Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Bacterial Operational Taxonomic Units Replace the Interactive Roles of Other Operational Taxonomic Units Under Strong Environmental Changes

Author(s): Rajiv Das Kangabam, Yumnam Silla, Gunajit Goswami and Madhumita Barooah*

Volume 21, Issue 7, 2020

Page: [512 - 524] Pages: 13

DOI: 10.2174/1389202921999200716104355

Price: $65

Abstract

Background: Microorganisms are an important component of an aquatic ecosystem and play a critical role in the biogeochemical cycle which influences the circulation of the materials and maintains the balance in aquatic ecosystems.

Objective: The seasonal variation along with the impact of anthropogenic activities, water quality, bacterial community composition and dynamics in the Loktak Lake, the largest freshwater lake of North East India, located in the Indo-Burma hotspot region was assessed during post-monsoon and winter season through metagenome analysis.

Methods: Five soil samples were collected during Post-monsoon and winter season from the Loktak Lake that had undergone different anthropogenic impacts. The metagenomic DNA of the soil samples was extracted using commercial metagenomic DNA extraction kits following the manufacturer’s instruction. The extracted DNA was used to prepare the NGS library and sequenced in the Illumina MiSeq platform.

Results: Metagenomics analysis reveals Proteobacteria as the predominant community followed by Acidobacteria and Actinobacteria. The presence of these groups of bacteria indicates nitrogen fixation, oxidation of iron, sulfur, methane, and source of novel antibiotic candidates. The bacterial members belonging to different groups were involved in various biogeochemical processes, including fixation of carbon and nitrogen, producing streptomycin, gramicidin and perform oxidation of sulfur, sulfide, ammonia, and methane.

Conclusion: The outcome of this study provides a valuable dataset representing a seasonal profile across various land use and analysis, targeting at establishing an understanding of how the microbial communities vary across the land use and the role of keystone taxa. The findings may contribute to searches for microbial bio-indicators as biodiversity markers for improving the aquatic ecosystem of the Loktak Lake.

Keywords: Wetlands, metagenomics, microbial diversity, land use, biogeochemical, keystone, bio-indicators.

Graphical Abstract
[1]
Bardgett, R.D.; van der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature, 2014, 515(7528), 505-511.
[http://dx.doi.org/10.1038/nature13855] [PMID: 25428498]
[2]
Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol., 2017, 15(10), 579-590.
[http://dx.doi.org/10.1038/nrmicro.2017.87] [PMID: 28824177]
[3]
Fuhrman, J.A. Microbial community structure and its functional implications. Nature, 2009, 459(7244), 193-199.
[http://dx.doi.org/10.1038/nature08058] [PMID: 19444205]
[4]
Graham, E.B.; Knelman, J.E.; Schindlbacher, A.; Siciliano, S.; Breulmann, M.; Yannarell, A.; Beman, J.M.; Abell, G.; Philippot, L.; Prosser, J.; Foulquier, A.; Yuste, J.C.; Glanville, H.C.; Jones, D.L.; Angel, R.; Salminen, J.; Newton, R.J.; Bürgmann, H.; Ingram, L.J.; Hamer, U.; Siljanen, H.M.P.; Peltoniemi, K.; Potthast, K.; Bañeras, L.; Hartmann, M.; Banerjee, S.; Yu, R-Q.; Nogaro, G.; Richter, A.; Koranda, M.; Castle, S.C.; Goberna, M.; Song, B.; Chatterjee, A.; Nunes, O.C.; Lopes, A.R.; Cao, Y.; Kaisermann, A.; Hallin, S.; Strickland, M.S.; Garcia-Pausas, J.; Barba, J.; Kang, H.; Isobe, K.; Papaspyrou, S.; Pastorelli, R.; Lagomarsino, A.; Lindström, E.S.; Basiliko, N.; Nemergut, D.R. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front. Microbiol., 2016, 7, 214.
[http://dx.doi.org/10.3389/fmicb.2016.00214] [PMID: 26941732]
[5]
Hamady, M.; Knight, R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res., 2009, 19(7), 1141-1152.
[http://dx.doi.org/10.1101/gr.085464.108] [PMID: 19383763]
[6]
MG, van der H.; RD, B.; NM, van S. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett., 2008, 11(3), 296-310.
[http://dx.doi.org/10.1111/J.1461-0248.2007.01139.X]
[7]
Petersen, D.G.; Blazewicz, S.J.; Firestone, M.; Herman, D.J.; Turetsky, M.; Waldrop, M. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ. Microbiol., 2012, 14(4), 993-1008.
[http://dx.doi.org/10.1111/j.1462-2920.2011.02679.x] [PMID: 22225623]
[8]
Reese, B.K.; Mills, H.J.; Dowd, S.E.; Morse, J.W. Linking molecular microbial ecology to geochemistry in a coastal hypoxic zone. Geomicrobiol. J., 2013, 30(2), 160-172.
[http://dx.doi.org/10.1080/01490451.2012.659331]
[9]
El-Sheekh, M.M.; Hamouda, R.A. Biodegradation of crude oil by some Cyanobacteria under heterotrophic conditions. Desalin. Water Treat., 2014, 52(7-9), 1448-1454.
[http://dx.doi.org/10.1080/19443994.2013.794008]
[10]
National Wetland Atlas. SAC/EPSA/ABHG/NWIA/ATLAS/34/ 2011,. 2011.
[11]
Kangabam, R.D.; Bhoominathan, S.D.; Kanagaraj, S.; Govindaraju, M. Development of a Water Quality Index (WQI) for the Loktak Lake in India. Appl. Water Sci., 2017, 7(6), 2907-2918.
[http://dx.doi.org/10.1007/s13201-017-0579-4]
[12]
Das Kangabam, R.; Govindaraju, M. Anthropogenic activity-induced water quality degradation in the Loktak lake, a Ramsar site in the Indo-Burma biodiversity hotspot. Environ. Technol., 2019, 40(17), 2232-2241.
[http://dx.doi.org/10.1080/09593330.2017.1378267] [PMID: 28893154]
[13]
Census of India.2011. Available from:. http://www.censusindia.gov.in/
[14]
American Public Health Association.Eaton, A. D. W. American Water Works Association. Standard Methods for the Examination of Water and Wastewater,, 21st ed; APHA-AWWA-WEF: Washington, D.C., 2005.
[15]
Water and Wastewater Analysis - A Guide Manual by Central Pollution Control Board,. 2011.https://www.indiawaterportal.org/articles/water-and-wastewater-analysis-guide-manual-central-pollution-control-board
[16]
Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res., 2013, 41(1) e1.
[http://dx.doi.org/10.1093/nar/gks808] [PMID: 22933715]
[17]
Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15), 2114-2120.
[http://dx.doi.org/10.1093/bioinformatics/btu170] [PMID: 24695404]
[18]
Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol., 2007, 73(16), 5261-5267.
[http://dx.doi.org/10.1128/AEM.00062-07] [PMID: 17586664]
[19]
Faust, K.; Raes, J. CoNet app: inference of biological association networks using Cytoscape. F1000 Res., 2016, 5, 1519.
[http://dx.doi.org/10.12688/f1000research.9050.1] [PMID: 27853510]
[20]
Arndt, D.; Xia, J.; Liu, Y.; Zhou, Y.; Guo, A.C.; Cruz, J.A.; Sinelnikov, I.; Budwill, K.; Nesbø, C.L.; Wishart, D.S. METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res., 2012, 40(Web Server issue), W88-95.
[http://dx.doi.org/10.1093/nar/gks497] [PMID: 22645318]
[21]
Chen, L.X.; Méndez-García, C.; Dombrowski, N.; Servín-Garcidueñas, L.E.; Eloe-Fadrosh, E.A.; Fang, B.Z.; Luo, Z.H.; Tan, S.; Zhi, X.Y.; Hua, Z.S.; Martinez-Romero, E.; Woyke, T.; Huang, L.N.; Sánchez, J.; Peláez, A.I.; Ferrer, M.; Baker, B.J.; Shu, W.S. Metabolic versatility of small archaea Micrarchaeota and Parvarchaeota. ISME J., 2018, 12(3), 756-775.
[http://dx.doi.org/10.1038/s41396-017-0002-z] [PMID: 29222443]
[22]
Carr, S.A.; Schubotz, F.; Dunbar, R.B.; Mills, C.T.; Dias, R.; Summons, R.E.; Mandernack, K.W. Acetoclastic Methanosaeta are dominant methanogens in organic-rich Antarctic marine sediments. ISME J., 2018, 12(2), 330-342.
[http://dx.doi.org/10.1038/ismej.2017.150] [PMID: 29039843]
[23]
Faust, K.; Sathirapongsasuti, J.F.; Izard, J.; Segata, N.; Gevers, D.; Raes, J.; Huttenhower, C. Microbial co-occurrence relationships in the human microbiome. PLOS Comput. Biol., 2012, 8(7) e1002606.
[http://dx.doi.org/10.1371/journal.pcbi.1002606] [PMID: 22807668]
[24]
Oremland, R.S.; Hollibaugh, J.T.; Maest, A.S.; Presser, T.S.; Miller, L.G.; Culbertson, C.W. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl. Environ. Microbiol., 1989, 55(9), 2333-2343.
[http://dx.doi.org/10.1128/AEM.55.9.2333-2343.1989] [PMID: 16348014]
[25]
Herren, C.M.; McMahon, K.D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol., 2018, 20(6), 2207-2217.
[http://dx.doi.org/10.1111/1462-2920.14257] [PMID: 29708645]
[26]
Deng, Y.; Jiang, Y.H.; Yang, Y.; He, Z.; Luo, F.; Zhou, J. Molecular ecological network analyses. BMC Bioinformatics, 2012, 13(1), 113.
[http://dx.doi.org/10.1186/1471-2105-13-113] [PMID: 22646978]
[27]
Lupatini, M.; Suleiman, A.K.A.; Jacques, R.J.S.; Antoniolli, Z.I.; de Siqueira Ferreira, A.; Kuramae, E.E.; Roesch, L.F.W. Network topology reveals high connectance levels and few key microbial genera within soils. Front. Environ. Sci., 2014, 2.
[http://dx.doi.org/10.3389/fenvs.2014.00010]
[28]
Zhou, J.; Deng, Y.; Luo, F.; He, Z.; Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio, 2011, 2(4), e00122-11.
[http://dx.doi.org/10.1128/mBio.00122-11] [PMID: 21791581]
[29]
Banerjee, S.; Baah-Acheamfour, M.; Carlyle, C.N.; Bissett, A.; Richardson, A.E.; Siddique, T.; Bork, E.W.; Chang, S.X. Determinants of bacterial communities in Canadian agroforestry systems. Environ. Microbiol., 2016, 18(6), 1805-1816.
[http://dx.doi.org/10.1111/1462-2920.12986] [PMID: 26184386]
[30]
Eldridge, D.J.; Woodhouse, J.N.; Curlevski, N.J.A.; Hayward, M.; Brown, M.V.; Neilan, B.A. Soil-foraging animals alter the composition and co-occurrence of microbial communities in a desert shrubland. ISME J., 2015, 9(12), 2671-2681.
[http://dx.doi.org/10.1038/ismej.2015.70] [PMID: 25932616]
[31]
Ma, B.; Wang, H.; Dsouza, M.; Lou, J.; He, Y.; Dai, Z.; Brookes, P.C.; Xu, J.; Gilbert, J.A. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J., 2016, 10(8), 1891-1901.
[http://dx.doi.org/10.1038/ismej.2015.261] [PMID: 26771927]
[32]
Ding, J.; Zhang, Y.; Wang, M.; Sun, X.; Cong, J.; Deng, Y.; Lu, H.; Yuan, T.; Van Nostrand, J.D.; Li, D.; Zhou, J.; Yang, Y. Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests. Mol. Ecol., 2015, 24(20), 5175-5185.
[http://dx.doi.org/10.1111/mec.13384] [PMID: 26363284]
[33]
Jiang, Y.; Li, S.; Li, R.; Zhang, J.; Liu, Y.; Lv, L.; Zhu, H.; Wu, W.; Li, W. Plant Cultivars Imprint the Rhizosphere bacterial community composition and association networks. Soil Biol. Biochem., 2017, 109, 145-155.
[http://dx.doi.org/10.1016/j.soilbio.2017.02.010]
[34]
Liang, Y.; Zhao, H.; Deng, Y.; Zhou, J.; Li, G.; Sun, B. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes. Front. Microbiol., 2016, 7, 60.
[http://dx.doi.org/10.3389/fmicb.2016.00060] [PMID: 26870020]
[35]
Wang, H.; Wei, Z.; Mei, L.; Gu, J.; Yin, S.; Faust, K.; Raes, J.; Deng, Y.; Wang, Y.; Shen, Q.; Yin, S. Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biol. Biochem., 2017, 105, 227-235.
[http://dx.doi.org/10.1016/j.soilbio.2016.11.029]
[36]
Gokul, J.K.; Hodson, A.J.; Saetnan, E.R.; Irvine-Fynn, T.D.L.; Westall, P.J.; Detheridge, A.P.; Takeuchi, N.; Bussell, J.; Mur, L.A.J.; Edwards, A. Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap. Mol. Ecol., 2016, 25(15), 3752-3767.
[http://dx.doi.org/10.1111/mec.13715] [PMID: 27261672]
[37]
Comte, J.; Lovejoy, C.; Crevecoeur, S.; Vincent, W.F. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes. Biogeosciences, 2016, 13(1), 175-190.
[http://dx.doi.org/10.5194/bg-13-175-2016]
[38]
Hill, R.; Saetnan, E.R.; Scullion, J.; Gwynn-Jones, D.; Ostle, N.; Edwards, A. Temporal and spatial influences incur reconfiguration of Arctic heathland soil bacterial community structure. Environ. Microbiol., 2016, 18(6), 1942-1953.
[http://dx.doi.org/10.1111/1462-2920.13017] [PMID: 26259508]
[39]
Yang, S.; Wen, X.; Shi, Y.; Liebner, S.; Jin, H.; Perfumo, A. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Sci. Rep., 2016, 6(1), 37473.
[http://dx.doi.org/10.1038/srep37473] [PMID: 27886221]
[40]
Chao, Y.; Liu, W.; Chen, Y.; Chen, W.; Zhao, L.; Ding, Q.; Wang, S.; Tang, Y.T.; Zhang, T.; Qiu, R.L. Structure, variation, and co-occurrence of soil microbial communities in abandoned sites of a rare earth elements mine. Environ. Sci. Technol., 2016, 50(21), 11481-11490.
[http://dx.doi.org/10.1021/acs.est.6b02284] [PMID: 27670106]
[41]
Jiao, S.; Liu, Z.; Lin, Y.; Yang, J.; Chen, W.; Wei, G. Bacterial communities in oil contaminated soils: biogeography and co-occurrence patterns. Soil Biol. Biochem., 2016, 98, 64-73.
[http://dx.doi.org/10.1016/j.soilbio.2016.04.005]
[42]
Shi, S.; Nuccio, E.E.; Shi, Z.J.; He, Z.; Zhou, J.; Firestone, M.K. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol. Lett., 2016, 19(8), 926-936.
[http://dx.doi.org/10.1111/ele.12630] [PMID: 27264635]
[43]
Yan, Y.; Kuramae, E.E.; de Hollander, M.; Klinkhamer, P.G.L.; van Veen, J.A. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J., 2017, 11(1), 56-66.
[http://dx.doi.org/10.1038/ismej.2016.108] [PMID: 27482928]
[44]
Vick-Majors, T.J.; Priscu, J.C.; Amaral-Zettler, L.A. Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes. ISME J., 2014, 8(4), 778-789.
[http://dx.doi.org/10.1038/ismej.2013.190] [PMID: 24152712]
[45]
Geng, H.; Tran-Gyamfi, M.B.; Lane, T.W.; Sale, K.L.; Yu, E.T. Changes in the structure of the microbial community associated with Nannochloropsis salina following treatments with antibiotics and bioactive compounds. Front. Microbiol., 2016, 7, 1155.
[http://dx.doi.org/10.3389/fmicb.2016.01155] [PMID: 27507966]
[46]
Graham, E.B.; Crump, A.R.; Resch, C.T.; Fansler, S.; Arntzen, E.; Kennedy, D.W.; Fredrickson, J.K.; Stegen, J.C. Deterministic influences exceed dispersal effects on hydrologically-connected microbiomes. Environ. Microbiol., 2017, 19(4), 1552-1567.
[http://dx.doi.org/10.1111/1462-2920.13720] [PMID: 28276134]
[47]
Ji, Y.; Angel, R.; Klose, M.; Claus, P.; Marotta, H.; Pinho, L.; Enrich-Prast, A.; Conrad, R. Structure and function of methanogenic microbial communities in sediments of Amazonian lakes with different water types. Environ. Microbiol., 2016, 18(12), 5082-5100.
[http://dx.doi.org/10.1111/1462-2920.13491] [PMID: 27507000]
[48]
Musat, N.; Halm, H.; Winterholler, B.; Hoppe, P.; Peduzzi, S.; Hillion, F.; Horreard, F.; Amann, R.; Jørgensen, B.B.; Kuypers, M.M.M. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. USA, 2008, 105(46), 17861-17866.
[http://dx.doi.org/10.1073/pnas.0809329105] [PMID: 19004766]
[49]
Zhao, D.; Shen, F.; Zeng, J.; Huang, R.; Yu, Z.; Wu, Q.L. Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton. Sci. Total Environ., 2016, 573, 817-825.
[http://dx.doi.org/10.1016/j.scitotenv.2016.08.150] [PMID: 27595939]
[50]
Steele, J.A.; Countway, P.D.; Xia, L.; Vigil, P.D.; Beman, J.M.; Kim, D.Y.; Chow, C.E.T.; Sachdeva, R.; Jones, A.C.; Schwalbach, M.S.; Rose, J.M.; Hewson, I.; Patel, A.; Sun, F.; Caron, D.A.; Fuhrman, J.A. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J., 2011, 5(9), 1414-1425.
[http://dx.doi.org/10.1038/ismej.2011.24] [PMID: 21430787]
[51]
Li, F.; Chen, L.; Zhang, J.; Yin, J.; Huang, S. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front. Microbiol., 2017, 8, 187.
[http://dx.doi.org/10.3389/fmicb.2017.00187] [PMID: 28232824]
[52]
Hajishengallis, G.; Liang, S.; Payne, M.A.; Hashim, A.; Jotwani, R.; Eskan, M.A.; McIntosh, M.L.; Alsam, A.; Kirkwood, K.L.; Lambris, J.D.; Darveau, R.P.; Curtis, M.A. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe, 2011, 10(5), 497-506.
[http://dx.doi.org/10.1016/j.chom.2011.10.006] [PMID: 22036469]
[53]
Fisher, C.K.; Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS One, 2014, 9(7) e102451.
[http://dx.doi.org/10.1371/journal.pone.0102451] [PMID: 25054627]
[54]
Shetty, S.A.; Hugenholtz, F.; Lahti, L.; Smidt, H.; de Vos, W.M. Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiol. Rev., 2017, 41(2), 182-199.
[http://dx.doi.org/10.1093/femsre/fuw045] [PMID: 28364729]
[55]
Curtis, M.M.; Hu, Z.; Klimko, C.; Narayanan, S.; Deberardinis, R.; Sperandio, V. The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe, 2014, 16(6), 759-769.
[http://dx.doi.org/10.1016/j.chom.2014.11.005] [PMID: 25498343]
[56]
Maldonado-Contreras, A.; Goldfarb, K.C.; Godoy-Vitorino, F.; Karaoz, U.; Contreras, M.; Blaser, M.J.; Brodie, E.L.; Dominguez-Bello, M.G. Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J., 2011, 5(4), 574-579.
[http://dx.doi.org/10.1038/ismej.2010.149] [PMID: 20927139]
[57]
Trosvik, P.; de Muinck, E.J. Ecology of bacteria in the human gastrointestinal tract-identification of keystone and foundation taxa. Microbiome, 2015, 3(1), 44.
[http://dx.doi.org/10.1186/s40168-015-0107-4] [PMID: 26455879]
[58]
Wu, S.; Rhee, K.J.; Albesiano, E.; Rabizadeh, S.; Wu, X.; Yen, H.R.; Huso, D.L.; Brancati, F.L.; Wick, E.; McAllister, F.; Housseau, F.; Pardoll, D.M.; Sears, C.L. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med., 2009, 15(9), 1016-1022.
[http://dx.doi.org/10.1038/nm.2015] [PMID: 19701202]
[59]
Ze, X.; Duncan, S.H.; Louis, P.; Flint, H.J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J., 2012, 6(8), 1535-1543.
[http://dx.doi.org/10.1038/ismej.2012.4] [PMID: 22343308]
[60]
Garrett, W.S.; Gallini, C.A.; Yatsunenko, T.; Michaud, M.; DuBois, A.; Delaney, M.L.; Punit, S.; Karlsson, M.; Bry, L.; Glickman, J.N.; Gordon, J.I.; Onderdonk, A.B.; Glimcher, L.H. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe, 2010, 8(3), 292-300.
[http://dx.doi.org/10.1016/j.chom.2010.08.004] [PMID: 20833380]
[61]
Kumar, V.; Bharti, P.K.; Talwar, M.; Tyagi, A.K.; Kumar, P. Studies on high iron content in water resources of Moradabad district (UP), India. Water Sci., 2017, 31(1), 44-51.
[http://dx.doi.org/10.1016/j.wsj.2017.02.003]
[62]
Björnerås, C.; Weyhenmeyer, G.A.; Evans, C.D.; Gessner, M.O.; Grossart, H-P.; Kangur, K.; Kokorite, I.; Kortelainen, P.; Laudon, H.; Lehtoranta, J.; Lottig, N.; Monteith, D.T.; Nõges, P.; Nõges, T.; Oulehle, F.; Riise, G.; Rusak, J.A.; Räike, A.; Sire, J.; Sterling, S.; Kritzberg, E.S. Widespread increases in Iron concentration in European and North American freshwaters. Global Biogeochem. Cycles, 2017, 31(10), 1488-1500.
[http://dx.doi.org/10.1002/2017GB005749]
[63]
Kangabam, R.D. Contamination in Loktak Lake. A Down to Earth Annual – State of India’s Environment, 2018, pp. 77-79.
[64]
Brockett, B.F.T.; Prescott, C.E.; Grayston, S.J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in Western Canada. Soil Biol. Biochem., 2012, 44(1), 9-20.
[http://dx.doi.org/10.1016/j.soilbio.2011.09.003]
[65]
Zhang, Y.; Dong, J.; Yang, B.; Ling, J.; Wang, Y.; Zhang, S. Bacterial community structure of Mangrove sediments in relation to environmental variables accessed by 16S rRNA gene-denaturing gradient gel electrophoresis fingerprinting. Sci. Mar., 2009, 73(3), 487-498.
[http://dx.doi.org/10.3989/scimar.2009.73n3487]
[66]
Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; Loreau, M.; Gonzalez, A. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett., 2004, 7(7), 601-613.
[http://dx.doi.org/10.1111/j.1461-0248.2004.00608.x]
[67]
Logue, J.B.; Mouquet, N.; Peter, H.; Hillebrand, H. Metacommunity Working Group. Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol. Evol. (Amst.), 2011, 26(9), 482-491.
[http://dx.doi.org/10.1016/j.tree.2011.04.009] [PMID: 21641673]
[68]
Gilbert, J.A.; Steele, J.A.; Caporaso, J.G.; Steinbrück, L.; Reeder, J.; Temperton, B.; Huse, S.; McHardy, A.C.; Knight, R.; Joint, I.; Somerfield, P.; Fuhrman, J.A.; Field, D. Defining seasonal marine microbial community dynamics. ISME J., 2012, 6(2), 298-308.
[http://dx.doi.org/10.1038/ismej.2011.107] [PMID: 21850055]
[69]
Zhang, W.; Bougouffa, S.; Wang, Y.; Lee, O.O.; Yang, J.; Chan, C.; Song, X.; Qian, P-Y. Toward understanding the dynamics of microbial communities in an estuarine system. PLoS One, 2014, 9(4) e94449.
[http://dx.doi.org/10.1371/journal.pone.0094449] [PMID: 24732211]
[70]
Shi, P.; Jia, S.; Zhang, X.X.; Zhang, T.; Cheng, S.; Li, A. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Res., 2013, 47(1), 111-120.
[http://dx.doi.org/10.1016/j.watres.2012.09.046] [PMID: 23084468]
[71]
Liu, M.; Huang, H.; Bao, S.; Tong, Y. Microbial community structure of soils in Bamenwan mangrove wetland. Sci. Rep., 2019, 9(1), 8406.
[http://dx.doi.org/10.1038/s41598-019-44788-x] [PMID: 31182804]
[72]
Vaz-Moreira, I.; Nunes, O.C.; Manaia, C.M. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol. Rev., 2014, 38(4), 761-778.
[http://dx.doi.org/10.1111/1574-6976.12062] [PMID: 24484530]
[73]
Henry, E.A.; Devereux, R.; Maki, J.S.; Gilmour, C.C.; Woese, C.R.; Mandelco, L.; Schauder, R.; Remsen, C.C.; Mitchell, R. Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfo bacterium commune and their origins deep within the bacterial domain. Arch. Microbiol., 1994, 161(1), 62-69.
[http://dx.doi.org/10.1007/BF00248894] [PMID: 11541228]
[74]
Oswald, K.; Graf, J.S.; Littmann, S.; Tienken, D.; Brand, A.; Wehrli, B.; Albertsen, M.; Daims, H.; Wagner, M.; Kuypers, M.M.M.; Schubert, C.J.; Milucka, J. Crenothrix are major methane consumers in stratified lakes. ISME J., 2017, 11(9), 2124-2140.
[http://dx.doi.org/10.1038/ismej.2017.77] [PMID: 28585934]
[75]
Jebeli, M.A.; Maleki, A.; Amoozegar, M.A.; Kalantar, E.; Izanloo, H.; Gharibi, F. Bacillus flexus strain As-12, a new arsenic transformer bacterium isolated from contaminated water resources. Chemosphere, 2017, 169, 636-641.
[http://dx.doi.org/10.1016/j.chemosphere.2016.11.129] [PMID: 27912188]
[76]
Armengaud, J.; Happe, B.; Timmis, K.N. Genetic analysis of dioxin dioxygenase of Sphingomonas sp. Strain RW1: catabolic genes dispersed on the genome. J. Bacteriol., 1998, 180(15), 3954-3966.
[http://dx.doi.org/10.1128/JB.180.15.3954-3966.1998] [PMID: 9683494]
[77]
Abro, A.H.; Rahimi Shahmirzadi, M.R.; Jasim, L.M.; Badreddine, S.; Al Deesi, Z. Sphingobacterium multivorum bacteremia and acute meningitis in an immunocompetent adult patient: A case report. Iran. Red Crescent Med. J., 2016, 18(9) e38750.
[http://dx.doi.org/10.5812/ircmj.38750] [PMID: 28144466]
[78]
Javed, S.; Gul, F.; Javed, K.; Bokhari, H. Helicobacter pullorum: an emerging zoonotic pathogen. Front. Microbiol., 2017, 8(APR), 604.
[http://dx.doi.org/10.3389/fmicb.2017.00604] [PMID: 28443081]
[79]
Fouts, D.E.; Matthias, M.A.; Adhikarla, H.; Adler, B.; Amorim-Santos, L.; Berg, D.E.; Bulach, D.; Buschiazzo, A.; Chang, Y.F.; Galloway, R.L.; Haake, D.A.; Haft, D.H.; Hartskeerl, R.; Ko, A.I.; Levett, P.N.; Matsunaga, J.; Mechaly, A.E.; Monk, J.M.; Nascimento, A.L.T.; Nelson, K.E.; Palsson, B.; Peacock, S.J.; Picardeau, M.; Ricaldi, J.N.; Thaipandungpanit, J.; Wunder, E.A., Jr; Yang, X.F.; Zhang, J.J.; Vinetz, J.M. What makes a bacterial species pathogenic? Comparative genomic analysis of the genus Leptospira. PLoS Negl. Trop. Dis., 2016, 10(2) e0004403.
[http://dx.doi.org/10.1371/journal.pntd.0004403] [PMID: 26890609]
[80]
Piette, A.; Verschraegen, G. Role of coagulase-negative staphylococci in human disease. Vet. Microbiol., 2009, 134(1-2), 45-54.
[http://dx.doi.org/10.1016/j.vetmic.2008.09.009] [PMID: 18986783]
[81]
Mayali, X.; Azam, F. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol., 2004, 51(2), 139-144.
[http://dx.doi.org/10.1111/j.1550-7408.2004.tb00538.x] [PMID: 15134248]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy