Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Stem Cells: A Golden Therapy for Diabetic Wounds

Author(s): Shubhangi Buchade, Shivani Desai*, Ramesh Bhonde, Heena Kazi, Shivani Sainani and Ketki Rode

Volume 17, Issue 2, 2021

Published on: 16 July, 2020

Page: [156 - 160] Pages: 5

DOI: 10.2174/1573399816666200716200450

Price: $65

Abstract

Diabetes mellitus is the 7th leading cause of death worldwide. Diabetes can affect the organ systems and lead to serious complications, majorly categorized as macrovascular complications, microvascular complications, and diabetic wounds. Foot ulcer develops in 15-25% diabetic patients. In diabetic wound, there is an impairment in growth factor, neuropeptide, matrix metalloproteinases, angiogenesis, and immune system. Many approaches are being experimented to manage this major complication of diabetic foot, but unfortunately with lower success rate. Stem cell is an upcoming field which is being explored in the world of diabetes. Hence, this review is designed to understand the basic pathogenesis and complications of types of diabetes and the role of stem cells in a diabetic wound and the benefits related to it.

Keywords: Diabetes mellitus, diabetic complications, foot ulcer, stem cells, angiogenesis, therapy.

[1]
State A, Biology E. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus 2013 4(4): 46-57.
[2]
Mohan H. Textbook of pathology Jaypee Brothers. Medical Publishers Pvt. Limited 2018.
[3]
Diabetes. Newsroom. World Health Organization.. https://www.who.int/news-room/fact-sheets/detail/diabetes
[4]
Tan SY, Ling J, Wong M, Sim YJ, Wong SS, Abdelgadir S, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr 2018.
[http://dx.doi.org/10.1016/j.dsx.2018.10.008] [PMID: 30641727]
[5]
Gharravi AM, Jafar A, Ebrahimi M, Mahmodi A, Pourhashemi E, Haseli N, et al. SC Connections E. Ahead P. 2017; pp. 1-28.
[6]
Fowler MJ. Microvascular and Macrovascular Complications of Diabetes. Clin Dia 2008; 26(2): 77-82.
[http://dx.doi.org/10.2337/diaclin.26.2.77]
[7]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2006; 29(Suppl. 1): S43-8.
[PMID: 16373932]
[8]
Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 2008; 88(11): 1322-35.
[http://dx.doi.org/10.2522/ptj.20080008] [PMID: 18801863]
[9]
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013; 93(1): 137-88.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[10]
Behnam-Rassouli M, Ghayour MB, Ghayour N. Microvascular complications of diabetes. J Biol Sci 2010; 10(5): 411-23.
[http://dx.doi.org/10.3923/jbs.2010.411.423]
[11]
Khalil H. Diabetes & Metabolic Syndrome: Clinical Research & Reviews Diabetes microvascular complications — A clinical update. Diabetes Metab Syndr 2016.
[http://dx.doi.org/10.1016/j.dsx.2016.12.022] [PMID: 27993541]
[12]
Tsourdi E, Barthel A, Rietzsch H, Reichel A, Bornstein SR. Current aspects in the pathophysiology and treatment of chronic wounds in diabetes mellitus. BioMed Res Int 2013.2013385641
[http://dx.doi.org/10.1155/2013/385641] [PMID: 23653894]
[13]
Noor S, Zubair M, Ahmad J. Diabetes & Metabolic Syndrome: Clinical Research & Reviews Diabetic foot ulcer — A review on pathophysiology, classification and microbial etiology. Diabetes Metab Syndr Clin Res 2015; 9(3): 192-9.
[http://dx.doi.org/10.1016/j.dsx.2015.04.007]
[14]
Pemayun TG, Naibaho RM, Novitasari D, Amin N, Minuljo TT. Risk factors for lower extremity amputation in patients with diabetic foot ulcers: a hospital-based case-control study. Diabet Foot Ankle 2015; 6: 29629.
[http://dx.doi.org/10.3402/dfa.v6.29629] [PMID: 26651032]
[15]
Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother 2019.112108615
[http://dx.doi.org/10.1016/j.biopha.2019.108615] [PMID: 30784919]
[16]
Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes 2006.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01773.x]
[17]
Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther 2014; 31(8): 817-36.
[http://dx.doi.org/10.1007/s12325-014-0140-x] [PMID: 25069580]
[18]
Calne RY, Gan SU, Lee KO. Stem cell and gene therapies for diabetes mellitus. Nat Rev Endocrinol 2010; 6(3): 173-7.
[http://dx.doi.org/10.1038/nrendo.2009.276] [PMID: 20173779]
[19]
Núñez-Toldrà R, Martínez-Sarrà E, Gil-Recio C, et al. Dental pulp pluripotent-like stem cells (DPPSC), a new stem cell population with chromosomal stability and osteogenic capacity for biomaterials evaluation. BMC Cell Biol 2017; 18(1): 21.
[http://dx.doi.org/10.1186/s12860-017-0137-9] [PMID: 28427322]
[20]
Sharma RK, John JR. Role of stem cells in the management of chronic wounds. Indian J Plast Surg 2012; 45(2): 237-43.
[http://dx.doi.org/10.4103/0970-0358.101286] [PMID: 23162222]
[21]
Crisostomo PR, Markel TA, Wang Y, Meldrum DR. Surgically relevant aspects of stem cell paracrine effects. Surgery 2008; 143(5): 577-81.
[http://dx.doi.org/10.1016/j.surg.2007.10.015] [PMID: 18436004]
[22]
Liu L, Yu Y, Hou Y, et al. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One 2014; 9(2)e88348
[http://dx.doi.org/10.1371/journal.pone.0088348] [PMID: 24586314]
[23]
Kanji S, Das M, Aggarwal R, et al. Nanofiber-expanded human umbilical cord blood-derived CD34+ cell therapy accelerates murine cutaneous wound closure by attenuating pro-inflammatory factors and secreting IL-10. Stem Cell Res (Amst) 2014; 12(1): 275-88.
[http://dx.doi.org/10.1016/j.scr.2013.11.005] [PMID: 24321844]
[24]
Zou JP, Huang S, Peng Y, et al. Mesenchymal Stem Cells/Multipotent Potential Role in Healing. Int J Low Extrem Wounds 2012; 11(4)
[http://dx.doi.org/10.1177/1534734612463935] [PMID: 23222159]
[25]
Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ. Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ Res 2016; 118(1): 95-107.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.305373] [PMID: 26837742]
[26]
Jain P, Perakath B, Jesudason MR, Nayak S. The effect of autologous bone marrow-derived cells on healing chronic lower extremity wounds: results of a randomized controlled study. Ostomy Wound Manage 2011; 57(7): 38-44.
[PMID: 21904014]
[27]
Rodriguez-Menocal L, Shareef S, Salgado M, Shabbir A, Van Badiavas E. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing. Stem Cell Res Ther 2015; 6(1): 24.
[http://dx.doi.org/10.1186/s13287-015-0001-9] [PMID: 25881077]
[28]
Ravari H, Hamidi-Almadari D, Salimifar M, Bonakdaran S, Parizadeh MR, Koliakos G. Treatment of non-healing wounds with autologous bone marrow cells, platelets, fibrin glue and collagen matrix. Cytotherapy 2011; 13(6): 705-11.
[http://dx.doi.org/10.3109/14653249.2011.553594] [PMID: 21284564]
[29]
Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 2008; 180(4): 2581-7.
[http://dx.doi.org/10.4049/jimmunol.180.4.2581] [PMID: 18250469]
[30]
NIH. US National Library of Medicine
[31]
Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 2019; 10(1): 111.
[http://dx.doi.org/10.1186/s13287-019-1212-2] [PMID: 30922387]
[32]
Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105(10): 4120-6.
[http://dx.doi.org/10.1182/blood-2004-02-0586] [PMID: 15692068]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy