: the BioBIM study. Pharmacogenomics, 2014, 15(2), 147-155.
[http://dx.doi.org/10.2217/pgs.13.186] [PMID: 24444405]
[59]
Vormfelde, S.V.; Brockmöller, J. The genetics of loop diuretic effects. Pharmacogenomics J., 2012, 12(1), 45-53.
[http://dx.doi.org/10.1038/tpj.2010.68] [PMID: 20877298]
[60]
Lee, J.K.; Wu, C.K.; Tsai, C.T.; Lin, L.Y.; Lin, J.W.; Chien, K.L.; Hwang, J.J.; Lin, C.L.; Tseng, C.D.; Chiang, F.T. Genetic variation-optimized treatment benefit of angiotensin-converting enzyme inhibitors in patients with stable coronary artery disease: a 12-year follow-up study. Pharmacogenet. Genomics, 2013, 23(4), 181-189.
[http://dx.doi.org/10.1097/FPC.0b013e32835a0ffa] [PMID: 23407050]
[61]
Wu, C.K.; Luo, J.L.; Tsai, C.T.; Huang, Y.T.; Cheng, C.L.; Lee, J.K.; Lin, L.Y.; Lin, J.W.; Hwang, J.J.; Chiang, F.T. Demonstrating the pharmacogenetic effects of angiotensin-converting enzyme inhibitors on long-term prognosis of diastolic heart failure. Pharmacogenomics J., 2010, 10(1), 46-53.
[http://dx.doi.org/10.1038/tpj.2009.39] [PMID: 19752885]
[62]
Irvin, M.R.; Lynch, A.I.; Kabagambe, E.K.; Tiwari, H.K.; Barzilay, J.I.; Eckfeldt, J.H.; Boerwinkle, E.; Davis, B.R.; Ford, C.E.; Arnett, D.K. Pharmacogenetic association of hypertension candidate genes with fasting glucose in the GenHAT Study. J. Hypertens., 2010, 28(10), 2076-2083.
[http://dx.doi.org/10.1097/HJH.0b013e32833c7a4d] [PMID: 20577119]
[63]
Kim, T.H.; Chang, H.S.; Park, S.M.; Nam, B.Y.; Park, J.S.; Rhim, T.; Park, H.S.; Kim, M.K.; Choi, I.S.; Cho, S.H.; Chung, I.Y.; Park, B.L.; Park, C.S.; Shin, H.D. Association of angiotensin I-converting enzyme gene polymorphisms with aspirin intolerance in asthmatics. Clin. Exp. Allergy, 2008, 38(11), 1727-1737.
[http://dx.doi.org/10.1111/j.1365-2222.2008.03082.x] [PMID: 18727619]
[64]
Ferreira de Oliveira, F.; Berretta, J.M.; Suchi, Chen E.; Cardoso Smith, M.; Ferreira Bertolucci, P.H. Pharmacogenetic effects of angiotensin-converting enzyme inhibitors over age-related urea and creatinine variations in patients with dementia due to Alzheimer disease. Colomb. Med., 2016, 47(2), 76-80.
[http://dx.doi.org/10.25100/cm.v47i2.2188] [PMID: 27546928]
[65]
Bozkurt, O.; de Boer, A.; Grobbee, D.E.; de Leeuw, P.W.; Kroon, A.A.; Schiffers, P.; Klungel, O.H. Variation in Renin-Angiotensin system and salt-sensitivity genes and the risk of diabetes mellitus associated with the use of thiazide diuretics. Am. J. Hypertens., 2009, 22(5), 545-551.
[http://dx.doi.org/10.1038/ajh.2009.38] [PMID: 19247266]
[66]
Thompson, J.F.; Man, M.; Johnson, K.J.; Wood, L.S.; Lira, M.E.; Lloyd, D.B.; Banerjee, P.; Milos, P.M.; Myrand, S.P.; Paulauskis, J.; Milad, M.A.; Sasiela, W.J. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J., 2005, 5(6), 352-358.
[http://dx.doi.org/10.1038/sj.tpj.6500328] [PMID: 16103896]
[67]
Eisenhardt, A.; Sperling, H.; Hauck, E.; Porst, H.; Stief, C.; Rübben, H.; Müller, N.; Siffert, W. ACE gene I/D and NOS3 G894T polymorphisms and response to sildenafil in men with erectile dysfunction. Urology, 2003, 62(1), 152-157.
[http://dx.doi.org/10.1016/S0090-4295(03)00137-7] [PMID: 12837457]
[68]
Bhatnagar, V.; O’Connor, D.T.; Schork, N.J.; Salem, R.M.; Nievergelt, C.M.; Rana, B.K.; Smith, D.W.; Bakris, G.L.; Middleton, J.P.; Norris, K.C.; Wright, J.T.; Cheek, D.; Hiremath, L.; Contreras, G.; Appel, L.J.; Lipkowitz, M.S. Angiotensin-converting enzyme gene polymorphism predicts the time-course of blood pressure response to angiotensin converting enzyme inhibition in the AASK trial. J. Hypertens., 2007, 25(10), 2082-2092.
[http://dx.doi.org/10.1097/HJH.0b013e3282b9720e] [PMID: 17885551]
[69]
Tiwari, A.K.; Zai, C.C.; Sajeev, G.; Arenovich, T.; Müller, D.J.; Kennedy, J.L. Analysis of 34 candidate genes in bupropion and placebo remission. Int. J. Neuropsychopharmacol., 2013, 16(4), 771-781.
[http://dx.doi.org/10.1017/S1461145712000843] [PMID: 22947179]
[70]
Pavón-Romero, G.F.; Pérez-Rubio, G.; Ramírez-Jiménez, F.; Ambrocio-Ortiz, E.; Bañuelos-Ortiz, E.; Alvarado-Franco, N.; Xochipa-Ruiz, K.E.; Hernández-Juárez, E.; Flores-García, B.A.; Camarena, Á.E.; Terán, L.M.; Falfán-Valencia, R. MS4A2-rs573790 Is associated with aspirin-exacerbated respiratory disease: replicative study using a candidate gene strategy. Front. Genet., 2018, 9, 363.
[http://dx.doi.org/10.3389/fgene.2018.00363] [PMID: 30254660]
[71]
Fang, C.; Ren, X.; Zhou, H.; Gong, Z.C.; Shen, L.; Bai, J.; Yin, J.Y.; Qu, J.; Li, X.P.; Zhou, H.H.; Liu, Z.Q. Effects of eNOS rs1799983 and ACE rs4646994 polymorphisms on the therapeutic efficacy of salvianolate injection in Chinese patients with coronary heart disease. Clin. Exp. Pharmacol. Physiol., 2014, 41(8), 558-564.
[http://dx.doi.org/10.1111/1440-1681.12257] [PMID: 24827774]
[72]
Fan, X.; Wang, Y.; Sun, K.; Zhang, W.; Yang, X.; Wang, S.; Zhen, Y.; Wang, J.; Li, W.; Han, Y.; Liu, T.; Wang, X.; Chen, J.; Wu, H.; Hui, R. Study group for pharmacogenomic based antihypertensive drugs selection, effects and side effects, in rural area chinese. Polymorphisms of ACE2 gene are associated with essential hypertension and antihypertensive effects of Captopril in women. Clin. Pharmacol. Ther., 2007, 82(2), 187-196.
[http://dx.doi.org/10.1038/sj.clpt.6100214] [PMID: 17473847]
[73]
Tonna, S.; Dandapani, S.V.; Uscinski, A.; Appel, G.B.; Schlöndorff, J.S.; Zhang, K.; Denker, B.M.; Pollak, M.R. Functional genetic variation in aminopeptidase A (ENPEP): lack of clear association with focal and segmental glomerulosclerosis (FSGS). Gene, 2008, 410(1), 44-52.
[http://dx.doi.org/10.1016/j.gene.2007.11.014] [PMID: 18206321]
[74]
Benetos, A.; Cambien, F.; Gautier, S.; Ricard, S.; Safar, M.; Laurent, S.; Lacolley, P.; Poirier, O.; Topouchian, J.; Asmar, R. Influence of the angiotensin II type 1 receptor gene polymorphism on the effects of perindopril and nitrendipine on arterial stiffness in hypertensive individuals. Hypertension, 1996, 28(6), 1081-1084.
[http://dx.doi.org/10.1161/01.HYP.28.6.1081] [PMID: 8952600]
[75]
Musso, G.; Saba, F.; Cassader, M.; Paschetta, E.; De Michieli, F.; Pinach, S.; Framarin, L.; Berrutti, M.; Leone, N.; Parente, R.; Ayoubi Khajekini, M.T.; Zarovska, A.; Gambino, R. Angiotensin II type 1 receptor rs5186 gene variant predicts incident NAFLD and associated hypertension: Role of dietary fat-induced pro-inflammatory cell activation. Am. J. Gastroenterol., 2019, 114(4), 607-619.
[http://dx.doi.org/10.14309/ajg.0000000000000154] [PMID: 30920415]
[76]
Miller, J.A.; Thai, K.; Scholey, J.W. Angiotensin II type 1 receptor gene polymorphism predicts response to losartan and angiotensin II. Kidney Int., 1999, 56(6), 2173-2180.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00770.x] [PMID: 10594793]
[77]
Junusbekov, Y.; Bayoglu, B.; Cengiz, M.; Dirican, A.; Arslan, C. AGT rs699 and AGTR1 rs5186 gene variants are associated with cardiovascular-related phenotypes in atherosclerotic peripheral arterial obstructive disease. Ir. J. Med. Sci., 1971, 189, 885-894.
[http://dx.doi.org/10.1007/s11845-019-02166-6] [PMID: 31858452]
[78]
Sookoian, S.; Castaño, G.; García, S.I.; Viudez, P.; González, C.; Pirola, C.J. A1166C angiotensin II type 1 receptor gene polymorphism may predict hemodynamic response to losartan in patients with cirrhosis and portal hypertension. Am. J. Gastroenterol., 2005, 100(3), 636-642.
[http://dx.doi.org/10.1111/j.1572-0241.2005.41168.x] [PMID: 15743363]
[79]
de Denus, S.; Zakrzewski-Jakubiak, M.; Dubé, M.P.; Bélanger, F.; Lepage, S.; Leblanc, M.H.; Gossard, D.; Ducharme, A.; Racine, N.; Whittom, L.; Lavoie, J.; Touyz, R.M.; Turgeon, J.; White, M. Effects of AGTR1 A1166C gene polymorphism in patients with heart failure treated with candesartan. Ann. Pharmacother., 2008, 42(7), 925-932.
[http://dx.doi.org/10.1345/aph.1K657] [PMID: 18594050]
[80]
Latek, D.; Rutkowska, E.; Niewieczerzal, S.; Cielecka-Piontek, J. Drug-induced diabetes type 2: In silico study involving class B GPCRs. PLoS One, 2019, 14(1)e0208892
[http://dx.doi.org/10.1371/journal.pone.0208892] [PMID: 30650080]
[81]
Herrera-González, S.; Martínez-Treviño, D.A.; Aguirre-Garza, M.; Gómez-Silva, M.; Barrera-Saldaña, H.A.; León-Cachón, R.B.R. Effect of AGTR1 and BDKRB2 gene polymorphisms on atorvastatin metabolism in a Mexican population. Biomed. Rep., 2017, 7(6), 579-584.
[PMID: 29250329]
[82]
Brugts, J.J.; Boersma, E.; Simoons, M.L. Tailored therapy of ACE inhibitors in stable coronary artery disease: pharmacogenetic profiling of treatment benefit. Pharmacogenomics, 2010, 11(8), 1115-1126.
[http://dx.doi.org/10.2217/pgs.10.103] [PMID: 20712529]
[83]
Oemrawsingh, R.M.; Akkerhuis, K.M.; Van Vark, L.C.; Redekop, W.K.; Rudez, G.; Remme, W.J.; Bertrand, M.E.; Fox, K.M.; Ferrari, R.; Danser, A.H.; de Maat, M.; Simoons, M.L.; Brugts, J.J.; Boersma, E. PERGENE investigators. Individualized angiotensin-converting enzyme (ACE)-inhibitor therapy in stable coronary artery disease based on clinical and pharmacogenetic determinants: The PERindopril GENEtic (PERGENE). Risk Model. J. Am. Heart Assoc., 2016, 5(3)e002688
[http://dx.doi.org/10.1161/JAHA.115.002688] [PMID: 27021566]
[84]
Afruza, R.; Islam, L.N.; Banerjee, S.; Hassan, M.M.; Suzuki, F.; Nabi, A.N. Renin gene polymorphisms in bangladeshi hypertensive population. J Genomics, 2014, 2, 45-53.
[http://dx.doi.org/10.7150/jgen.5193] [PMID: 25057323]
[85]
Zhu, Y.; Swanson, K.M.; Rojas, R.L.; Wang, Z.; St Sauver, J.L.; Visscher, S.L.; Prokop, L.J.; Bielinski, S.J.; Wang, L.; Weinshilboum, R.; Borah, B.J. Systematic review of the evidence on the cost-effectiveness of pharmacogenomics-guided treatment for cardiovascular diseases. Genet. Med., 2020, 22(3), 475-486.
[http://dx.doi.org/10.1038/s41436-019-0667-y] [PMID: 31591509]
[86]
Schelleman, H.; Klungel, O.H.; Witteman, J.C.; Breteler, M.M.; Hofman, A.; van Duijn, C.M.; de Boer, A.; Stricker, B.H. Interaction between polymorphisms in the renin-angiotensin-system and angiotensin-converting enzyme inhibitor or beta-blocker use and the risk of myocardial infarction and stroke. Pharmacogenomics J., 2008, 8(6), 400-407.
[http://dx.doi.org/10.1038/sj.tpj.6500493] [PMID: 18347611]
[87]
Arsenault, J.; Lehoux, J.; Lanthier, L.; Cabana, J.; Guillemette, G.; Lavigne, P.; Leduc, R.; Escher, E. A single-nucleotide polymorphism of alanine to threonine at position 163 of the human angiotensin II type 1 receptor impairs Losartan affinity. Pharmacogenet. Genomics, 2010, 20(6), 377-388.
[http://dx.doi.org/10.1097/FPC.0b013e32833a6d4a] [PMID: 20436376]
[88]
RamIrez-Expósito. M.J.; MartInez-Martos, J.M.; Palomeque, T.; Lorite, P. A PCR-RFLP method for detection of the LNPEP encoding human insulin-regulated aminopeptidase (IRAP) rs4869317 polymorphism. Indian J. Med. Res., 2016, 144(1), 120-123.
[http://dx.doi.org/10.4103/0971-5916.193298] [PMID: 27834335]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy