Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Drugs Repurposing in High-Grade Serous Ovarian Cancer

Author(s): Manuel Torralba, Rossella Farra*, Marianna Maddaloni, Mario Grassi, Barbara Dapas and Gabriele Grassi

Volume 27 , Issue 42 , 2020

Page: [7222 - 7233] Pages: 12

DOI: 10.2174/0929867327666200713190520

Price: $65

Abstract

Background: Ovary Carcinoma (OC) is the most lethal gynecological neoplasm due to the late diagnoses and to the common development of resistance to platinum-based chemotherapy. Thus, novel therapeutic approaches are urgently required. In this regard, the strategy of drug repurposing is becoming attractive. By this approach, the effectiveness of a drug originally developed for another indication is tested in a different pathology. The advantage is that data about pharmacokinetic properties and toxicity are already available. Thus, in principle, it is possible to reduce research costs and to speed up drug usage/marketing.

Results: Here, some noticeable examples of repurposed drugs for OC, such as amiodarone, ruxolitinib, statins, disulfiram, ormeloxifenem, and Quinacrine, are reported. Amiodarone, an antiarrhythmic agent, has shown promising anti-OC activity, although the systemic toxicity should not be neglected. The JAK inhibitor, Ruxolitinib, may be employed particularly in coadministration with standard OC therapy as it synergistically interacts with platinum-based drugs. Particularly interesting is the use of statin which represent one of the most commonly administered drugs in aged population to treat hypercholesterolemia. Disulfiram, employed in the treatment of chronic alcoholism, has shown anti-OC properties. Ormeloxifene, commonly used for contraception, seems to be promising, especially due to the negligible side effects. Finally, Quinacrine used as an antimicrobial and anti-inflammatory drug, is able to downregulate OC cell growth and promote cell death.

Conclusion: Whereas further testing in patients are necessary to better clarify the therapeutic potential of repurposed drugs for OC, it is believed that their use, better if combined with OC targeted delivery systems, can significantly contribute to the development of novel and effective anti-OC treatments.

Keywords: Drug repurposing, ovarian cancer, amiodarone, ruxolitinib, statins, disulfiram, ormeloxifene.

[1]
Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006] [PMID: 27743768]
[2]
Chien, J.; Poole, E.M. Ovarian cancer prevention, screening and early detection: report from the 11th biennial ovarian cancer research symposium. Int. J. Gynecol. Cancer, 2017, 27(9)(Suppl. 5), S20-S22.
[http://dx.doi.org/10.1097/IGC.0000000000001118] [PMID: 29278600]
[3]
Matulonis, U.A.; Sood, A.K.; Fallowfield, L.; Howitt, B.E.; Sehouli, J.; Karlan, B.Y. Ovarian cancer. Nat. Rev. Dis. Primers, 2016, 2, 16061.
[http://dx.doi.org/10.1038/nrdp.2016.61] [PMID: 27558151]
[4]
Shih, IeM.; Kurman, R.J. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am. J. Pathol., 2004, 164(5), 1511-1518.
[http://dx.doi.org/10.1016/S0002-9440(10)63708-X] [PMID: 15111296]
[5]
Verhaak, R.G.; Tamayo, P.; Yang, J.Y.; Hubbard, D.; Zhang, H.; Creighton, C.J.; Fereday, S.; Lawrence, M.; Carter, S.L.; Mermel, C.H.; Kostic, A.D.; Etemadmoghadam, D.; Saksena, G.; Cibulskis, K.; Duraisamy, S.; Levanon, K.; Sougnez, C.; Tsherniak, A.; Gomez, S.; Onofrio, R.; Gabriel, S.; Chin, L.; Zhang, N.; Spellman, P.T.; Zhang, Y.; Akbani, R.; Hoadley, K.A.; Kahn, A.; Köbel, M.; Huntsman, D.; Soslow, R.A.; Defazio, A.; Birrer, M.J.; Gray, J.W.; Weinstein, J.N.; Bowtell, D.D.; Drapkin, R.; Mesirov, J.P.; Getz, G.; Levine, D.A.; Meyerson, M. Cancer Genome Atlas Research network. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J. Clin. Invest., 2013, 123(1), 517-525.
[http://dx.doi.org/10.1172/JCI65833] [PMID: 23257362]
[6]
Konecny, G.E.; Wang, C.; Hamidi, H.; Winterhoff, B.; Kalli, K.R.; Dering, J.; Ginther, C.; Chen, H.W.; Dowdy, S.; Cliby, W.; Gostout, B.; Podratz, K.C.; Keeney, G.; Wang, H.J.; Hartmann, L.C.; Slamon, D.J.; Goode, E.L. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J. Natl. Cancer Inst., 2014, 106(10), 106.
[http://dx.doi.org/10.1093/jnci/dju249] [PMID: 25269487]
[7]
Wang, C.; Armasu, S.M.; Kalli, K.R.; Maurer, M.J.; Heinzen, E.P.; Keeney, G.L.; Cliby, W.A.; Oberg, A.L.; Kaufmann, S.H.; Goode, E.L. Pooled clustering of high-grade serous ovarian cancer gene expression leads to novel consensus subtypes associated with survival and surgical outcomes. Clin. Cancer Res., 2017, 23(15), 4077-4085.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0246] [PMID: 28280090]
[8]
Cancer genome atlas research network. Integrated genomic analyses of ovarian carcinoma. Nature, 2011, 474(7353), 609-615.
[http://dx.doi.org/10.1038/nature10166] [PMID: 21720365]
[9]
Narod, S. Can advanced-stage ovarian cancer be cured? Nat. Rev. Clin. Oncol., 2016, 13(4), 255-261.
[http://dx.doi.org/10.1038/nrclinonc.2015.224] [PMID: 26787282]
[10]
Menon, U.; Ryan, A.; Kalsi, J.; Gentry-Maharaj, A.; Dawnay, A.; Habib, M.; Apostolidou, S.; Singh, N.; Benjamin, E.; Burnell, M.; Davies, S.; Sharma, A.; Gunu, R.; Godfrey, K.; Lopes, A.; Oram, D.; Herod, J.; Williamson, K.; Seif, M.W.; Jenkins, H.; Mould, T.; Woolas, R.; Murdoch, J.B.; Dobbs, S.; Amso, N.N.; Leeson, S.; Cruickshank, D.; Scott, I.; Fallowfield, L.; Widschwendter, M.; Reynolds, K.; McGuire, A.; Campbell, S.; Parmar, M.; Skates, S.J.; Jacobs, I. Risk algorithm using serial biomarker measurements doubles the number of screen-detected cancers compared with a single-threshold rule in the united kingdom collaborative trial of ovarian cancer screening. J. Clin. Oncol., 2015, 33(18), 2062-2071.
[http://dx.doi.org/10.1200/JCO.2014.59.4945] [PMID: 25964255]
[11]
Lisio, M.A.; Fu, L.; Goyeneche, A.; Gao, Z.H.; Telleria, C. High-grade serous ovarian cancer: basic sciences, clinical and therapeutic standpoints. Int. J. Mol. Sci., 2019, 20(4), 20.
[http://dx.doi.org/10.3390/ijms20040952] [PMID: 30813239]
[12]
Markman, M. Optimizing primary chemotherapy in ovarian cancer. Hematol. Oncol. Clin. North Am., 2003, 17(4), 957-968.
[http://dx.doi.org/10.1016/S0889-8588(03)00058-3]
[13]
Alberts, D.S.; Green, S.; Hannigan, E.V.; O’Toole, R.; Stock-Novack, D.; Anderson, P.; Surwit, E.A.; Malvlya, V.K.; Nahhas, W.A.; Jolles, C.J. Improved therapeutic index of carboplatin plus cyclophosphamide versus cisplatin plus cyclophosphamide: final report by the Southwest Oncology Group of a phase III randomized trial in stages III and IV ovarian cancer. J. Clin. Oncol., 1992, 10(5), 706-717.
[http://dx.doi.org/10.1200/JCO.1992.10.5.706] [PMID: 1569443]
[14]
International Collaborative Ovarian Neoplasm Group. Paclitaxel plus carboplatin versus standard chemotherapy with either single-agent carboplatin or cyclophosphamide, doxorubicin, and cisplatin in women with ovarian cancer: the ICON3 randomised trial. Lancet, 2002, 360(9332), 505-515.
[http://dx.doi.org/10.1016/S0140-6736(02)09738-6] [PMID: 12241653]
[15]
Monk, B. J.; Chan, J. K. Is intraperitoneal chemotherapy still an acceptable option in primary adjuvant chemotherapy for advanced ovarian cancer? Ann. Oncol., 2017, 28(Suppl.8), viii40-viii45.
[http://dx.doi.org/10.1093/annonc/mdx451] [PMID: 29232474]
[16]
Bast, R.C. Jr.; Hennessy, B.; Mills, G.B. The biology of ovarian cancer: new opportunities for translation. Nat. Rev. Cancer, 2009, 9(6), 415-428.
[http://dx.doi.org/10.1038/nrc2644] [PMID: 19461667]
[17]
Yang, W-L.; Lu, Z.; Bast, R.C. Jr. The role of biomarkers in the management of epithelial ovarian cancer. Expert Rev. Mol. Diagn., 2017, 17(6), 577-591.
[http://dx.doi.org/10.1080/14737159.2017.1326820] [PMID: 28468520]
[18]
Balduit, A.; Agostinis, C.; Mangogna, A.; Maggi, V.; Zito, G.; Romano, F.; Romano, A.; Ceccherini, R.; Grassi, G.; Bonin, S.; Bonazza, D.; Zanconati, F.; Ricci, G.; Bulla, R. The extracellular matrix influences ovarian carcinoma cells’ sensitivity to cisplatinum: a first step towards personalized medicine. Cancers (Basel), 2020, 12(5), 12.
[http://dx.doi.org/10.3390/cancers12051175] [PMID: 32392708]
[19]
Papa, A.; Caruso, D.; Strudel, M.; Tomao, S.; Tomao, F. Update on Poly-ADP-ribose polymerase inhibition for ovarian cancer treat-ment. J. Transl. Med., 2016, 14, 267.
[http://dx.doi.org/10.1186/s12967-016-1027-1] [PMID: 27634150]
[20]
Zheng, H.; Tie, Y.; Fang, Z.; Wu, X.; Yi, T.; Huang, S.; Liang, X.; Qian, Y.; Wang, X.; Pi, R.; Chen, S.; Peng, Y.; Yang, S.; Zhao, X.; Wei, X. Jumonji domain-containing 6 (JMJD6) identified as a potential therapeutic target in ovarian cancer. Signal Transduct. Target. Ther., 2019, 4, 24.
[http://dx.doi.org/10.1038/s41392-019-0055-8]
[21]
Lin, X.; Shen, J.; Dan, Peng He, X.; Xu, C.; Chen, X.; Tanyi, J.L.; Montone, K.; Fan, Y.; Huang, Q.; Zhang, L.; Zhong, X. RNA-binding protein LIN28B inhibits apoptosis through regulation of the AKT2/FOXO3A/BIM axis in ovarian cancer cells. Signal Transduct. Target. Ther., 2018, 3, 23.
[http://dx.doi.org/10.1038/s41392-018-0026-5] [PMID: 30174831]
[22]
Belur Nagaraj, A.; Joseph, P.; Kovalenko, O.; Wang, Q.; Xu, R.; DiFeo, A. Evaluating class III antiarrhythmic agents as novel MYC targeting drugs in ovarian cancer. Gynecol. Oncol., 2018, 151(3), 525-532.
[http://dx.doi.org/10.1016/j.ygyno.2018.09.019] [PMID: 30301560]
[23]
Nagaraj, A.B.; Wang, Q.Q.; Joseph, P.; Zheng, C.; Chen, Y.; Kovalenko, O.; Singh, S.; Armstrong, A.; Resnick, K.; Zanotti, K.; Wag-goner, S.; Xu, R.; DiFeo, A. Using a novel computational drug-repositioning approach (DrugPredict) to rapidly identify potent drug candidates for cancer treatment. Oncogene, 2018, 37(3), 403-414.
[http://dx.doi.org/10.1038/onc.2017.328] [PMID: 28967908]
[24]
Reyes-González, J.M.; Armaiz-Peña, G.N.; Mangala, L.S.; Valiyeva, F.; Ivan, C.; Pradeep, S.; Echevarría-Vargas, I.M.; Rivera-Reyes, A.; Sood, A.K.; Vivas-Mejía, P.E. Targeting c-MYC in platinum-resistant ovarian cancer. Mol. Cancer Ther., 2015, 14(10), 2260-2269.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0801] [PMID: 26227489]
[25]
Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer, 2017, 17(9), 528-542.
[http://dx.doi.org/10.1038/nrc.2017.53] [PMID: 28751651]
[26]
Domcke, S.; Sinha, R.; Levine, D.A.; Sander, C.; Schultz, N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun., 2013, 4, 2126.
[http://dx.doi.org/10.1038/ncomms3126] [PMID: 23839242]
[27]
Vorperian, V.R.; Havighurst, T.C.; Miller, S.; January, C.T. Adverse effects of low dose amiodarone: a meta-analysis. J. Am. Coll. Cardiol., 1997, 30(3), 791-798.
[http://dx.doi.org/10.1016/S0735-1097(97)00220-9] [PMID: 9283542]
[28]
Tavallai, M.; Booth, L.; Roberts, J.L.; Poklepovic, A.; Dent, P. Rationally repurposing ruxolitinib (Jakafi®) as a solid tumor therapeutic. Front. Oncol., 2016, 6, 142.
[http://dx.doi.org/10.3389/fonc.2016.00142] [PMID: 27379204]
[29]
Landen, C.N. Jr.; Lin, Y.G.; Armaiz Pena, G.N.; Das, P.D.; Arevalo, J.M.; Kamat, A.A.; Han, L.Y.; Jennings, N.B.; Spannuth, W.A.; Thaker, P.H.; Lutgendorf, S.K.; Savary, C.A.; Sanguino, A.M.; Lopez-Berestein, G.; Cole, S.W.; Sood, A.K. Neuroendocrine modula-tion of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Res., 2007, 67(21), 10389-10396.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0858] [PMID: 17974982]
[30]
Abrami, M.; Ascenzioni, F.; Di Domenico, E.G.; Maschio, M.; Ventura, A.; Confalonieri, M.; Di Gioia, S.; Conese, M.; Dapas, B.; Grassi, G.; Grassi, M. A novel approach based on low-field NMR for the detection of the pathological components of sputum in cystic fibrosis patients. Magn. Reson. Med., 2018, 79(4), 2323-2331.
[http://dx.doi.org/10.1002/mrm.26876] [PMID: 28833401]
[31]
Han, E.S.; Wen, W.; Dellinger, T.H.; Wu, J.; Lu, S.A.; Jove, R.; Yim, J.H. Ruxolitinib synergistically enhances the anti-tumor activity of paclitaxel in human ovarian cancer. Oncotarget, 2018, 9(36), 24304-24319.
[http://dx.doi.org/10.18632/oncotarget.24368] [PMID: 29849942]
[32]
Ostojic, A.; Vrhovac, R.; Verstovsek, S. Ruxolitinib for the treatment of myelofibrosis: its clinical potential. Ther. Clin. Risk Manag., 2012, 8, 95-103.
[http://dx.doi.org/10.2147/TCRM.S23277] [PMID: 22399854]
[33]
Toth, P.P.; Banach, M. Statins: then and now. Methodist DeBakey Cardiovasc. J., 2019, 15(1), 23-31.
[http://dx.doi.org/10.14797/mdcj-15-1-23 ] [PMID: 31049146]
[34]
Goldstein, J.L.; Brown, M.S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol., 2009, 29(4), 431-438.
[http://dx.doi.org/10.1161/ATVBAHA.108.179564] [PMID: 19299327]
[35]
Goldstein, J.L.; Brown, M.S. Regulation of the mevalonate pathway. Nature, 1990, 343(6257), 425-430.
[http://dx.doi.org/10.1038/343425a0] [PMID: 1967820]
[36]
Freed-Pastor, W.A.; Mizuno, H.; Zhao, X.; Langerød, A.; Moon, S.H.; Rodriguez-Barrueco, R.; Barsotti, A.; Chicas, A.; Li, W.; Polotskaia, A.; Bissell, M.J.; Osborne, T.F.; Tian, B.; Lowe, S.W.; Silva, J.M.; Børresen-Dale, A.L.; Levine, A.J.; Bargonetti, J.; Prives, C. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell, 2012, 148(1-2), 244-258.
[http://dx.doi.org/10.1016/j.cell.2011.12.017] [PMID: 22265415]
[37]
Kobayashi, Y.; Kashima, H.; Wu, R.C.; Jung, J.G.; Kuan, J.C.; Gu, J.; Xuan, J.; Sokoll, L.; Visvanathan, K.; Shih, IeM.; Wang, T.L. Mevalonate pathway antagonist suppresses formation of serous tubal intraepithelial carcinoma and ovarian carcinoma in mouse models. Clin. Cancer Res., 2015, 21(20), 4652-4662.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3368] [PMID: 26109099]
[38]
Konstantinopoulos, P.A.; Karamouzis, M.V.; Papavassiliou, A.G. Post-translational modifications and regulation of the RAS super-family of GTPases as anticancer targets. Nat. Rev. Drug Discov., 2007, 6(7), 541-555.
[http://dx.doi.org/10.1038/nrd2221] [PMID: 17585331]
[39]
Park, J.B.; Lee, C.S.; Jang, J.H.; Ghim, J.; Kim, Y.J.; You, S.; Hwang, D.; Suh, P.G.; Ryu, S.H. Phospholipase signalling networks in cancer. Nat. Rev. Cancer, 2012, 12(11), 782-792.
[http://dx.doi.org/10.1038/nrc3379] [PMID: 23076158]
[40]
Stine, J.E.; Guo, H.; Sheng, X.; Han, X.; Schointuch, M.N.; Gilliam, T.P.; Gehrig, P.A.; Zhou, C.; Bae-Jump, V.L. The HMG-CoA reductase inhibitor, simvastatin, exhibits anti-metastatic and anti-tumorigenic effects in ovarian cancer. Oncotarget, 2016, 7(1), 946-960.
[http://dx.doi.org/10.18632/oncotarget.5834] [PMID: 26503475]
[41]
Testa, U.; Petrucci, E.; Pasquini, L.; Castelli, G.; Pelosi, E.; Cancers, O. Ovarian Cancers: genetic abnormalities, tumor heterogeneity and progression, clonal evolution and cancer stem cells. Medicines (Basel), 2018, 5(1), 16.
[http://dx.doi.org/10.3390/medicines5010016] [PMID: 29389895]
[42]
Greenaway, J.B.; Virtanen, C.; Osz, K.; Revay, T.; Hardy, D.; Shepherd, T.; DiMattia, G.; Petrik, J. Ovarian tumour growth is charac-terized by mevalonate pathway gene signature in an orthotopic, syngeneic model of epithelial ovarian cancer. Oncotarget, 2016, 7(30), 47343-47365.
[http://dx.doi.org/10.18632/oncotarget.10121] [PMID: 27329838]
[43]
Kashani, A.; Phillips, C.O.; Foody, J.M.; Wang, Y.; Mangalmurti, S.; Ko, D.T.; Krumholz, H.M. Risks associated with statin therapy: a systematic overview of randomized clinical trials. Circulation, 2006, 114(25), 2788-2797.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.624890] [PMID: 17159064]
[44]
Abd, T.T.; Jacobson, T.A. Statin-induced myopathy: a review and update. Expert Opin. Drug Saf., 2011, 10(3), 373-387.
[http://dx.doi.org/10.1517/14740338.2011.540568] [PMID: 21342078]
[45]
Suh, J.J.; Pettinati, H.M.; Kampman, K.M.; O’Brien, C.P. The status of disulfiram: a half of a century later. J. Clin. Psychopharmacol., 2006, 26(3), 290-302.
[http://dx.doi.org/10.1097/01.jcp.0000222512.25649.08] [PMID: 16702894]
[46]
Askgaard, G.; Friis, S.; Hallas, J.; Thygesen, L.C.; Pottegård, A. Use of disulfiram and risk of cancer: a population-based case-control study. Eur. J. Cancer Prev., 2014, 23(3), 225-232.
[http://dx.doi.org/10.1097/CEJ.0b013e3283647466] [PMID: 23863824]
[47]
Kast, R.E.; Boockvar, J.A.; Brüning, A.; Cappello, F.; Chang, W.W.; Cvek, B.; Dou, Q.P.; Duenas-Gonzalez, A.; Efferth, T.; Focosi, D.; Ghaffari, S.H.; Karpel-Massler, G.; Ketola, K.; Khoshnevisan, A.; Keizman, D.; Magné, N.; Marosi, C.; McDonald, K.; Muñoz, M.; Paranjpe, A.; Pourgholami, M.H.; Sardi, I.; Sella, A.; Srivenugopal, K.S.; Tuccori, M.; Wang, W.; Wirtz, C.R.; Halatsch, M.E. A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International initiative for accelerated improvement of Glioblastoma care. Oncotarget, 2013, 4(4), 502-530.
[http://dx.doi.org/10.18632/oncotarget.969] [PMID: 23594434]
[48]
Papaioannou, M.; Mylonas, I.; Kast, R.E.; Brüning, A. Disulfiram/copper causes redox-related proteotoxicity and concomitant heat shock response in ovarian cancer cells that is augmented by auranofin-mediated thioredoxin inhibition. Oncoscience, 2013, 1(1), 21-29.
[http://dx.doi.org/10.18632/oncoscience.5] [PMID: 25593981]
[49]
Aghdassi, A.; Phillips, P.; Dudeja, V.; Dhaulakhandi, D.; Sharif, R.; Dawra, R.; Lerch, M.M.; Saluja, A. Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res., 2007, 67(2), 616-625.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1567] [PMID: 17234771]
[50]
Liu, X.X.; Ye, H.; Wang, P.; Li, L.X.; Zhang, Y.; Zhang, J.Y. Proteomic-based identification of HSP70 as a tumor-associated antigen in ovarian cancer. Oncol. Rep., 2017, 37(5), 2771-2778.
[http://dx.doi.org/10.3892/or.2017.5525] [PMID: 28339059]
[51]
Kamboj, V.P.; Setty, B.S.; Chandra, H.; Roy, S.K.; Kar, A.B. Biological profile of Centchroman--a new post-coital contraceptive. Indian J. Exp. Biol., 1977, 15(12), 1144-1150.
[PMID: 96021]
[52]
Nigam, M.; Ranjan, V.; Srivastava, S.; Sharma, R.; Balapure, A.K. Centchroman induces G0/G1 arrest and caspase-dependent apoptosis involving mitochondrial membrane depolarization in MCF-7 and MDA MB-231 human breast cancer cells. Life Sci., 2008, 82(11-12), 577-590.
[http://dx.doi.org/10.1016/j.lfs.2007.11.028] [PMID: 18279897]
[53]
Srivastava, V.K.; Gara, R.K.; Bhatt, M.L.; Sahu, D.P.; Mishra, D.P. Centchroman inhibits proliferation of head and neck cancer cells through the modulation of PI3K/mTOR pathway. Biochem. Biophys. Res. Commun., 2011, 404(1), 40-45.
[http://dx.doi.org/10.1016/j.bbrc.2010.11.049] [PMID: 21094138]
[54]
Pal, P.; Kanaujiya, J.K.; Lochab, S.; Tripathi, S.B.; Bhatt, M.L.; Singh, P.K.; Sanyal, S.; Trivedi, A.K. 2-D gel electrophoresis-based proteomic analysis reveals that ormeloxifen induces G0-G1 growth arrest and ERK-mediated apoptosis in chronic myeloid leukemia cells K562. Proteomics, 2011, 11(8), 1517-1529.
[http://dx.doi.org/10.1002/pmic.201000720] [PMID: 21360677]
[55]
Singh, M.M. Centchroman, a selective estrogen receptor modulator, as a contraceptive and for the management of hormone-related clinical disorders. Med. Res. Rev., 2001, 21(4), 302-347.
[http://dx.doi.org/10.1002/med.1011] [PMID: 11410933]
[56]
Maher, D.M.; Khan, S.; Nordquist, J.L.; Ebeling, M.C.; Bauer, N.A.; Kopel, L.; Singh, M.M.; Halaweish, F.; Bell, M.C.; Jaggi, M.; Chauhan, S.C. Ormeloxifene efficiently inhibits ovarian cancer growth. Cancer Lett., 2015, 356(2 Pt B), 606-612.
[http://dx.doi.org/10.1016/j.canlet.2014.10.009] [PMID: 25306892]
[57]
Bhattacharjee, A.; Hasanain, M.; Kathuria, M.; Singh, A.; Datta, D.; Sarkar, J.; Mitra, K. Ormeloxifene-induced unfolded protein re-sponse contributes to autophagy-associated apoptosis via disruption of Akt/mTOR and activation of JNK. Sci. Rep., 2018, 8(1), 2303.
[http://dx.doi.org/10.1038/s41598-018-20541-8] [PMID: 29396506]
[58]
Pillai, L.S.; Regidi, S.; Varghese, S.D.; Ravindran, S.; Maya, V.; Varghese, J.; Ramaswami, K.; Gopimohan, R.; Gopi, M. Nonhormonal selective estrogen receptor modulator 1-(2-[4-(3R,4S)-7-Methoxy-2, 2-dimethyl-3-phenyl-chroman-4ylphenoxy]ethyl)pyrrolidine hydrochloride (ormeloxifene hydrochloride) for the treatment of breast cancer. Drug Dev. Res., 2018, 79(6), 275-286.
[http://dx.doi.org/10.1002/ddr.21440] [PMID: 30284735]
[59]
Oien, D.B.; Pathoulas, C.L.; Ray, U.; Thirusangu, P.; Kalogera, E.; Shridhar, V. Repurposing quinacrine for treatment-refractory cancer. Semin. Cancer Biol., 2019, S1044-579X(19), 30226-3.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.021] [PMID: 31562955]
[60]
Gurova, K.V.; Hill, J.E.; Guo, C.; Prokvolit, A.; Burdelya, L.G.; Samoylova, E.; Khodyakova, A.V.; Ganapathi, R.; Ganapathi, M.; Tararova, N.D.; Bosykh, D.; Lvovskiy, D.; Webb, T.R.; Stark, G.R.; Gudkov, A.V. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kappaB-dependent mechanism of p53 suppression in tumors. Proc. Natl. Acad. Sci. USA, 2005, 102(48), 17448-17453.
[http://dx.doi.org/10.1073/pnas.0508888102] [PMID: 16287968]
[61]
Jung, D.; Khurana, A.; Roy, D.; Kalogera, E.; Bakkum-Gamez, J.; Chien, J.; Shridhar, V. Quinacrine upregulates p21/p27 independent of p53 through autophagy-mediated downregulation of p62-Skp2 axis in ovarian cancer. Sci. Rep., 2018, 8(1), 2487.
[http://dx.doi.org/10.1038/s41598-018-20531-w] [PMID: 29410485]
[62]
Grassi, G.; Pozzato, G.; Moretti, M.; Giacca, M. Quantitative analysis of hepatitis C virus RNA in liver biopsies by competitive reverse transcription and polymerase chain reaction. J. Hepatol., 1995, 23(4), 403-411.
[http://dx.doi.org/10.1016/0168-8278(95)80198-7] [PMID: 8655957]
[63]
Scaggiante, B.; Dapas, B.; Bonin, S.; Grassi, M.; Zennaro, C.; Farra, R.; Cristiano, L.; Siracusano, S.; Zanconati, F.; Giansante, C.; Grassi, G. Dissecting the expression of EEF1A1/2 genes in human prostate cancer cells: the potential of EEF1A2 as a hallmark for prostate transformation and progression. Br. J. Cancer, 2012, 106(1), 166-173.
[http://dx.doi.org/10.1038/bjc.2011.500] [PMID: 22095224]
[64]
Farra, R.; Maruna, M.; Perrone, F.; Grassi, M.; Benedetti, F.; Maddaloni, M.; El Boustani, M.; Parisi, S.; Rizzolio, F.; Forte, G.; Zan-conati, F.; Cemazar, M.; Kamensek, U.; Dapas, B.; Grassi, G. Strategies for delivery of siRNAs to ovarian cancer cells. Pharmaceutics, 2019, 11(10), 1-31.
[http://dx.doi.org/10.3390/pharmaceutics11100547] [PMID: 31652539]
[65]
Bochicchio, S.; Barba, A.A.; Grassi, G.; Lamberti, G. Vitamin delivery: carriers based on nanoliposomes produced via ultrasonic irra-diation. 2016, 9-16.
[http://dx.doi.org/10.1016/j.lwt.2016.01.025]
[66]
Bochicchio, S.; Dalmoro, A.; Barba, A.A.; Grassi, G.; Lamberti, G. Liposomes as siRNA delivery vectors. Curr. Drug Metab., 2014, 15(9), 882-892.
[http://dx.doi.org/10.2174/1389200216666150206124913] [PMID: 25658127]
[67]
Farra, R.; Musiani, F.; Perrone, F.; Čemažar, M.; Kamenšek, U.; Tonon, F.; Abrami, M.; Ručigaj, A.; Grassi, M.; Pozzato, G.; Bonazza, D.; Zanconati, F.; Forte, G.; El Boustani, M.; Scarabel, L.; Garziera, M.; Russo Spena, C.; De Stefano, L.; Salis, B.; Toffoli, G.; Rizzolio, F.; Grassi, G.; Dapas, B. Polymer-mediated delivery of siRNAs to hepatocellular carcinoma: variables affecting specificity and effectiveness. Molecules, 2018, 23(4), 23.
[http://dx.doi.org/10.3390/molecules23040777] [PMID: 29597300]
[68]
Scarabel, L.; Perrone, F.; Garziera, M.; Farra, R.; Grassi, M.; Musiani, F.; Russo Spena, C.; Salis, B.; De Stefano, L.; Toffoli, G.; Riz-zolio, F.; Tonon, F.; Abrami, M.; Chiarappa, G.; Pozzato, G.; Forte, G.; Grassi, G.; Dapas, B. Strategies to optimize siRNA delivery to hepatocellular carcinoma cells. Expert Opin. Drug Deliv., 2017, 14(6), 797-810.
[http://dx.doi.org/10.1080/17425247.2017.1292247] [PMID: 28266887]
[69]
Cavallaro, G.; Farra, R.; Craparo, E.F.; Sardo, C.; Porsio, B.; Giammona, G.; Perrone, F.; Grassi, M.; Pozzato, G.; Grassi, G.; Dapas, B. Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells. Int. J. Pharm., 2017, 525(2), 397-406.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.034] [PMID: 28119125]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy