Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Review of Recent Progress in Wastewater Treatment Using Carbon Nanotubes

Author(s): Abrar Inayat*, Zafar Said, Ola Alsaidi, Ruqaya Al-Zaidi, Sami Ullah and Vassilis Stathopoulos

Volume 17 , Issue 1 , 2021

Published on: 09 July, 2020

Page: [23 - 30] Pages: 8

DOI: 10.2174/1573411016999200709134020

Price: $65

Abstract

Background: Clean and clear water is an essential element in our life. Finding new and innovative approaches to purify water is a critical topic in research and development. Carbon nanotubes are promising adsorbent for many stable organic compounds. The ability of wastewater treatment using carbon nanotubes was studied in this review article.

Methods: Adsorption mechanism was discussed based on several research studies. Kinetics and thermodynamics of sorption were reviewed using carbon nanotubes. This review has discussed the approach of removing dyes and heavy metal ions from wastewater using nanomaterials as adsorbent. Furthermore, the paper provides several essential parameters involved in the adsorption mechanism of carbon nanotubes for wastewater applications.

Results: The results of this review show that carbon nanotubes are an advantageous source of the adsorbent for wastewater applications. High thermal and chemical stability make carbon nanotubes more attractive for the wastewater treatment application. It is observed that both kinetics and equilibrium studies are essential to understand the adsorption phenomena. The adsorption rate constant is considered an important factor to study the adsorption.

Conclusion: Nanomaterials in the adsorption process make the process more effortless compared to other types of adsorbents. Carbon nanotubes have several properties that help in surface modification, which make them an effective and environmentally friendly material for wastewater treatment.

Keywords: Adsorption, carbon nanotubes, kinetics, parameters, thermodynamics, wastewater.

Graphical Abstract
[1]
Shabnam, M.; Panchamoorthy, G.K.; Gnana, P.D. Current nanotechnology based solutions for sustainable wastewater treatment. Curr. Anal. Chem., 2020, 16, 1-19.
[2]
Sadegh, H.; Ali, G.A.M.; Gupta, V.K.; Makhlouf, A.S.H.; Shahryari-ghoshekandi, R.; Nadagouda, M.N.; Sillanpää, M.; Megiel, E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem., 2017, 7(1), 1-14.
[http://dx.doi.org/10.1007/s40097-017-0219-4]
[3]
Nusrat, T.; Sharf Ilahi, S.; Geetanjali, R.; Saif Ali, C. Inamuddin; Abdullah, M. A., Nano-engineered adsorbent for the removal of dyes from water: A review. Curr. Anal. Chem., 2020, 16(1), 14-40.
[http://dx.doi.org/10.2174/1573411015666190117124344]
[4]
Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S. Removal of heavy metals from wastewater using carbon nanotubes. Separ. Purif. Rev., 2014, 43(4), 311-338.
[http://dx.doi.org/10.1080/15422119.2013.821996]
[5]
Fouzia, M.; Abu, N. Environmental application of agro-waste derived materials for the treatment of dye-polluted water: A review. Curr. Anal. Chem., 2020, 16, 1-13.
[6]
Hamzat, W.A.; Abdulkareem, A.S.; Bankole, M.T.; Tijani, J.O.; Kovo, A.S.; Abubakre, O.K. Adsorption studies on the treatment of battery wastewater by purified carbon nanotubes (P-CNTs) and polyethylene glycol carbon nanotubes (PEG-CNTs). J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng., 2019, 54(9), 827-839.
[http://dx.doi.org/10.1080/10934529.2019.1596701 PMID: 30964379]
[7]
Barrejón, M.; Syrgiannis, Z.; Burian, M.; Bosi, S.; Montini, T.; Fornasiero, P.; Amenitsch, H.; Prato, M. Cross-Linked carbon nanotube adsorbents for water treatment: tuning the sorption capacity through chemical functionalization. ACS Appl. Mater. Interfaces, 2019, 11(13), 12920-12930.
[http://dx.doi.org/10.1021/acsami.8b20557] [PMID: 30844229]
[8]
Rahman, M.M.; Sime, S.A.; Hossain, M.A.; Shammi, M.; Uddin, M.K.; Sikder, M.T.; Kurasaki, M. Removal of pollutants from water by using single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Arab. J. Sci. Eng., 2017, 42(1), 261-269.
[http://dx.doi.org/10.1007/s13369-016-2303-3]
[9]
Affonso, L.N.; Marques, J.L., Jr; Lima, V.V.C.; Gonçalves, J.O.; Barbosa, S.C.; Primel, E.G.; Burgo, T.A.L.; Dotto, G.L.; Pinto, L.A.A.; Cadaval, T.R.S., Jr Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge. J. Hazard. Mater., 2020, 388122042
[http://dx.doi.org/10.1016/j.jhazmat.2020.122042] [PMID: 31954304]
[10]
Maazinejad, B.; Mohammadnia, O.; Ali, G.A.M.; Makhlouf, A.S.H.; Nadagouda, M.N.; Sillanpää, M.; Asiri, A.M.; Agarwal, S.; Gupta, V.K.; Sadegh, H. Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: Adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. J. Mol. Liq., 2020, 298112001
[http://dx.doi.org/10.1016/j.molliq.2019.112001]
[11]
Alguacil, F.J.; López, F.A. On the Active Adsorption of Chromium(III) from alkaline solutions using multiwalled carbon nanotubes. Appl. Sci., 2020, 10(1), 36.
[12]
Shabaan, O.A.; Jahin, H.S.; Mohamed, G.G. Removal of anionic and cationic dyes from wastewater by adsorption using multiwall carbon nanotubes. Arab. J. Chem., 2020, 13(3), 4797-4810.
[http://dx.doi.org/10.1016/j.arabjc.2020.01.010]
[13]
Sakkayawong, N.; Thiravetyan, P.; Nakbanpote, W. Adsorption mechanism of synthetic reactive dye wastewater by chitosan. J. Colloid Interface Sci., 2005, 286(1), 36-42.
[http://dx.doi.org/10.1016/j.jcis.2005.01.020] [PMID: 15848400]
[14]
Pan, B.; Xing, B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol., 2008, 42(24), 9005-9013.
[http://dx.doi.org/10.1021/es801777n] [PMID: 19174865]
[15]
Ji, L.; Chen, W.; Duan, L.; Zhu, D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol., 2009, 43(7), 2322-2327.
[http://dx.doi.org/10.1021/es803268b] [PMID: 19452881]
[16]
Sadegh, H.; Ali, G.A.; Abbasi, Z.; Nadagoud, M.J.S.C. Adsorption of ammonium ions onto multi-walled carbon nanotubes. Studia Ubb Chemia, 2017, 62(2), 233-245.
[http://dx.doi.org/10.24193/subbchem.2017.2.18]
[17]
Lu, C.; Su, F.; Hu, S. Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Appl. Surf. Sci., 2008, 254(21), 7035-7041.
[http://dx.doi.org/10.1016/j.apsusc.2008.05.282]
[18]
Wang, H.; Zhou, A.; Peng, F.; Yu, H.; Yang, J. Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J. Colloid Interface Sci., 2007, 316(2), 277-283.
[http://dx.doi.org/10.1016/j.jcis.2007.07.075] [PMID: 17868683]
[19]
Liao, Q.; Sun, J.; Gao, L. The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloids Surf. A Physicochem. Eng. Asp., 2008, 312(2), 160-165.
[http://dx.doi.org/10.1016/j.colsurfa.2007.06.045]
[20]
Gupta, V.K.; Agarwal, S.; Bharti, A.K.; Sadegh, H. Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu (II) removal. J. Mol. Liq., 2017, 230, 667-673.
[http://dx.doi.org/10.1016/j.molliq.2017.01.083]
[21]
Yang, W.; Lu, Y.; Zheng, F.; Xue, X.; Li, N.; Liu, D. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube. Chem. Eng. J., 2012, 179, 112-118.
[http://dx.doi.org/10.1016/j.cej.2011.10.068]
[22]
Tofighy, M.A.; Mohammadi, T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J. Hazard. Mater., 2011, 185(1), 140-147.
[http://dx.doi.org/10.1016/j.jhazmat.2010.09.008] [PMID: 20926186]
[23]
Shen, X-E.; Shan, X-Q.; Dong, D-M.; Hua, X-Y.; Owens, G. Kinetics and thermodynamics of sorption of nitroaromatic compounds to as-grown and oxidized multiwalled carbon nanotubes. J. Colloid Interface Sci., 2009, 330(1), 1-8.
[http://dx.doi.org/10.1016/j.jcis.2008.10.023] [PMID: 18977488]
[24]
Unnithan, M.R.; Anirudhan, T.S. The kinetics and thermodynamics of sorption of Chromium(VI) onto the Iron(III) complex of a carboxylated polyacrylamide-grafted sawdust. Ind. Eng. Chem. Res., 2001, 40(12), 2693-2701.
[http://dx.doi.org/10.1021/ie0009740]
[25]
Ho, Y-S.; Ofomaja, A.E. Kinetics and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution. Process Biochem., 2005, 40(11), 3455-3461.
[http://dx.doi.org/10.1016/j.procbio.2005.02.017]
[26]
Tehrani-Bagha, A.R.; Nikkar, H.; Mahmoodi, N.M.; Markazi, M.; Menger, F.M. The sorption of cationic dyes onto kaolin: Kinetic, isotherm and thermodynamic studies. Desalination, 2011, 266(1), 274-280.
[http://dx.doi.org/10.1016/j.desal.2010.08.036]
[27]
Chien, S.H.; Clayton, W.R. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. Soil Sci. Soc. Am., 1980, 44(2), 265-268.
[28]
Bhatt, R.R.; Shah, B.A. Sorption studies of heavy metal ions by salicylic acid-formaldehyde-catechol terpolymeric resin: Isotherm, kinetic and thermodynamics. Arab. J. Chem., 2015, 8(3), 414-426.
[http://dx.doi.org/10.1016/j.arabjc.2013.03.012]
[29]
Srihari, V.; Das, A. The kinetic and thermodynamic studies of phenol-sorption onto three agro-based carbons. Desalination, 2008, 225(1), 220-234.
[http://dx.doi.org/10.1016/j.desal.2007.07.008]
[30]
Du, M.; Li, C-P.; Chen, M.; Ge, Z-W.; Wang, X.; Wang, L.; Liu, C-S. Divergent kinetic and thermodynamic hydration of a porous Cu(II) coordination polymer with exclusive CO2 sorption selectivity. J. Am. Chem. Soc., 2014, 136(31), 10906-10909.
[http://dx.doi.org/10.1021/ja506357n] [PMID: 25019403]
[31]
Kütahyalı, C.; Eral, M. Sorption studies of uranium and thorium on activated carbon prepared from olive stones: Kinetic and thermodynamic aspects. J. Nucl. Mater., 2010, 396(2), 251-256.
[http://dx.doi.org/10.1016/j.jnucmat.2009.11.018]
[32]
Boparai, H.K.; Joseph, M.; O’Carroll, D.M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater., 2011, 186(1), 458-465.
[http://dx.doi.org/10.1016/j.jhazmat.2010.11.029] [PMID: 21130566]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy