Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article (Mini-Review)

Past and Present Behçet’s Disease Animal Models

Author(s): Jermilia Charles, Francis J. Castellino and Victoria A. Ploplis*

Volume 21 , Issue 16 , 2020

Page: [1652 - 1663] Pages: 12

DOI: 10.2174/1389450121666200719010425

Price: $65

Abstract

Behçet’s disease (BD) is presumably an autoinflammatory disease of unknown etiology for which several animal models have been described over the years. Agents and methods used for the development of these models have ranged from the herpes simplex type one virus (hsv-1) pathogen to the use of transgenic mice. Other models have also been used to investigate a possible autoimmune component. Each model possesses its own unique set of benefits and shortcomings, with no one model fully being able to recapitulate the disease phenotype. Here, we review the proposed models and provide commentary on their effectiveness and usefulness in studying the disease.

Keywords: Behçet’s disease (BD), rare disease, Behçet’s disease animal models, autoimmune disease, herpes simplex virus type 1, human leukocyte antigen.

Graphical Abstract
[1]
Tan SY, Poole PS. Hulusi Behçet (1889-1948): Passion for dermatology. Singapore Med J 2016; 57(7): 408-9.
[http://dx.doi.org/10.11622/smedj.2016123] [PMID: 27439529]
[2]
Soomro AH, Khan E, Noori S, Lone MA, Syal Z, Sheikh S. Assessment of cytokine release against oral mucosal cell line culture (tr146) stimulated by neutrophil elastase associated with behcet’s disease. Int J Dent 2019.20196095628
[http://dx.doi.org/10.1155/2019/6095628] [PMID: 31263499]
[3]
Shahram F, Kazemi J, Mahmoudi M, Jadali Z. Single nucleotide polymorphisms of fcrl3 in iranian patients with behcet’s disease. Iran J Public Health 2019; 48(6): 1133-9.
[PMID: 31341856]
[4]
Villiger RA, Stefanski AL, Grobéty V, Adler S, Villiger PM. Behçet’s syndrome: clinical presentation and prevalence in Switzerland. Swiss Med Wkly 2019.149w20072
[http://dx.doi.org/10.4414/smw.2019.20072] [PMID: 31329265]
[5]
Talarico R, Elefante E, Parma A, Taponeco F, Simoncini T, Mosca M. Sexual dysfunction in Behçet’s syndrome. Rheumatol Int 2019.
[http://dx.doi.org/10.1007/s00296-019-04455-w] [PMID: 31595309]
[6]
Furuya MY, Temmoku J, Fujita Y, et al. Vasculo-Behçet disease complicated by conversion disorder diagnosed with 18F-fluoro-deoxy-glucose positron emission tomography combined with computed tomography (PET/CT). Fukushima J Med Sci 2019; 65(2): 55-60.
[http://dx.doi.org/10.5387/fms.2019-07] [PMID: 31327803]
[7]
Petrushkin H, Norman PJ, Lougee E, et al. KIR3DL1/S1 allotypes contribute differentially to the development of behçet disease. J Immunol 2019; 203(6): 1629-35.
[http://dx.doi.org/10.4049/jimmunol.1801178] [PMID: 31405953]
[8]
Islam SMS, Byun H-O, Choi B, Sohn S. Inhibition of cd83 alleviates systemic inflammation in herpes simplex virus type 1-induced behçet’s disease model mouse. Mediators Inflamm 2019.20195761392
[http://dx.doi.org/10.1155/2019/5761392] [PMID: 31582900]
[9]
Kim SW, Kim TG, Oh J, et al. Clinical and radiographic characteristics of neuro-behçet’s disease in South Korea. J Clin Neurol 2019; 15(4): 429-37.
[http://dx.doi.org/10.3988/jcn.2019.15.4.429] [PMID: 31591829]
[10]
Calamia KT, Wilson FC, Icen M, Crowson CS, Gabriel SE, Kremers HM. Epidemiology and clinical characteristics of Behçet’s disease in the US: a population-based study. Arthritis Rheum 2009; 61(5): 600-4.
[http://dx.doi.org/10.1002/art.24423] [PMID: 19405011]
[11]
Davatchi F, Chams-Davatchi C, Shams H, et al. Behcet’s disease: epidemiology, clinical manifestations, and diagnosis. Expert Rev Clin Immunol 2017; 13(1): 57-65.
[http://dx.doi.org/10.1080/1744666X.2016.1205486] [PMID: 27351485]
[12]
Kirino Y, Nakajima H. Clinical and genetic aspects of behçet’s disease in Japan. Intern Med 2019; 58(9): 1199-207.
[http://dx.doi.org/10.2169/internalmedicine.2035-18] [PMID: 30626832]
[13]
Kappen JH, Medina-Gomez C, van Hagen PM, et al. Genome-wide association study in an admixed case series reveals IL12A as a new candidate in Behçet disease. PLoS One 2015; 10(3)e0119085
[http://dx.doi.org/10.1371/journal.pone.0119085] [PMID: 25799145]
[14]
Fei Y, Webb R, Cobb BL, Direskeneli H, Saruhan-Direskeneli G, Sawalha AH. Identification of novel genetic susceptibility loci for Behçet’s disease using a genome-wide association study. Arthritis Res Ther 2009; 11(3): R66-.
[http://dx.doi.org/10.1186/ar2695] [PMID: 19442274]
[15]
Kirino Y, Bertsias G, Ishigatsubo Y, et al. Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet 2013; 45(2): 202-7.
[http://dx.doi.org/10.1038/ng.2520] [PMID: 23291587]
[16]
Wu P, Du L, Hou S, et al. Association of LACC1, CEBPB-PTPN1, RIPK2 and ADO-EGR2 with ocular Behcet’s disease in a Chinese Han population. Br J Ophthalmol 2018; 102(9): 1308-14.
[http://dx.doi.org/10.1136/bjophthalmol-2017-311753] [PMID: 29907633]
[17]
Kim SW, Jung YS, Ahn JB, et al. Identification of genetic susceptibility loci for intestinal Behçet’s disease. Sci Rep 2017; 7: 39850.
[http://dx.doi.org/10.1038/srep39850] [PMID: 28045058]
[18]
Shenavandeh S, Jahanshahi KA, Aflaki E, Tavassoli A. Frequency of HLA-B5, HLA-B51 and HLA-B27 in patients with idiopathic uveitis and Behçet’s disease: a case-control study. Reumatologia 2018; 56(2): 67-72.
[http://dx.doi.org/10.5114/reum.2018.75516] [PMID: 29853720]
[19]
Sohn S, Lee E-S, Kwon HJ, Lee SI, Bang D, Lee S. Expression of Th2 cytokines decreases the development of and improves Behçet’s disease-like symptoms induced by herpes simplex virus in mice. J Infect Dis 2001; 183(8): 1180-6.
[http://dx.doi.org/10.1086/319681] [PMID: 11262199]
[20]
Zheng Z, Sohn S, Ahn KJ, Bang D, Cho SB. Serum reactivity against herpes simplex virus type 1 UL48 protein in Behçet’s disease patients and a Behçet’s disease-like mouse model. Acta Derm Venereol 2015; 95(8): 952-8.
[http://dx.doi.org/10.2340/00015555-2127] [PMID: 25916670]
[21]
Kaneko KNF, Togashi A, Nomura E. Behcet’s disease and related diseases -immune reactions to oralstreptococci in their pathogenesis. J Dermatological Res 2016; 1(3): 41-50.
[http://dx.doi.org/10.17554/j.issn.2413-8223.2016.01.12]
[22]
Galeone M, Colucci R, D’Erme AM, Moretti S, Lotti T. Potential infectious etiology of behçet’s disease. Pathol Res Int 2012.2012595380
[http://dx.doi.org/10.1155/2012/595380] [PMID: 22254152]
[23]
Rozin AP. Is Behcet’s syndrome associated with infection? Ann Rheum Dis 2005; 64(3): 513-5.
[24]
Kaneko F, Oyama N, Nishibu A. Streptococcal infection in the pathogenesis of Behçet’s disease and clinical effects of minocycline on the disease symptoms. Yonsei Med J 1997; 38(6): 444-54.
[http://dx.doi.org/10.3349/ymj.1997.38.6.444] [PMID: 9509915]
[25]
Lule S, Colpak AI, Balci-Peynircioglu B, et al. Behçet Disease serum is immunoreactive to neurofilament medium which share common epitopes to bacterial HSP-65, a putative trigger. J Autoimmun 2017; 84: 87-96.
[http://dx.doi.org/10.1016/j.jaut.2017.08.002] [PMID: 28844827]
[26]
Sohn S, Lee ES, Bang D. Learning from HSV-infected mice as a model of Behçet’s disease. Clin Exp Rheumatol 2012; 30(3)(Suppl. 72): S96-S103.
[PMID: 22766172]
[27]
Nakamura T, Shirouzu T, Nakata K, Yoshimura N, Ushigome H. The role of major histocompatibility complex in organ transplantation- donor specific anti-major histocompatibility complex antibodies analysis goes to the next stage. Int J Mol Sci 2019; 20(18): 4544.
[http://dx.doi.org/10.3390/ijms20184544] [PMID: 31540289]
[28]
Bodis G, Toth V, Schwarting A. Role of human leukocyte antigens (hla) in autoimmune diseases. Rheumatol Ther 2018; 5(1): 5-20.
[http://dx.doi.org/10.1007/s40744-018-0100-z] [PMID: 29516402]
[29]
van Drongelen V, Holoshitz J. Human leukocyte antigen-disease associations in rheumatoid arthritis. Rheum Dis Clin North Am 2017; 43(3): 363-76.
[http://dx.doi.org/10.1016/j.rdc.2017.04.003] [PMID: 28711139]
[30]
Goodwin G. Type 1 diabetes mellitus and celiac disease: distinct autoimmune disorders that share common pathogenic mechanisms. Horm Res Paediatr 2019; 92(5): 285-92.
[http://dx.doi.org/10.1159/000503142] [PMID: 31593953]
[31]
Prinz JC. Melanocytes: Target cells of an HLA-C*06:02-restricted autoimmune response in psoriasis. J Invest Dermatol 2017; 137(10): 2053-8.
[http://dx.doi.org/10.1016/j.jid.2017.05.023] [PMID: 28941475]
[32]
Carapito R, Shahram F, Michel S, et al. On the genetics of the Silk Route: association analysis of HLA, IL10, and IL23R-IL12RB2 regions with Behçet’s disease in an Iranian population. Immunogenetics 2015; 67(5-6): 289-93.
[http://dx.doi.org/10.1007/s00251-015-0841-6] [PMID: 25940109]
[33]
Sakly K, Maatouk M, Hammami S, et al. HLA-G 14 bp insertion/deletion polymorphism and its association with sHLA-G levels in Behçet’s disease Tunisian patients. Hum Immunol 2016; 77(1): 90-5.
[http://dx.doi.org/10.1016/j.humimm.2015.10.016] [PMID: 26519864]
[34]
Hamzaoui A, Houman MH, Massouadia M, et al. Contribution of Hla-B51 in the susceptibility and specific clinical features of Behcet’s disease in Tunisian patients. Eur J Intern Med 2012; 23(4): 347-9.
[http://dx.doi.org/10.1016/j.ejim.2011.12.011] [PMID: 22560383]
[35]
Kaburaki T, Takamoto M, Numaga J, et al. Genetic association of HLA-A*2601 with ocular Behçet’s disease in Japanese patients. Clin Exp Rheumatol 2010; 28(4)(Suppl. 60): S39-44.
[PMID: 20868569]
[36]
Kongkaew S, Yotmanee P, Rungrotmongkol T, et al. Molecular dynamics simulation reveals the selective binding of human leukocyte antigen alleles associated with behçet’s disease. PLoS One 2015; 10(9)e0135575
[http://dx.doi.org/10.1371/journal.pone.0135575] [PMID: 26331842]
[37]
Muruganandam M, Rolle NA, Sibbitt WL Jr, et al. Characteristics of Behcet’s Disease in the American Southwest. Semin Arthritis Rheum 2019; 49(2): 296-302.
[http://dx.doi.org/10.1016/j.semarthrit.2019.03.003] [PMID: 30952423]
[38]
Castaño-Núñez Á, Montes-Cano MA, García-Lozano JR, et al. Association of functional polymorphisms of KIR3DL1/DS1 with Behçet’s disease. Front Immunol 2019; 10: 2755.
[http://dx.doi.org/10.3389/fimmu.2019.02755] [PMID: 31849952]
[39]
Adeeb F, Ugwoke A, Stack AG, Fraser AD. Associations of HLA-B alleles with Behçet’s disease in Ireland. Clin Exp Rheumatol 2017; 35(2)(Suppl. 104): 22-3.
[PMID: 28598323]
[40]
Hughes EH, Collins RW, Kondeatis E, et al. Associations of major histocompatibility complex class I chain-related molecule polymorphisms with Behcet’s disease in Caucasian patients. Tissue Antigens 2005; 66(3): 195-9.
[http://dx.doi.org/10.1111/j.1399-0039.2005.00465.x] [PMID: 16101830]
[41]
Kimura T, Asano Y, Yamamoto M, Sugaya M, Sato S. Development of Behçet’s disease in a Caucasian with human leukocyte antigen B51 after immigration to Japan. J Dermatol 2011; 38(6): 581-4.
[http://dx.doi.org/10.1111/j.1346-8138.2010.01125.x] [PMID: 21914156]
[42]
Xavier JM, Davatchi F, Abade O, et al. Characterization of the major histocompatibility complex locus association with Behçet’s disease in Iran. Arthritis Res Ther 2015; 17: 81.
[http://dx.doi.org/10.1186/s13075-015-0585-6] [PMID: 25889189]
[43]
Elfishawi MM, Elgengehy F, Mossallam G, et al. HLA Class I in Egyptian patients with Behçet’s disease: new association with susceptibility, protection, presentation and severity of manifestations. Immunol Invest 2019; 48(2): 121-9.
[http://dx.doi.org/10.1080/08820139.2018.1517364] [PMID: 30260727]
[44]
Choukri F, Chakib A, Himmich H, Hüe S, Caillat-Zucman S. HLA-B*51 and B*15 alleles confer predisposition to Behçet’s disease in Moroccan patients. Hum Immunol 2001; 62(2): 180-5.
[http://dx.doi.org/10.1016/S0198-8859(00)00249-4] [PMID: 11182229]
[45]
Al-Okaily F, Al-Rashidi S, Al-Balawi M, Mustafa M, Arfin M, Al-Asmari A. Genetic association of HLA-A*26,-A*31, and-B*51 with Behcet’s disease in Saudi patients. Clin Med Insights Arthritis Musculoskelet Disord 2016; 9: 167-73.
[http://dx.doi.org/10.4137/CMAMD.S39879] [PMID: 27547040]
[46]
Ortiz-Fernández L, Carmona FD, Montes-Cano MA, et al. Genetic analysis with the immunochip platform in Behçet disease. Identification of residues associated in the HLA class I region and new susceptibility loci. PLoS One 2016; 11(8)e0161305
[http://dx.doi.org/10.1371/journal.pone.0161305] [PMID: 27548383]
[47]
Montes-Cano MA, Conde-Jaldón M, García-Lozano JR, et al. HLA and non-HLA genes in Behçet’s disease: a multicentric study in the Spanish population. Arthritis Res Ther 2013; 15(5): R145.
[http://dx.doi.org/10.1186/ar4328] [PMID: 24286189]
[48]
Nakamura J, Meguro A, Ishii G, et al. The association analysis between HLA-A*26 and Behçet’s disease. Sci Rep 2019; 9(1): 4426.
[http://dx.doi.org/10.1038/s41598-019-40824-y] [PMID: 30872678]
[49]
Kato H, Takeuchi M, Horita N, et al. HLA-A26 is a risk factor for Behçet’s disease ocular lesions. Mod Rheumatol 2020; 1-5.
[http://dx.doi.org/10.1080/14397595.2019.1705538] [PMID: 31851572]
[50]
Kang EH, Kim JY, Takeuchi F, et al. Associations between the HLA-A polymorphism and the clinical manifestations of Behcet’s disease. Arthritis Res Ther 2011; 13(2): R49.
[http://dx.doi.org/10.1186/ar3292] [PMID: 21429233]
[51]
Kuroyanagi K, Sakai T, Kohno H, et al. Association between the major histocompatibility complex and clinical response to infliximab therapy in patients with Behçet uveitis. Jpn J Ophthalmol 2015; 59(6): 401-8.
[http://dx.doi.org/10.1007/s10384-015-0404-2] [PMID: 26318435]
[52]
Demirseren DD, Ceylan GG, Akoglu G, et al. HLA-B51 subtypes in Turkish patients with Behçet’s disease and their correlation with clinical manifestations. Genet Mol Res 2014; 13(3): 4788-96.
[http://dx.doi.org/10.4238/2014.July.2.8] [PMID: 25062414]
[53]
Ryu HJ, Seo MR, Choi HJ, Baek HJ. Clinical phenotypes of Korean patients with Behcet disease according to gender, age at onset, and HLA-B51. Korean J Intern Med (Korean Assoc Intern Med) 2018; 33(5): 1025-31.
[http://dx.doi.org/10.3904/kjim.2016.202] [PMID: 28073242]
[54]
Mizuki Y, Horita N, Horie Y, et al. The influence of HLA-B51 on clinical manifestations among Japanese patients with Behçet’s disease: A nationwide survey. Mod Rheumatol 2019; 1-7.
[http://dx.doi.org/10.1080/14397595.2019.1649103] [PMID: 31386589]
[55]
Takeno M, Kariyone A, Yamashita N, et al. Excessive function of peripheral blood neutrophils from patients with Behçet’s disease and from HLA-B51 transgenic mice. Arthritis Rheum 1995; 38(3): 426-33.
[http://dx.doi.org/10.1002/art.1780380321] [PMID: 7880197]
[56]
Sohn S, Lee ES, Lee S. The correlation of MHC haplotype and development of Behçet’s disease-like symptoms induced by herpes simplex virus in several inbred mouse strains. J Dermatol Sci 2001; 26(3): 173-81.
[http://dx.doi.org/10.1016/S0923-1811(01)00086-X] [PMID: 11390202]
[57]
Marin MLC, Savioli CR, Yamamoto JH, Kalil J, Goldberg AC. MICA polymorphism in a sample of the São Paulo population, Brazil. Eur J Immunogenet 2004; 31(2): 63-71.
[http://dx.doi.org/10.1111/j.1365-2370.2004.00446.x] [PMID: 15086345]
[58]
Nomura E, Sato M, Suemizu H, et al. Hyperkeratosis and leukocytosis in transgenic mice carrying MHC class I chain-related gene B (MICB). Tissue Antigens 2003; 61(4): 300-7.
[http://dx.doi.org/10.1034/j.1399-0039.2003.00014.x] [PMID: 12753668]
[59]
Zhang J, Liao D, Yang L, Hou S. Association between Functional MICA-TM and Behcet’s Disease: A Systematic Review and Meta-analysis. Sci Rep 2016; 6: 21033.
[http://dx.doi.org/10.1038/srep21033] [PMID: 26875668]
[60]
Yabuki K, Mizuki N, Ota M, et al. Association of MICA gene and HLA-B*5101 with Behçet’s disease in Greece. Invest Ophthalmol Vis Sci 1999; 40(9): 1921-6.
[PMID: 10440244]
[61]
Çolpak AI, Özdemir YG, Kalyoncu U. The presence of autoantibodies against vascular and nervous tissue in sera from patients with neuro-behçet’s disease. Noropsikiyatri Ars 2014.
[62]
Cebeci F, Onsun N, Pekdemir A, Uras AR, Kayataş K. Thyroid autoimmunity and Behçet’s disease: is there a significant association? ScientificWorldJournal 2013.2013956837
[http://dx.doi.org/10.1155/2013/956837] [PMID: 23476155]
[63]
Hussain M, Xiao J, Zhang Y, Chen P, Du H. Identification of hnRNP C1/C2 as an Autoantigen in Patients with Behcet’s Disease Iran J Immunol 2018; 15(2): 133-41.
[64]
Puccetti A, Fiore PF, Pelosi A, et al. Gene expression profiling in behcet’s disease indicates an autoimmune component in the pathogenesis of the disease and opens new avenues for targeted therapy. J Immunol Res 2018.20184246965
[http://dx.doi.org/10.1155/2018/4246965] [PMID: 29850627]
[65]
Taşçi B, Direskeneli H, Serdaroǵlu P, Akman-Demir G, Eraksoy M, Saruhan-Direskeneli G. Humoral immune response to mycobacterial heat shock protein (hsp)65 in the cerebrospinal fluid of neuro-Behçet patients. Clin Exp Immunol 1998; 113(1): 100-4.
[http://dx.doi.org/10.1046/j.1365-2249.1998.00620.x] [PMID: 9697991]
[66]
Mor F, Weinberger A, Cohen IR. Identification of alpha-tropomyosin as a target self-antigen in Behçet’s syndrome. Eur J Immunol 2002; 32(2): 356-65.
[http://dx.doi.org/10.1002/1521-4141(200202)32:2<356:AID-IMMU356>3.0.CO;2-9] [PMID: 11807775]
[67]
Hitchcock-DeGregori SE, Barua B. Tropomyosin structure, function, and interactions: A dynamic regulator. Subcell Biochem 2017; 82: 253-84.
[http://dx.doi.org/10.1007/978-3-319-49674-0_9] [PMID: 28101865]
[68]
Gunning PW, Hardeman EC, Lappalainen P, Mulvihill DP. Tropomyosin - master regulator of actin filament function in the cytoskeleton. J Cell Sci 2015; 128(16): 2965-74.
[http://dx.doi.org/10.1242/jcs.172502] [PMID: 26240174]
[69]
Khaitlina SY. Chapter Seven - Tropomyosin as a Regulator of Actin DynamicsK W B T-I R of C and M B Jeon, Ed. Academic Press In: 2015; 318: pp. 255-91.
[70]
Mikita CP, Padlan EA. Why is there a greater incidence of allergy to the tropomyosin of certain animals than to that of others? Med Hypotheses 2007; 69(5): 1070-3.
[http://dx.doi.org/10.1016/j.mehy.2006.12.060] [PMID: 17482765]
[71]
Faber MA, Pascal M, El Kharbouchi O, et al. Shellfish allergens: tropomyosin and beyond. Allergy 2017; 72(6): 842-8.
[http://dx.doi.org/10.1111/all.13115] [PMID: 28027402]
[72]
Mirza ZK, Sastri B, Lin JJC, Amenta PS, Das KM. Autoimmunity against human tropomyosin isoforms in ulcerative colitis: localization of specific human tropomyosin isoforms in the intestine and extraintestinal organs. Inflamm Bowel Dis 2006; 12(11): 1036-43.
[http://dx.doi.org/10.1097/01.mib.0000231573.65935.67] [PMID: 17075344]
[73]
Kovvali G, Das KM. Molecular mimicry may contribute to pathogenesis of ulcerative colitis. FEBS Lett 2005; 579(11): 2261-6.
[http://dx.doi.org/10.1016/j.febslet.2005.02.073] [PMID: 15848155]
[74]
Powell AM, Black MM. Epitope spreading: protection from pathogens, but propagation of autoimmunity? Clin Exp Dermatol 2001; 26(5): 427-33.
[http://dx.doi.org/10.1046/j.1365-2230.2001.00852.x] [PMID: 11488833]
[75]
Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2002; 2(2): 85-95.
[http://dx.doi.org/10.1038/nri724] [PMID: 11910899]
[76]
Baharav E, Mor F, Halpern M, Quintana F, Weinberger A. Tropomyosin-induced arthritis in rats. Clin Exp Rheumatol 2007; 25(4)(Suppl. 45): S86-92.
[PMID: 17949558]
[77]
Jackson JM. TNF- α inhibitors. Dermatol Ther 2007; 20(4): 251-64.
[http://dx.doi.org/10.1111/j.1529-8019.2007.00138.x] [PMID: 17970890]
[78]
Umare V, Pradhan V, Nadkar M, et al. Effect of proinflammatory cytokines (IL-6, TNF-α, and IL-1β) on clinical manifestations in Indian SLE patients. Mediators Inflamm 2014.2014385297
[http://dx.doi.org/10.1155/2014/385297] [PMID: 25548434]
[79]
Mahesh SP, Li Z, Buggage R, et al. Alpha tropomyosin as a self-antigen in patients with Behçet’s disease. Clin Exp Immunol 2005; 140(2): 368-75.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02760.x] [PMID: 15807864]
[80]
Li Z, Srivastava P. Heat‐shock proteins. Curr Protoc Immunol 2003; 2: Appendix 1:Appendix 1T
[http://dx.doi.org/10.1002/0471142735.ima01ts58] [PMID: 18432918]
[81]
Miller DJ, Fort PE. Heat shock proteins regulatory role in neurodevelopment. Front Neurosci 2018; 12: 821.
[http://dx.doi.org/10.3389/fnins.2018.00821] [PMID: 30483047]
[82]
Beere HM. “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 2004; 117(Pt 13): 2641-51.
[http://dx.doi.org/10.1242/jcs.01284] [PMID: 15169835]
[83]
Candido EPM. Heat Shock Proteins S Brenner and J H B T-E of G Miller, Eds. New York: Academic Press In: 2001; pp. 914-5.
[http://dx.doi.org/10.1006/rwgn.2001.0588]
[84]
Dukay B, Csoboz B, Tóth ME. Heat-shock proteins in neuroinflammation. Front Pharmacol 2019; 10: 920.
[http://dx.doi.org/10.3389/fphar.2019.00920] [PMID: 31507418]
[85]
Maleki F, Khosravi A, Nasser A, Taghinejad H, Azizian M. Bacterial heat shock protein activity. J Clin Diagn Res 2016; 10(3): BE01-3.
[http://dx.doi.org/10.7860/JCDR/2016/14568.7444] [PMID: 27134861]
[86]
Zügel U, Kaufmann SHE. Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 1999; 12(1): 19-39.
[http://dx.doi.org/10.1128/CMR.12.1.19] [PMID: 9880473]
[87]
Singh B, Gupta RS. Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. Mol Genet Genomics 2009; 281(4): 361-73.
[http://dx.doi.org/10.1007/s00438-008-0417-3] [PMID: 19127371]
[88]
Urban-Chmiel R, Dec M, Puchalski A, Wernicki A. Characterization of heat-shock proteins in Escherichia coli strains under thermal stress in vitro. J Med Microbiol 2013; 62(Pt 12): 1897-901.
[http://dx.doi.org/10.1099/jmm.0.064857-0] [PMID: 24025347]
[89]
Moudgil KD, Thompson SJ, Geraci F, De Paepe B, Shoenfeld Y. Heat-shock proteins in autoimmunity. Autoimmune Dis 2013.2013621417
[http://dx.doi.org/10.1155/2013/621417] [PMID: 23762533]
[90]
Koliński T, Marek-Trzonkowska N, Trzonkowski P, Siebert J. Heat shock proteins (HSPs) in the homeostasis of regulatory T cells (Tregs). Cent Eur J Immunol 2016; 41(3): 317-23.
[http://dx.doi.org/10.5114/ceji.2016.63133] [PMID: 27833451]
[91]
Kasperkiewicz M, Tukaj S, Gembicki AJ, et al. Evidence for a role of autoantibodies to heat shock protein 60, 70, and 90 in patients with dermatitis herpetiformis. Cell Stress Chaperones 2014; 19(6): 837-43.
[http://dx.doi.org/10.1007/s12192-014-0507-6] [PMID: 24643797]
[92]
Ghasemi Y, Dabbagh F, Rasoul-Amini S, Borhani Haghighi A, Morowvat MH. The possible role of HSPs on Behçet’s disease: a bioinformatic approach. Comput Biol Med 2012; 42(11): 1079-85.
[http://dx.doi.org/10.1016/j.compbiomed.2012.08.009] [PMID: 23036375]
[93]
Direskeneli H. Innate and Adaptive Responses to Heat Shock Proteins in Behcet’s Disease. Genet Res Int 2013.2013249157
[http://dx.doi.org/10.1155/2013/249157] [PMID: 24490075]
[94]
Hu W, Hasan A, Wilson A, et al. Experimental mucosal induction of uveitis with the 60-kDa heat shock protein-derived peptide 336-351. Eur J Immunol 1998; 28(8): 2444-55.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199808)28:08<2444:AID-IMMU2444>3.0.CO;2-N] [PMID: 9710222]
[95]
Shahram F, Nikoopour E, Rezaei N, et al. Association of interleukin-2, interleukin-4 and transforming growth factor-beta gene polymorphisms with Behcet’s disease. Clin Exp Rheumatol 2011; 29(4)(Suppl. 67): S28-31.
[PMID: 21640045]
[96]
van Eden W, Jansen MAA, Ludwig I, van Kooten P, van der Zee R, Broere F. The enigma of heat shock proteins in immune tolerance. Front Immunol 2017; 8: 1599.
[http://dx.doi.org/10.3389/fimmu.2017.01599] [PMID: 29209330]
[97]
Petris CK, Almony A. Ophthalmic manifestations of rheumatologic disease: diagnosis and management. Mo Med 2012; 109(1): 53-8.
[PMID: 22428448]
[98]
Bansal S, Barathi VA, Iwata D, Agrawal R. Experimental autoimmune uveitis and other animal models of uveitis: An update. Indian J Ophthalmol 2015; 63(3): 211-8.
[http://dx.doi.org/10.4103/0301-4738.156914] [PMID: 25971165]
[99]
Chan CC, Caspi RR, Ni M, et al. Pathology of experimental autoimmune uveoretinitis in mice. J Autoimmun 1990; 3(3): 247-55.
[http://dx.doi.org/10.1016/0896-8411(90)90144-H] [PMID: 2397018]
[100]
Caspi RR, Roberge FG, Chan CC, et al. A new model of autoimmune disease. Experimental autoimmune uveoretinitis induced in mice with two different retinal antigens. J Immunol 1988; 140(5): 1490-5.
[PMID: 3346541]
[101]
Gery I, Chanaud NP III, Anglade E. Recoverin is highly uveitogenic in Lewis rats. Invest Ophthalmol Vis Sci 1994; 35(8): 3342-5.
[PMID: 8045724]
[102]
Pfister C, Chabre M, Plouet J, et al. Retinal S antigen identified as the 48K protein regulating light-dependent phosphodiesterase in rods. Science 1985; 228(4701): 891-3.
[http://dx.doi.org/10.1126/science.2988124]
[103]
de Smet MD, Bitar G, Mainigi S, Nussenblatt RB. Human S-antigen determinant recognition in uveitis. Invest Ophthalmol Vis Sci 2001; 42(13): 3233-8.
[PMID: 11726628]
[104]
Petty RE, Hunt DWC, Rollins DF, Schroeder M-L, Puterman ML. Immunity to soluble retinal antigen in patients with uveitis accompanying juvenile rheumatoid arthritis. Arthritis Rheum 1987; 30(3): 287-93.
[http://dx.doi.org/10.1002/art.1780300307] [PMID: 3494455]
[105]
Hamzaoui K, Boussen E, Gorgi Y, Ouertani A, Ayed K. Molecular mimicry between S-Antigen and viral peptides | Mimetisme moleculaire entre l’antigene-s et les peptides viraux. Tunis Med 1999; 77(5): 259-63.
[106]
Yamamoto JH, Minami M, Inaba G, Masuda K, Mochizuki M. Cellular autoimmunity to retinal specific antigens in patients with Behçet’s disease. Br J Ophthalmol 1993; 77(9): 584-9.
[http://dx.doi.org/10.1136/bjo.77.9.584] [PMID: 8218058]
[107]
Yamada M, Shichi H, Yuasa T, Tanouchi Y, Mimura Y. Superoxide in ocular inflammation: Human and experimental uveitis. Adv Free Radic Biol Med 1986; 2(2): 111-7.
[http://dx.doi.org/10.1016/s8755-9668(86)80005-9]
[108]
Yamamoto JH, Fujino Y, Lin C, Nieda M, Juji T, Masuda K. S-antigen specific T cell clones from a patient with Behçet’s disease. Br J Ophthalmol 1994; 78(12): 927-32.
[http://dx.doi.org/10.1136/bjo.78.12.927] [PMID: 7529558]
[109]
Takeuchi M, Usui Y, Okunuki Y, et al. Immune responses to interphotoreceptor retinoid-binding protein and S-antigen in Behcet’s patients with uveitis. Invest Ophthalmol Vis Sci 2010; 51(6): 3067-75.
[http://dx.doi.org/10.1167/iovs.09-4313] [PMID: 20089879]
[110]
Erdağ E, Şahin C, Küçükali Cİ, et al. Effects of in vivo and in vitro administration of neuro-Behcet’s disease IgG. Neurol Sci 2017; 38(5): 833-43.
[http://dx.doi.org/10.1007/s10072-017-2856-2] [PMID: 28224327]
[111]
Sakane T, Takeno M, Suzuki N, Inaba G. Behçet’s disease. N Engl J Med 1999; 341(17): 1284-91.
[http://dx.doi.org/10.1056/NEJM199910213411707] [PMID: 10528040]
[112]
Tognarelli EI, Palomino TF, Corrales N, Bueno SM, Kalergis AM, González PA. Herpes simplex virus evasion of early host antiviral responses. Front Cell Infect Microbiol 2019; 9: 127.
[http://dx.doi.org/10.3389/fcimb.2019.00127] [PMID: 31114761]
[113]
Hamza M, Elleuch M, Slim A, Hamzaoui K, Ayed K. Antibodies to herpes simplex virus in patients with Behçet’s disease. Clin Rheumatol 1990; 9(4): 498-500.
[http://dx.doi.org/10.1007/BF02030511] [PMID: 1965160]
[114]
Lee S, Bang D, Cho YH, Lee ES, Sohn S. Polymerase chain reaction reveals herpes simplex virus DNA in saliva of patients with Behçet’s disease. Arch Dermatol Res 1996; 288(4): 179-83.
[http://dx.doi.org/10.1007/BF02505221] [PMID: 8967789]
[115]
Tojo M, Zheng X, Yanagihori H, et al. Detection of herpes virus genomes in skin lesions from patients with Behçet’s disease and other related inflammatory diseases. Acta Derm Venereol 2003; 83(2): 124-7.
[http://dx.doi.org/10.1080/00015550310007472] [PMID: 12735641]
[116]
Sohn S, Lee ES, Bang D, Lee S. Behçet’s disease-like symptoms induced by the Herpes simplex virus in ICR mice. Eur J Dermatol 1998; 8(1): 21-3.
[PMID: 9649665]
[117]
Shim JA, Park S, Lee ES, Niki T, Hirashima M, Sohn S. Galectin-9 ameliorates herpes simplex virus-induced inflammation through apoptosis. Immunobiology 2012; 217(6): 657-66.
[http://dx.doi.org/10.1016/j.imbio.2011.11.002] [PMID: 22204815]
[118]
Choi B, Hwang Y, Kwon HJ, et al. Tumor necrosis factor alpha small interfering RNA decreases herpes simplex virus-induced inflammation in a mouse model. J Dermatol Sci 2008; 52(2): 87-97.
[http://dx.doi.org/10.1016/j.jdermsci.2008.05.001] [PMID: 18585901]
[119]
Choi B, Kim J, Lee ES, Bang D, Sohn S. Synthesized pyridine compound derivatives decreased TNF alpha and adhesion molecules and ameliorated HSV-induced inflammation in a mouse model. Eur J Pharmacol 2011; 657(1-3): 167-72.
[http://dx.doi.org/10.1016/j.ejphar.2011.01.062] [PMID: 21315710]
[120]
Shim J, Byun HO, Lee YD, Lee ES, Sohn S. Interleukin-6 small interfering RNA improved the herpes simplex virus-induced systemic inflammation in vivo Behcet’s disease-like mouse model. Gene Ther 2009; 16(3): 415-25.
[http://dx.doi.org/10.1038/gt.2008.180] [PMID: 19092856]
[121]
Choi B, Lee ES, Sohn S. Vitamin D3 ameliorates herpes simplex virus-induced Behçet’s disease-like inflammation in a mouse model through down-regulation of Toll-like receptors. Clin Exp Rheumatol 2011; 29(4)(Suppl. 67): S13-9.
[PMID: 21269574]
[122]
Sohn S, Bang D, Lee ES, Kwon HJ, Lee SI, Lee S. Experimental studies on the antiviral agent famciclovir in Behçet’s disease symptoms in ICR mice. Br J Dermatol 2001; 145(5): 799-804.
[http://dx.doi.org/10.1046/j.1365-2133.2001.04498.x] [PMID: 11736905]
[123]
Choi J, Lee ES, Choi B, Sohn S. Therapeutic potency of Poly I:C in HSV-induced inflammation through up-regulation of IL-15 receptor alpha. Immunobiology 2013; 218(9): 1119-30.
[http://dx.doi.org/10.1016/j.imbio.2013.03.005] [PMID: 23618691]
[124]
Kang S, Lee ES, Choi B, et al. Effects of irradiation on cytokine production in a mouse model of Behçet’s disease. Clin Exp Rheumatol 2009; 27(1): 54-63.
[PMID: 19327230]
[125]
Sohn S, Lutz M, Kwon HJ, Konwalinka G, Lee S, Schirmer M. Therapeutic effects of gemcitabine on cutaneous manifestations in an Adamantiades-Behçet’s disease-like mouse model. Exp Dermatol 2004; 13(10): 630-4.
[http://dx.doi.org/10.1111/j.0906-6705.2004.00210.x] [PMID: 15447723]
[126]
Choi B, Kim HA, Suh CH, Byun HO, Jung JY, Sohn S. The relevance of miRNA-21 in HSV-induced inflammation in a mouse model. Int J Mol Sci 2015; 16(4): 7413-27.
[http://dx.doi.org/10.3390/ijms16047413] [PMID: 25849652]
[127]
Anower AKMM, Shim JA, Choi B, Kwon HJ, Sohn S. The role of classical and alternative macrophages in the immunopathogenesis of herpes simplex virus-induced inflammation in a mouse model. J Dermatol Sci 2014; 73(3): 198-208.
[http://dx.doi.org/10.1016/j.jdermsci.2013.11.001] [PMID: 24280370]
[128]
Shim JA, Lee ES, Choi B, Sohn S. The role of T cell immunoglobulin mucin domains 1 and 4 in a herpes simplex virus-induced Behçet’s disease mouse model. Mediators Inflamm 2013.2013903948
[http://dx.doi.org/10.1155/2013/903948] [PMID: 24453431]
[129]
Lee ES, Kim YA, Kwon HJ, Bang D, Lee S, Sohn S. Thalidomide upregulates macrophage inflammatory protein-1α in a herpes simplex virus-induced Behçet’s disease-like animal model. Arch Dermatol Res 2004; 296(4): 175-81.
[http://dx.doi.org/10.1007/s00403-004-0498-8] [PMID: 15290170]
[130]
Choi B, Sayeed HM, Islam SMS, Sohn S. Role of N-acetyl galactosamine-4-SO4, a ligand of CD206 in HSV-induced mouse model of Behçet’s disease. Eur J Pharmacol 2017; 813: 42-9.
[http://dx.doi.org/10.1016/j.ejphar.2017.07.022] [PMID: 28709621]
[131]
Kokturk A. Clinical and pathological manifestations with differential diagnosis in Behçet’s disease. Pathol Res Int 2012.2012690390
[http://dx.doi.org/10.1155/2012/690390] [PMID: 22191082]
[132]
Koganti R, Yadavalli T, Shukla D. Current and Emerging therapies for ocular herpes simplex virus type-1 infections. Microorganisms 2019; 7(10): 429.
[http://dx.doi.org/10.3390/microorganisms7100429] [PMID: 31658632]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy