Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Indirect Determination of Amikacin by Gold Nanoparticles as Redox Probe

Author(s): Mansureh Alizadeh, Mandana Amiri* and Abolfazl Bezaatpour

Volume 18, Issue 6, 2021

Published on: 18 July, 2020

Page: [761 - 769] Pages: 9

DOI: 10.2174/1567201817666200719005919

Price: $65

conference banner
Abstract

Background: Amikacin is an aminoglycoside antibiotic used for many gram-negative bacterial infections like infections in the urinary tract, infections in brain, lungs and abdomen. Electrochemical determination of amikacin is a challenge in electroanalysis because it shows no voltammetric peak at the surface of bare electrodes.

Objective: In this approach, a very simple and easy method for indirect voltammetric determination of amikacin presented in real samples. Gold nanoparticles were electrodeposited at the surface of glassy carbon electrode in constant potential.

Methods: The effect of several parameters such as time and potential of deposition, pH and scan rates on signal were studied. The cathodic peak current of Au3+ decreased with increasing amikacin concentration. Quantitative analysis of amikacin was performed using differential pulse voltammetry by following cathodic peak current of gold ions.

Results: Two dynamic linear ranges of 1.0 × 10−8–1.0 × 10-7 M and 5.0 × 10−7–1.0 × 10-3 M were obtained and limit of detection was estimated 3.0× 10−9 M.

Conclusion: The method was successfully determined amikacin in pharmaceutical preparation and human serum. The effect of several interference in determination of amikacin was also studied.

Keywords: Amikacin, gold nanoparticles, electrochemical sensor, voltammetry, antibutics, human serum.

Graphical Abstract
[1]
Nestaas, E.; Bangstad, H-J.; Sandvik, L.; Wathne, K-O. Aminoglycoside extended interval dosing in neonates is safe and effective: a meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed., 2005, 90(4), F294-F300.
[http://dx.doi.org/10.1136/adc.2004.056317 ] [PMID: 15857879]
[2]
Kawaguchi, H.; Naito, T. Nakagawa, S.; Fujisawa, K.-I., BB-K8, a new semisynthetic aminoglycoside antibiotic. J. Antibiot. (Tokyo), 1972, 25(12), 695-708.
[http://dx.doi.org/10.7164/antibiotics.25.695 ] [PMID: 4568692]
[3]
Armstrong, E.S.; Kostrub, C.F.; Cass, R.T.; Moser, H.E.; Serio, A.W.; Miller, G.H. Aminoglycosides. InAntibiotic discovery and development; Springer, 2012, pp. 229-269.
[http://dx.doi.org/10.1007/978-1-4614-1400-1_7]
[4]
Usmani, M.; Ahmed, S.; Sheraz, M.; Ahmad, I. Analytical Methods for the Determination of Amikacin in Pharmaceutical Preparations and Biological Fluids: A Review. Biquarterly Iranian Journal of Analytical Chemistry, 2018, 5(2), 39-55.
[5]
Siddiqi, A.; Khan, D.A.; Khan, F.A.; Razzaq, A. Therapeutic drug monitoring of amikacin in preterm and term infants. Singapore Med. J., 2009, 50(5), 486-489.
[PMID: 19495517]
[6]
Bates, R.D.; Nahata, M.C. Once-daily administration of aminoglycosides. Ann. Pharmacother., 1994, 28(6), 757-766.
[http://dx.doi.org/10.1177/106002809402800614 ] [PMID: 7919568]
[7]
Price, K.E.; Chisholm, D.R.; Misiek, M.; Leitner, F.; Tsai, Y.H. Microbiological evaluation of BB-K 8, a new semisynthetic aminoglycoside. J. Antibiot. (Tokyo), 1972, 25(12), 709-731.
[http://dx.doi.org/10.7164/antibiotics.25.709 ] [PMID: 4486599]
[8]
Sharma, N.; Panneer Selvam, S.; Yun, K. Electrochemical detection of amikacin sulphate using re-duced graphene oxide and silver nanoparticles nanocomposite. Appl. Surf. Sci., 2020, •••512145742
[http://dx.doi.org/10.1016/j.apsusc.2020.145742]
[9]
Losoya-Leal, A.; Estevez, M-C.; Martínez-Chapa, S.O.; Lechuga, L.M. Design of a surface plasmon resonance immunoassay for therapeutic drug monitoring of amikacin. Talanta, 2015, 141, 253-258.
[http://dx.doi.org/10.1016/j.talanta.2015.04.009 ] [PMID: 25966411]
[10]
Yola, M.L.; Atar, N.; Eren, T. Determination of amikacin in human plasma by molecular imprinted SPR nanosensor. Sens. Actuators B Chem., 2014, 198, 70-76.
[http://dx.doi.org/10.1016/j.snb.2014.02.107]
[11]
Ezquer-Garin, C.; Escuder-Gilabert, L.; Martín-Biosca, Y.; Lisart, R.F.; Sagrado, S.; Medina-Hernández, M.J. Fit-for-purpose chromatographic method for the determination of amikacin in human plasma for the dosage control of patients. Talanta, 2016, 150, 510-515.
[http://dx.doi.org/10.1016/j.talanta.2015.12.057 ] [PMID: 26838437]
[12]
Wichert, B.; Schreier, H.; Derendorf, H. Sensitive liquid chromatography assay for the determination of amikacin in human plasma. J. Pharm. Biomed. Anal., 1991, 9(3), 251-254.
[http://dx.doi.org/10.1016/0731-7085(91)80154-2 ] [PMID: 1873321]
[13]
Korany, M.A-T.; Haggag, R.S.; Ragab, M.A.; Elmallah, O.A. Liquid chromatographic determination of amikacin sulphate after pre-column derivatization. J. Chromatogr. Sci., 2014, 52(8), 837-847.
[http://dx.doi.org/10.1093/chromsci/bmt126 ] [PMID: 24006430]
[14]
Hassanzadeh, J.; Moghadam, B.R.; Sobhani-Nasab, A.; Ahmadi, F.; Rahimi-Nasrabadi, M. Specific fluorometric assay for direct determination of amikacin by molecularly imprinting polymer on high fluorescent g-C3N4 quantum dots. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 214, 451-458.
[http://dx.doi.org/10.1016/j.saa.2019.02.067 ] [PMID: 30807943]
[15]
Portna, K.; Vasyuk, S.; Korzhova, A. Spectrophotometric determination amikacin in reaction with 1, 2-naphthoquinone-4-sulfonic acid sodium salt. Appl. Spectrosc. Rev., 2015, 47(3), 219-232.
[16]
Yang, C.; Zhang, Z.; Wang, J. New luminol chemiluminescence reaction using diperiodatoargentate as oxidate for the determination of amikacin sulfate. Luminescence, 2010, 25(1), 36-42.
[PMID: 19585518]
[17]
Serrano, J.M.; Silva, M. Determination of amikacin in body fluid by high-performance liquid-chromatography with chemiluminescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 843(1), 20-24.
[http://dx.doi.org/10.1016/j.jchromb.2006.05.016 ] [PMID: 16765108]
[18]
Galanakis, E.G.; Megoulas, N.C.; Solich, P.; Koupparis, M.A. Development and validation of a novel LC non-derivatization method for the determination of amikacin in pharmaceuticals based on evapo-rative light scattering detection. J. Pharm. Biomed. Anal., 2006, 40(5), 1114-1120.
[http://dx.doi.org/10.1016/j.jpba.2005.09.008 ] [PMID: 16242884]
[19]
Oguri, S.; Miki, Y. Determination of amikacin in human plasma by high-performance capillary elec-trophoresis with fluorescence detection. J. Chromatogr. B Biomed. Appl., 1996, 686(2), 205-210.
[http://dx.doi.org/10.1016/S0378-4347(96)00237-X ] [PMID: 8971601]
[20]
Yu, C-Z.; He, Y-Z.; Fu, G-N.; Xie, H-Y.; Gan, W-E. Determination of kanamycin A, amikacin and tobramycin residues in milk by capillary zone electrophoresis with post-column derivatization and la-ser-induced fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(3), 333-338.
[http://dx.doi.org/10.1016/j.jchromb.2008.12.011 ] [PMID: 19117808]
[21]
Oertel, R.; Neumeister, V.; Kirch, W. Hydrophilic interaction chromatography combined with tan-dem-mass spectrometry to determine six aminoglycosides in serum. J. Chromatogr. A, 2004, 1058(1-2), 197-201.
[http://dx.doi.org/10.1016/S0021-9673(04)01570-5 ] [PMID: 15595668]
[22]
LI Q.; LIU, Y. Ion chromatography determination of related substances in amikacin sulfate raw ma-terials and its preparations. Chinese Journal of Pharmaceutical Analysis, 2012, 32(2), 318-322.
[23]
Li, M-x.; Ma, L-m. Study on Fluorescence Characteristics of Amikacin Based on Charge Transfer Reaction. J. Analy. Sci., 2007, 23(2), 219.
[http://dx.doi.org/10.2116/analsci.23.219]
[24]
Chen, Y.; Kong, D.; Liu, L.; Song, S.; Kuang, H.; Xu, C. Development of an ELISA and immuno-chromatographic assay for tetracycline, oxytetracycline, and chlortetracycline residues in milk and honey based on the class-specific monoclonal antibody. Food Anal. Methods, 2016, 9(4), 905-914.
[http://dx.doi.org/10.1007/s12161-015-0262-z]
[25]
Li, A.; Tang, L.; Song, D.; Song, S.; Ma, W.; Xu, L.; Kuang, H.; Wu, X.; Liu, L.; Chen, X.; Xu, C. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Nanoscale, 2016, 8(4), 1873-1878.
[http://dx.doi.org/10.1039/C5NR08372A ] [PMID: 26732202]
[26]
Lourenço, F.R.; Barbosa, E.A.; Pinto, T.J. Microbiological assay for apramycin soluble powder. Lat. Am. J. Pharm., 2011, 3094064251
[27]
Xu, L.; Peng, S.; Liu, L.; Song, S.; Kuang, H.; Xu, C. Development of sensitive and fast immunoas-says for amantadine detection. Food Agric. Immunol., 2016, 27(5), 678-688.
[http://dx.doi.org/10.1080/09540105.2016.1148667]
[28]
Xu, N.; Qu, C.; Ma, W.; Xu, L.; Xu, L.; Liu, L.; Kuang, H.; Xu, C. Development and application of one-step ELISA for the detection of neomycin in milk. Food Agric. Immunol., 2011, 22(3), 259-269.
[http://dx.doi.org/10.1080/09540105.2011.569882]
[29]
Farouk, F.; Azzazy, H.M.; Niessen, W.M. Challenges in the determination of aminoglycoside antibi-otics, a review. Anal. Chim. Acta, 2015, 890, 21-43.
[http://dx.doi.org/10.1016/j.aca.2015.06.038 ] [PMID: 26347166]
[30]
Xu, J-Z.; Zhu, J-J.; Wang, H.; Chen, H-Y. Nano-sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin. Anal. Lett., 2003, 36(13), 2723-2733.
[http://dx.doi.org/10.1081/AL-120025251]
[31]
Ayad, M.M.; Yousef, M.D.c. polarographic determination of certain aminoglycosides. Analyst (Lond.), 1985, 110(8), 963-965.
[http://dx.doi.org/10.1039/an9851000963 ] [PMID: 4061855]
[32]
Norouzi, P.; Bidhendi, G-R.N.; Ganjali, M.R.; Sepehri, A.; Ghorbani, M. Sub-second accumulation and stripping for pico-level monitoring of amikacin sulphate by fast fourier transform cyclic voltam-metry at a gold microelectrode in flow-injection systems. Mikrochim. Acta, 2005, 152(1-2), 123-129.
[http://dx.doi.org/10.1007/s00604-005-0392-x]
[33]
Xue-liang, W. Linear sweep polarographic determination of amikacin with amaranth as electrochem-ical probe. [J] Chinese Journal of Analysis Laboratory, 2006, 6.
[34]
Murray, R.W.; Ewing, A.G.; Durst, R.A. Chemically modified electrodes. Molecular design for elec-troanalysis. Anal. Chem., 1987, 59(5), 379A-390A.
[PMID: 3565770]
[35]
Murray, R.W. Chemically modified electrodes. Acc. Chem. Res., 1980, 13(5), 135-141.
[http://dx.doi.org/10.1021/ar50149a002]
[36]
Martin, C.; Van Dyke, L.; Murray, R. Molecular Design of Electrode Surfaces; John Wiley & Sons, Inc.: New York, 1992.
[37]
Amiri, M.; Alimoradi, M.; Nekoueian, K.; Bezaatpour, A. Cobalt flower-like nanostructure as modi-fier for electrocatalytic determination of chloropheniramine. Ind. Eng. Chem. Res., 2012, 51(44), 14384-14389.
[http://dx.doi.org/10.1021/ie3016736]
[38]
Murray, R.W. Chemically modified electrodes for electrocatalysis. Philos. Trans. R. Soc. Lond. A, 1981, 302(1468), 253-265.
[http://dx.doi.org/10.1098/rsta.1981.0165]
[39]
Durst, R. Chemically modified electrodes: recommended terminology and definitions (IUPAC Rec-ommendations 1997). Pure Appl. Chem., 1997, 69(6), 1317-1324.
[http://dx.doi.org/10.1351/pac199769061317]
[40]
Sanghavi, B.J.; Srivastava, A.K. Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim. Acta, 2010, 55(28), 8638-8648.
[http://dx.doi.org/10.1016/j.electacta.2010.07.093]
[41]
Amiri, M.; Amali, E.; Nematollahzadeh, A. Poly-dopamine thin film for voltammetric sensing of atenolol. Sens. Actuators B Chem., 2015, 216, 551-557.
[http://dx.doi.org/10.1016/j.snb.2015.04.082]
[42]
Amiri, M.; Sohrabnezhad, S.; Rahimi, A. Nickel (II) incorporated AlPO-5 modified carbon paste electrode for determination of thioridazine in human serum. Mater. Sci. Eng. C, 2014, 37, 342-347.
[http://dx.doi.org/10.1016/j.msec.2014.01.035 ] [PMID: 24582258]
[43]
Amiri, M.; Rezapour, F.; Bezaatpour, A. Hydrophilic carbon nanoparticulates at the surface of carbon paste electrode improve determination of paracetamol, phenylephrine and dextromethorphan. J. Electroanal. Chem., 2014, 735, 10-18.
[http://dx.doi.org/10.1016/j.jelechem.2014.10.006]
[44]
Amiri, M.; Nouhi, S.; Azizian-Kalandaragh, Y. Facile synthesis of silver nanostructures by using var-ious deposition potential and time: A nonenzymetic sensor for hydrogen peroxide. Mater. Chem. Phys., 2015, 155, 129-135.
[http://dx.doi.org/10.1016/j.matchemphys.2015.02.009]
[45]
Nekoueian, K.; Jafari, S.; Amiri, M.; Sillanpää, M. Pre-adsorbed methylene blue at carbon-modified TiO 2 electrode: Application for lead sensing in water. IEEE Sens. J., 2018, 18(23), 9477-9485.
[http://dx.doi.org/10.1109/JSEN.2018.2871437]
[46]
Murray, R. Electroanalytical Chemistry; Bard, A.J., Ed.; Marcel Dekker: New York, 1984.
[47]
Barlett, P. Molecular design of electrode surfaces:Techniques in Chemistry, WH Saunders (series Ed.); RW, Murray, Ed.; Wiley, New York, 1992, 22, 0-471-55773.
[48]
Mohanty, U. Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J. Appl. Electrochem., 2011, 41(3), 257-270.
[http://dx.doi.org/10.1007/s10800-010-0234-3]
[49]
Guo, S.; Wang, E. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta, 2007, 598(2), 181-192.
[http://dx.doi.org/10.1016/j.aca.2007.07.054 ] [PMID: 17719891]
[50]
Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir, 2008, 24(10), 5233-5237.
[http://dx.doi.org/10.1021/la800305j ] [PMID: 18435552]
[51]
Guarise, C.; Pasquato, L.; De Filippis, V.; Scrimin, P. Gold nanoparticles-based protease assay. Proc. Natl. Acad. Sci. USA, 2006, 103(11), 3978-3982.
[http://dx.doi.org/10.1073/pnas.0509372103 ] [PMID: 16537471]
[52]
Achour, A.; Islam, M.; Moulai, F.; Haye, E.; Ahmad, I.; Saeed, K.; Parvez, S.; Colomer, J-F.; Pireaux, J. Direct Current Plasma-Sputtered Gold Nanoparticles/Carbon Nanosheets Nanohybrid Structures for Electrochemical Sensors. J. Mater. Eng. Perform., 2019, 28(12), 7582-7591.
[http://dx.doi.org/10.1007/s11665-019-04492-3]
[53]
Xiao, T.; Huang, J.; Wang, D.; Meng, T.; Yang, X. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta, 2020, 206120210
[http://dx.doi.org/10.1016/j.talanta.2019.120210 ] [PMID: 31514855]
[54]
Nekoueian, K.; Amiri, M.; Sillanpaa, M. Carbon paste electrode with Au/Pd/MWCNT nanocomposite for nanomolar determination of timolol. Int. J. Electrochem. Sci., 2017, 12, 1612-1624.
[http://dx.doi.org/10.20964/2017.02.56]
[55]
D’Mello, S.R.; Cruz, C.N.; Chen, M-L.; Kapoor, M.; Lee, S.L.; Tyner, K.M. The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol., 2017, 12(6), 523-529.
[http://dx.doi.org/10.1038/nnano.2017.67 ] [PMID: 28436961]
[56]
Brigger, I.; Dubernet, C.; Couvreur, P. Drug delivery to resistant tumors: The potential of poly (alkyl cyanoacrylate) nanoparticles. Adv. Drug Deliv. Rev., 2002, 2002, 54.
[57]
Hardie, J.; Jiang, Y.; Tetrault, E.R.; Ghazi, P.C.; Tonga, G.Y.; Farkas, M.E.; Rotello, V.M. Simulta-neous cytosolic delivery of a chemotherapeutic and siRNA using nanoparticle-stabilized nanocapsules. Nanotechnology, 2016, 27(37)374001
[http://dx.doi.org/10.1088/0957-4484/27/37/374001 ] [PMID: 27505356]
[58]
Pallotta, A.; Clarot, I.; Sobocinski, J.; Fattal, E.; Boudier, A. Nanotechnologies for medical devices: potentialities and risks. ACS Applied Bio Materials, 2018, 2(1), 1-13.
[http://dx.doi.org/10.1021/acsabm.8b00612]
[59]
Sengani, M.; Grumezescu, A.M.; Rajeswari, V.D. Recent trends and methodologies in gold nanopar-ticle synthesis–A prospective review on drug delivery aspect. OpenNano, 2017, 2, 37-46.
[http://dx.doi.org/10.1016/j.onano.2017.07.001]
[60]
Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A re-view. Talanta, 2018, 184, 537-556.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088 ] [PMID: 29674080]
[61]
Salehniya, H.; Amiri, M.; Marken, F. Voltammetric Chloride Sensing Based on Trace-Level Mercury Impregnation Into Amine-Functionalized Carbon Nanoparticle Films. IEEE Sens. J., 2017, 17(17), 5437-5443.
[http://dx.doi.org/10.1109/JSEN.2017.2727052]
[62]
Du, Y.; Luo, X-L.; Xu, J-J.; Chen, H-Y. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry, 2007, 70(2), 342-347.
[http://dx.doi.org/10.1016/j.bioelechem.2006.05.002 ] [PMID: 16793348]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy