Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Analytical Methods Practiced to Quantitation of Rifampicin: A Captious Survey

Author(s): Rajendra Muljibhai Kotadiya* and Foram Narottambhai Patel

Volume 17, Issue 8, 2021

Published on: 04 July, 2020

Page: [983 - 999] Pages: 17

DOI: 10.2174/1573412916999200704144231

Price: $65

Abstract

Background: Rifampicin (RIF), also known as rifampin, a bactericidal antibiotic having broad antibacterial activity against various gram-positive and gram-negative bacteria acts by inhibiting DNA dependent RNA polymerase. RIF has been administered in different dosage forms like tablets, capsules, injections, oral suspension, powder, etc. for the treatment of several types of bacterial infections, including tuberculosis, Mycobacterium avium complex, leprosy and Legionnaires’ disease.

Introduction: To ensure the quality, efficacy, safety and effectiveness of RIF drug product, effective and reliable analytical methods are of utmost importance. To quantify RIF for quality control or pharmacokinetic purposes, alternative analytical methods have been developed along with the official compendial methods.

Methods: In this review paper, an extensive literature survey was conducted to gather information on various analytical instrumental methods used so far for RIF.

Results: These methods were high-performance liquid chromatography (42%), hyphenated techniques (18%), spectroscopy (15%), high-performance thin-layer chromatography or thin-layer chromatography (7%) and miscellaneous (18%).

Conclusion: All these methods were selective and specific for the RIF analysis.

Keywords: RIF, analytical method, chromatography, spectrophotometer, C18 column, reverse phase.

« Previous
Graphical Abstract
[1]
Amidi, S.; Ardakani, Y.H.; Amiri-Aref, M.; Ranjbari, E.; Sepehri, Z.; Bagheri, H. Sensitive electrochemical determination of rifampicin using gold nanoparticles/poly-melamine nanocomposite. RSC Advances, 2017, 7, 40111-40118.
[http://dx.doi.org/10.1039/C7RA04865C]
[2]
Aliya, T.C.R.Y. Development and validation of liquid chromatographic method for the simultaneous estimation of isoniazid and rifampicin in combined dosage form. IRJPAS, 2014, 4, 40-46.
[3]
Dehnavi, A.; Soleymanpour, A. New chemically modified carbon paste sensor for nanomolar concentration measurement of rifampicin in biological and pharmaceutical media. Mater. Sci. Eng. C, 2019, 94, 403-409.
[http://dx.doi.org/10.1016/j.msec.2018.09.052] [PMID: 30423723]
[4]
Aparicio, I.; Bello, M.A.; Callejón, M.; Guiraúm, A. Simultaneous determination of rifampicin and sulbactam in mouse plasma by high-performance liquid chromatography. Biomed. Chromatogr., 2006, 20(8), 748-752.
[http://dx.doi.org/10.1002/bmc.591] [PMID: 16252264]
[5]
Khan, M.F.; Rita, S.A.; Kayser, M.S.; Islam, M.S.; Asad, S.; Bin Rashid, R.; Bari, M.A.; Rahman, M.M.; Al Aman, D.A.A.; Setu, N.I.; Banoo, R.; Rashid, M.A. Theoretically guided analytical method development and validation for the estimation of rifampicin in a mixture of isoniazid and pyrazinamide by UV spectrophotometer. Front Chem., 2017, 5, 27.
[http://dx.doi.org/10.3389/fchem.2017.00027] [PMID: 28503547]
[6]
Bao, D.; Truong, T.T.; Renick, P.J.; Pulse, M.E.; Weiss, W.J. Simultaneous determination of rifampicin and levofloxacin concentrations in catheter segments from a mouse model of a device-related infection by liquid chromatography/electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal., 2008, 46(4), 723-727.
[http://dx.doi.org/10.1016/j.jpba.2007.11.023] [PMID: 18178051]
[7]
Belal, F.F.; El-Din, M.K.S.; Eid, M.I.; El-Gamal, R.M. Micellar HPLC method using monolithic column for the simultaneous determination of linezolid and rifampicin in pharmaceuticals and biological fluids. Anal. Methods, 2013, 5, 6165-6176.
[http://dx.doi.org/10.1039/c3ay41221k]
[8]
Shiri, S.; Pajouheshpoor, N.; Khoshsafar, H.; Amidi, S.; Bagheri, H. An electrochemical sensor for the simultaneous determination of rifampicin and isoniazid using a C-dots@ CuFe2O4 nanocomposite modified carbon paste electrode. New J. Chem., 2017, 41, 15564-15573.
[http://dx.doi.org/10.1039/C7NJ03029K]
[9]
Murdoch, J.M.; Speirs, C.F.; Wright, N.; Wallace, E.T. Rifampicin. Lancet, 1969, 1(7605), 1094.
[http://dx.doi.org/10.1016/S0140-6736(69)91725-5] [PMID: 4181749]
[10]
Ma, Y.; Zhang, B.T.; Zhao, L.X.; Guo, G.S.; Lin, J.M. Determination of Rifampicin by Peroxomonosulfate‐Cobalt (II) Chemiluminescence System. Chin. J. Chem., 2008, 26, 905-910.
[http://dx.doi.org/10.1002/cjoc.200890166]
[11]
Henwood, S.Q.; de Villiers, M.M.; Liebenberg, W.; Lötter, A.P. Solubility and dissolution properties of generic rifampicin raw materials. Drug Dev. Ind. Pharm., 2000, 26(4), 403-408.
[http://dx.doi.org/10.1081/DDC-100101246] [PMID: 10769781]
[12]
Argekar, A.P.; Kunjir, S.S.; Purandare, K.S. Simultaneous determination of rifampicin, isoniazid and pyrazinamid by high performance thin layer chromatography. J. Pharm. Biomed. Anal., 1996, 14(11), 1645-1650.
[http://dx.doi.org/10.1016/0731-7085(96)01787-6] [PMID: 8877875]
[13]
Liang, Y.D.; Song, J.F.; Xu, M. Electrochemiluminescence from successive electro- and chemo-oxidation of rifampicin and its application to the determination of rifampicin in pharmaceutical preparations and human urine. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2007, 67(2), 430-436.
[http://dx.doi.org/10.1016/j.saa.2006.07.036] [PMID: 16968673]
[14]
Tilinca, M.; Hancu, G.; Mircia, E.; Iriminescu, D.; Rusu, A.; Vlad, R.A.; Barabas, E. Simultaneous determination of isoniazid and rifampicin by UV spectrophotometry. J. Farm., 2017, 65, 219-224.
[15]
Asadpour-Zeynali, K.; Saeb, E. Simultaneous spectrophotometric determination of rifampicin, isoniazid and pyrazinamide in a single step. Iran. J. Pharm. Res., 2016, 15(4), 713-723.
[PMID: 28243267]
[16]
McClure, W.R.; Cech, C.L. On the mechanism of rifampicin inhibition of RNA synthesis. J. Biol. Chem., 1978, 253(24), 8949-8956.
[PMID: 363713]
[17]
Acocella, G. Clinical pharmacokinetics of rifampicin. Clin. Pharmacokinet., 1978, 3(2), 108-127.
[http://dx.doi.org/10.2165/00003088-197803020-00002] [PMID: 346286]
[18]
Brennan, P.; Young, D. Rifampin. Tuberculosis (Edinb.), 2008, 88(2), 151-154.
[http://dx.doi.org/10.1016/S1472-9792(08)70024-6] [PMID: 18486058]
[19]
Desai, D.; Shah, M. A review: validated analytical methods developed on antitubercular drug, rifampicin. J. Pharm. Sci. and biosci. Res., 2015, 5, 254-265.
[20]
Edwards, O.M.; Courtenay-Evans, R.J.; Galley, J.M.; Hunter, J.; Tait, A.D. Changes in cortisol metabolism following rifampicin therapy. Lancet, 1974, 2(7880), 548-551.
[http://dx.doi.org/10.1016/S0140-6736(74)91876-5] [PMID: 4140269]
[21]
Lester, W. Rifampin: a semisynthetic derivative of rifamycin-a prototype for the future. Annu. Rev. Microbiol., 1972, 26, 85-102.
[http://dx.doi.org/10.1146/annurev.mi.26.100172.000505] [PMID: 4562819]
[22]
Radner, D.B. Toxicologic and pharmacologic aspects of rifampin. Chest, 1973, 64(2), 213-216.
[http://dx.doi.org/10.1378/chest.64.2.213] [PMID: 4199024]
[23]
Rees, R.J. Rifampicin: the investigation of a bactericidal antileprosy drug. Lepr. Rev., 1975, 46(2)(Suppl.), 121-124.
[http://dx.doi.org/10.5935/0305-7518.19750052] [PMID: 1100951]
[24]
Sousa, M.; Pozniak, A.; Boffito, M. Pharmacokinetics and pharmacodynamics of drug interactions involving rifampicin, rifabutin and antimalarial drugs. J. Antimicrob. Chemother., 2008, 62(5), 872-878.
[http://dx.doi.org/10.1093/jac/dkn330] [PMID: 18713760]
[25]
Yamashita, F.; Sasa, Y.; Yoshida, S.; Hisaka, A.; Asai, Y.; Kitano, H.; Hashida, M.; Suzuki, H. Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data. PLoS One, 2013, 8(9), e70330-e70330.
[http://dx.doi.org/10.1371/journal.pone.0070330] [PMID: 24086247]
[26]
Zilly, W.; Breimer, D.D.; Richter, E. Pharmacokinetic interactions with rifampicin. Clin. Pharmacokinet., 1977, 2(1), 61-70.
[http://dx.doi.org/10.2165/00003088-197702010-00005] [PMID: 140033]
[27]
Indian Pharmacopeia. Govt. of India, Ministry of Health and Family Welfare. Delhi; Indian Pharmacopeial Commission, The Controller Publisher: Ghaziabad, India, 2010.
[28]
United States Pharmacopoeia. United States Pharmacopeial convention Inc; Rockville, MD, 2005.
[29]
British Pharmacopoeia. The British Pharmacopoeia Commission; London: TSO, 2010, p. 1844.
[30]
Chatterjee, K.; Kuo, C.W.; Chen, A.; Chen, P. Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper. J. Nanobiotechnology, 2015, 13, 46.
[http://dx.doi.org/10.1186/s12951-015-0105-5] [PMID: 26113082]
[31]
Finkel, J.M.; Pittillo, R.F.; Mellett, L.B. Fluorometric and microbiological assays for rifampicin and the determination of serum levels in the dog. Chemotherapy, 1971, 16(6), 380-388.
[http://dx.doi.org/10.1159/000220752] [PMID: 5145010]
[32]
Mohamed, A.M.I.; Mohamed, F.A.; Atia, N.N.; Botros, S.M. A novel spectrofluorimetric determination of four anti-TB drugs in their pure and pharmaceutical dosage forms by quenching effect on the fluorescence of NBS-phenothiazine product. Asian. J. Biomed. Pharmaceutical. Sci., 2013, 3, 21.
[33]
Salem, A.A.; Mossa, H.A.; Barsoum, B.N. Quantitative determinations of levofloxacin and rifampicin in pharmaceutical and urine samples using nuclear magnetic resonance spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 62(1-3), 466-472.
[http://dx.doi.org/10.1016/j.saa.2005.01.016] [PMID: 16257748]
[34]
Alonso Lomillo, M.A.; Domínguez Renedo, O.; Arcos Martínez, M.J. Optimization procedure, applying the experimental‐design methodology, for the determination of rifampicin after metal complexation by differential pulse adsorptive stripping voltammetry. Helv. Chim. Acta, 2002, 85, 2430-2439.
[http://dx.doi.org/10.1002/1522-2675(200208)85:8<2430:AID-HLCA2430>3.0.CO;2-#]
[35]
Alonso Lomillo, M.A.; Domínguez Renedo, O.; Arcos Martínez, M.J. Resolution of ternary mixtures of rifampicin, isoniazid and pyrazinamide by differential pulse polarography and partial least squares method. Anal. Chim. Acta, 2001, 449, 167-177.
[http://dx.doi.org/10.1016/S0003-2670(01)01360-5]
[36]
Asadpour-Zeynali, K.; Soheili-Azad, P. Simultaneous polarographic determination of isoniazid and rifampicin by differential pulse polarography method and support vector regression. Electrochim. Acta, 2010, 55, 6570-6576.
[http://dx.doi.org/10.1016/j.electacta.2010.06.018]
[37]
Daneshgar, P.; Norouzi, P.; Dousty, F.; Ganjali, M.R.; Moosavi-Movahedi, A.A. Dysprosium hydroxide nanowires modified electrode for determination of rifampicin drug in human urine and capsules by adsorptive square wave voltammetry. Curr. Pharm. Anal., 2009, 5, 246-255.
[http://dx.doi.org/10.2174/157341209788922066]
[38]
de Oliveira Neves, A.C.; Soares, G.M.; de Morais, S.C.; da Costa, F.S.; Porto, D.L.; de Lima, K.M. Dissolution testing of isoniazid, rifampicin, pyrazinamide and ethambutol tablets using near-infrared spectroscopy (NIRS) and multivariate calibration. J. Pharm. Biomed. Anal., 2012, 57, 115-119.
[http://dx.doi.org/10.1016/j.jpba.2011.08.029] [PMID: 21908131]
[39]
Hammam, E.; Beltagi, A.M.; Ghoneim, M.M. Voltammetric assay of rifampicin and isoniazid drugs, separately and combined in bulk, pharmaceutical formulations and human serum at a carbon paste electrode. Microchem. J., 2004, 77, 53-62.
[http://dx.doi.org/10.1016/j.microc.2003.12.003]
[40]
Chellini, P.R.; Mendes, T.O.; Franco, P.H.C.; Porto, B.L.S.; Tippavajhala, V.K.; César, I.C.; Oliveira, M.A.L.; Pianetti, G.A. Simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol in 4-FDC tablet by Raman spectroscopy associated to chemometric approach. Vib. Spectrosc., 2017, 90, 14-20.
[http://dx.doi.org/10.1016/j.vibspec.2017.03.001]
[41]
Costa, F.S.; Pedroza, R.H.; Porto, D.L.; Amorim, M.V.; Lima, K.M. Multivariate control charts for simultaneous quality monitoring of isoniazid and rifampicin in a pharmaceutical formulation using a portable near infrared spectrometer. J. Braz. Chem. Soc., 2015, 26, 64-73.
[42]
Vasconcelos de Andrade, E.W.; Medeiros de Morais, C.L.; Lopes da Costa, F.S.; Gomes de Lima, K.M.; Michell, K. A multivariate control chart approach for calibration transfer between NIR spectrometers for simultaneous determination of rifampicin and isoniazid in pharmaceutical formulation. Curr. Anal. Chem., 2018, 14(5), 488-494.
[http://dx.doi.org/10.2174/1573411014666171212141909] [PMID: 30369844]
[43]
Kurniati, Z.; Riyanto, S.; Rohman, A.A. Determination of rifampicin, isoniazid, pyrazinamide and ethambutol hydrochloride in 4FDC tablet by FTIR spectrophotometry in combination with multivariate calibration. J. Food. Pharmaceutical. Sci., 2016, 4.
[44]
Lu, J.; Guo, W.; Zhang, Y.; Li, T.; Wang, Y.; Teng, L. Application of principal component analysis-artificial neural network in near infrared spectroscopy for determination of compound rifampicin tablets proceedings of Third International Conference on Natural Computation (ICNC 2007), 2007, 262-267.
[45]
Duarte, L.M.; Amorim, T.L.; Chellini, P.R.; Adriano, L.H.C.; de Oliveira, M.A.L. Sub-minute determination of rifampicin and isoniazid in fixed dose combination tablets by capillary zone electrophoresis with ultraviolet absorption detection. J. Sep. Sci., 2018, 41(24), 4533-4543.
[http://dx.doi.org/10.1002/jssc.201800673] [PMID: 30358117]
[46]
Leandro, K.C.; Carvalho, J.M.; Giovanelli, L.F.; Moreira, J.C. Development and validation of an electroanalytical methodology for determination of isoniazid and rifampicin content in pharmaceutical formulations. Braz. J. Pharm. Sci., 2009, 45, 331-337.
[http://dx.doi.org/10.1590/S1984-82502009000200019]
[47]
Scarpellini, P.; Braglia, S.; Carrera, P.; Cedri, M.; Cichero, P.; Colombo, A.; Crucianelli, R.; Gori, A.; Ferrari, M.; Lazzarin, A. Detection of rifampin resistance in Mycobacterium tuberculosis by double gradient-denaturing gradient gel electrophoresis. Antimicrob. Agents Chemother., 1999, 43(10), 2550-2554.
[http://dx.doi.org/10.1128/AAC.43.10.2550] [PMID: 10508043]
[48]
Dickinson, J.M.; Aber, V.R.; Allen, B.W.; Ellard, G.A.; Mitchison, D.A. Assay of rifampicin in serum. J. Clin. Pathol., 1974, 27(6), 457-462.
[http://dx.doi.org/10.1136/jcp.27.6.457] [PMID: 4212955]
[49]
Williams, K.J.; Piddock, L.J. Accumulation of rifampicin by Escherichia coli and Staphylococcus aureus. J. Antimicrob. Chemother., 1998, 42(5), 597-603.
[http://dx.doi.org/10.1093/jac/42.5.597] [PMID: 9848443]
[50]
Shankar, B.R.; Rajesh, R.; Ramya, K. Method development and validation of rifampicin bulk and marketed capsule by simple UV spectrophotometric analysis analysis. Asian J. Pharmaceut. Anal. Medic. Chem, 2016, 4(1), 8-13.
[51]
Walash, M.; Belal, F.; Metwally, M.; Hefnawy, M.M. Spectrophotometric determination of rifampin in the presence of its degradation products in pharmaceutical preparations. J. Analy. Lett., 1993, 26, 1905-1917.
[http://dx.doi.org/10.1080/00032719308017439]
[52]
Swamy, N.; Basavaiah, K.; Vamsikrishna, P. Research Article Stability-indicating UV-spectrophotometric Assay of Rifampicin; Insight Pharmaceutical Sciences, 2018.
[53]
Bhusari, S.S.; Waghmare, S.H.; Wakte, P.S. Development and validation of qabsorbance ratio spectrophotometric method for the simultaneous estimation of rifampicin and its bioenhancer; 3′, 5 dihydroxyflavone-7-o-β-d-galacturonide-4′-o-β-dglucopyranoside; in bulk and formulation. J. Pharm. Sci. Innov., 2019, 8, 182-188.
[http://dx.doi.org/10.7897/2277-4572.085152]
[54]
Benetton, S.A.; Kedor-Hackmann, E.R.M.; Santoro, M.I.R.M.; Borges, V.M. Visible spectrophotometric and first-derivative UV spectrophotometric determination of rifampicin and isoniazid in pharmaceutical preparations. Talanta, 1998, 47(3), 639-643.
[http://dx.doi.org/10.1016/S0039-9140(98)00111-8] [PMID: 18967366]
[55]
Fonseca, S.C.; Josino, M.A.; Coelho, H.L.; Raffin, F.N. Development of a spectrophotometric analytical metho for rifampicin, isoniazid and pyazinamide assay and dissolution in combined formulation. J. Pharm. Res., 2015, 5.
[56]
Goicoechea, H.C.; Olivieri, A.C. Simultaneous determination of rifampicin, isoniazid and pyrazinamide in tablet preparations by multivariate spectrophotometric calibration. J. Pharm. Biomed. Anal., 1999, 20(4), 681-686.
[http://dx.doi.org/10.1016/S0731-7085(99)00072-2] [PMID: 10704137]
[57]
Kakde, R.; Kasture, A.; Wadodkar, S. Spectrophotometric determination of rifampicin and isoniazid in pharmaceutical preparations. Indian J. Pharm. Sci., 2002, 64, 24.
[58]
Khamar, J.C.; Patel, S.A. Q-absorbance ratio spectrophotometric method for the simultaneous estimation of rifampicin and piperine in their combined capsule dosage. J. Appl. Pharm. Sci., 2012, 02, 137-141.
[http://dx.doi.org/10.7324/JAPS.2012.2416]
[59]
Khamar, J.C.; Patel, S.A. First Derivative spectrophotometric method for the simultaneous estimation of rifampicin and piperine in their combined capsule dosage form. Asian J. Pharm. Life Sci., 2012, 2, 49-55.
[60]
Mahalanabis, K.K.; Basu, D.; Roy, B. Application of the least-squares method in the matrix form: simultaneous spectrophotometric determination of rifampicin and isoniazid in binary pharmaceutical formulations. Analyst (Lond.), 1989, 114(10), 1311-1314.
[http://dx.doi.org/10.1039/an9891401311] [PMID: 2619076]
[61]
Mohamed, M.A.; Shantier, S.W.; Mohamed, M.A. GadKariem, E.A.; Ismail, E.M. Spectrophotometric method for the simultaneous determination of isoniazid and rifampicin in bulk and tablet forms. Int. J. Pharm. Sci. Rev. Res., 2015, 32, 154-156.
[62]
Mishra, P.; Durgbanshi, A.; Pawar, R. Screening of antituberculosis drugs by thin layer chromatography. Asian J. Chem., 2017, 29, 1583-1586.
[http://dx.doi.org/10.14233/ajchem.2017.20590]
[63]
Strock, J.; Nguyen, M.; Sherma, J. Transfer of minilab tlc screening methods to quantitative hptlc-densitometry for pyrazinamide, ethambutol, isoniazid, and rifampicin in a combination tablet. J. Liq. Chromatogr. Relat. Technol., 2015, 38, 1126-1130.
[http://dx.doi.org/10.1080/10826076.2015.1028292]
[64]
Tatarczak, M.; Flieger, J.; Szumiło, H. Simultaneous densitometric determination of rifampicin and isoniazid by high-performance thin-layer chromatography. J. Planar Chromatogr. Mod. TLC, 2005, 18, 207-211.
[http://dx.doi.org/10.1556/JPC.18.2005.3.7]
[65]
Shewiyo, D.H.; Kaale, E.; Risha, P.G.; Dejaegher, B.; Smeyers-Verbeke, J.; Vander Heyden, Y. Optimization of a reversed-phase-high-performance thin-layer chromatography method for the separation of isoniazid, ethambutol, rifampicin and pyrazinamide in fixed-dose combination antituberculosis tablets. J. Chromatogr. A, 2012, 1260, 232-238.
[http://dx.doi.org/10.1016/j.chroma.2012.08.044] [PMID: 22981506]
[66]
Ali, J.; Ali, N.; Sultana, Y.; Baboota, S.; Faiyaz, S. Development and validation of a stability-indicating HPTLC method for analysis of antitubercular drugs. J. Acta Chromatographica., 2007, 18, 168.
[67]
Goyal, P.; Agarwal, S.; Venkatesh, S.; Udupa, N. Simultaneous HPTLC determination of rifampicin and isoniazid in rat plasma. Indian J. Pharm. Sci., 2003, 65, 414.
[68]
Vedaste, K.; Egide, K.; Claver, K.; Kaale, E. Development and validation of high-performance thin-layer chromatographic method for the simultaneous determination of rifampicin, isoniazid, and pyrazinamide in a fixed dosage combination tablet. 2014, 27, 392-397.
[http://dx.doi.org/10.1556/JPC.27.2014.5.11]
[69]
Calleja, I.; Blanco-Príeto, M.J.; Ruz, N.; Renedo, M.J.; Dios-Viéitez, M.C. High-performance liquid-chromatographic determination of rifampicin in plasma and tissues. J. Chromatogr. A, 2004, 1031(1-2), 289-294.
[http://dx.doi.org/10.1016/j.chroma.2003.12.041] [PMID: 15058595]
[70]
Hemanth Kumar, A.; Chandra, I.; Geetha, R.; Silambu Chelvi, K.; Lalitha, V.; Prema, G. A validated high-performance liquid chromatography method for the determination of rifampicin and desacetyl rifampicin in plasma and urine. Indian J. Pharmacol., 2004, 36, 231-233.
[71]
Allanson, A.L.; Cotton, M.M.; Tettey, J.N.; Boyter, A.C. Determination of rifampicin in human plasma and blood spots by high performance liquid chromatography with UV detection: a potential method for therapeutic drug monitoring. J. Pharm. Biomed. Anal., 2007, 44(4), 963-969.
[http://dx.doi.org/10.1016/j.jpba.2007.04.007] [PMID: 17531423]
[72]
Liu, J.; Sun, J.; Zhang, W.; Gao, K.; He, Z. HPLC determination of rifampicin and related compounds in pharmaceuticals using monolithic column. J. Pharm. Biomed. Anal., 2008, 46(2), 405-409.
[http://dx.doi.org/10.1016/j.jpba.2007.10.025] [PMID: 18055155]
[73]
Sabitha, P.; Rantna, J.; Reddy, K. Development and validation of new RP-HPLC method with UV detection for the determination of rifampicin in plasma. J. Pharm. Res., 2009, 2, 1561.
[74]
Goutal, S.; Auvity, S.; Legrand, T.; Hauquier, F.; Cisternino, S.; Chapy, H.; Saba, W.; Tournier, N. Validation of a simple HPLC-UV method for rifampicin determination in plasma: Application to the study of rifampicin arteriovenous concentration gradient. J. Pharm. Biomed. Anal., 2016, 123, 173-178.
[http://dx.doi.org/10.1016/j.jpba.2016.02.013] [PMID: 26907700]
[75]
Laila, L.; Prasetyo, B. In Optimization and validation of high-performance liquid chromatography method for analyzing 25-desacetyl rifampicin in human urine. Proceedings of the IOP Conference Series: Earth and Environmental Science, 2018, p. 012221.
[http://dx.doi.org/10.1088/1755-1315/125/1/012221]
[76]
Conte, J.E., Jr; Lin, E.; Zurlinden, E. Liquid chromatographic determination of rifampin in human plasma, bronchoalveolar lavage fluid, and alveolar cells. J. Chromatogr. Sci., 2000, 38(2), 72-76.
[http://dx.doi.org/10.1093/chromsci/38.2.72] [PMID: 10677836]
[77]
Shah, P.; Pandya, T.; Gohel, M.; Thakkar, V. Development and Validation of HPLC method for simultaneous estimation of Rifampicin and Ofloxacin using experimental design. J. Taibah Uni. Sci., 2019, 13, 146-154.
[http://dx.doi.org/10.1080/16583655.2018.1548748]
[78]
Luciani-Giacobbe, L.C.; Guzman, M.L.; Manzo, R.H.; Olivera, M.E. Validation of a simple isocratic HPLC-UV method for rifampicin and isoniazid quantification in human plasma. J. Appl. Pharm. Sci., 2018, 8, 093-099.
[79]
Prasanthi, B.; Ratna, J.V.; Phani, R.C. Development and validation of RP-HPLC method for simultaneous estimation of rifampicin, isoniazid and pyrazinamide in human plasma. J. Anal. Chem., 2015, 70, 1015-1022.
[http://dx.doi.org/10.1134/S1061934815080146]
[80]
Chellini, P.R.; Lages, E.B.; Franco, P.H.; Nogueira, F.H.; César, I.C.; Pianetti, G.A. Development and validation of an hplc method for simultaneous determination of rifampicin, isoniazid, pyrazinamide, and ethambutol hydrochloride in pharmaceutical formulations. J. AOAC Int., 2015, 98(5), 1234-1239.
[http://dx.doi.org/10.5740/jaoacint.14-237] [PMID: 26525241]
[81]
Siddhartha, T.S.; Prasanthi, B.; Santosh, T.; Ratna, J.V. Development and validation of high performance liquid chromatographic method for the determination of rifampicin in human plasma. Int. J. Pharm. Pharm. Sci., 2012, 4, 362-367.
[82]
Kumari, M.K.; Kasthuri, J.K.; Babu, B.H.; Satyanarayana, P.; Tchaleu, B.N. A validated liquid chromatographic method for the determination of rifampicin and isoniazid in pharmaceutical formulations. Br. J. Pharm. Res., 2015, 299-307.
[http://dx.doi.org/10.9734/BJPR/2015/12562]
[83]
Shah, Y.; Khanna, S.; Jindal, K.; Dighe, V. Determination of rifampicin and isoniazid in pharmaceutical formulations by HPLC. Journal of Drug Develop. and Ind. Pharm., 1992, 18, 1589-1596.
[http://dx.doi.org/10.3109/03639049209040861]
[84]
Kapuriya, K.G.; Parmar, P.M.; Topiya, H.R.; Faldu, S.D. Method development and validation of rifampicine and piperine in their combined dosage form. J. Int. Bulletin Drug Res., 2012, 1, 71-80.
[85]
Yan, H.; Zhou, Y.; Xie, Q.; Zhang, Y.; Zhang, P.; Xiao, H.; Wang, W.; Yao, S. Simultaneous analysis of isoniazid and rifampicin by high-performance liquid chromatography with gradient elution and wall-jet/thin-layer electrochemical detection. J. Anal. Meth., 2014, 6, 1530-1537.
[http://dx.doi.org/10.1039/c3ay41794h]
[86]
Calleri, E.; De Lorenzi, E.; Furlanetto, S.; Massolini, G.; Caccialanza, G. Validation of a RP-LC method for the simultaneous determination of isoniazid, pyrazinamide and rifampicin in a pharmaceutical formulation. J. Pharm. Biomed. Anal., 2002, 29(6), 1089-1096.
[http://dx.doi.org/10.1016/S0731-7085(02)00150-4] [PMID: 12110394]
[87]
Vyavahare, R. Stability Indicating RP-HPLC Method for Rifampicin in Bulk and Pharmaceutical Dosage Form International journal of Pharmacy and Pharmaceutical Research, 2017, 10, 265-282.
[88]
Swamy, N.; Basavaiah, K.; Vamsikrishna, P. Stability-Indicating HPLC Determination of Rifampicin in Bulk Drug and Dosage Form. J. Pharm. Chem. J., 2019, 53, 580-588.
[http://dx.doi.org/10.1007/s11094-019-02041-9]
[89]
Sorenson, B.; Whaley, P. Stability of rifampin in SyrSpend SF. Int. J. Pharm. Compd., 2013, 17(2), 162-164.
[PMID: 23696177]
[90]
Glass, B.D.; Agatonovic-Kustrin, S.; Chen, Y.J.; Wisch, M.H. Optimization of a stability-indicating HPLC method for the simultaneous determination of rifampicin, isoniazid, and pyrazinamide in a fixed-dose combination using artificial neural networks. J. Chromatogr. Sci., 2007, 45(1), 38-44.
[http://dx.doi.org/10.1093/chromsci/45.1.38] [PMID: 17254382]
[91]
Shah, U.; Patel, S.; Raval, M. Stability Indicating Reverse Phase HPLC Method for estimation of rifampicin and piperine in pharmaceutical dosage Form. Curr. Drug Discov. Technol., 2018, 15(1), 54-64.
[http://dx.doi.org/10.2174/1570163814666170619092224] [PMID: 28625149]
[92]
Baietto, L.; D’Avolio, A.; De Rosa, F.G.; Garazzino, S.; Patanella, S.; Siccardi, M.; Sciandra, M.; Di Perri, G. Simultaneous quantification of linezolid, rifampicin, levofloxacin, and moxifloxacin in human plasma using high-performance liquid chromatography with UV. Ther. Drug Monit., 2009, 31(1), 104-109.
[http://dx.doi.org/10.1097/FTD.0b013e31819476fa] [PMID: 19077929]
[93]
Balbão, M.S.; Bertucci, C.; Bergamaschi, M.M.; Queiroz, R.H.C.; Malfará, W.R.; Dreossi, S.A.C.; de Paula Mello, L.; Queiroz, M.E.C. Rifampicin determination in plasma by stir bar-sorptive extraction and liquid chromatography. J. Pharm. Biomed. Anal., 2010, 51(5), 1078-1083.
[http://dx.doi.org/10.1016/j.jpba.2009.11.001] [PMID: 20005065]
[94]
Boffito, M.; Tija, J.; Reynolds, H.E.; Hoggard, P.G.; Bonora, S.; Di Perri, G.; Back, D.J. Simultaneous determination of rifampicin and efavirenz in plasma. Ther. Drug Monit., 2002, 24(5), 670-674.
[http://dx.doi.org/10.1097/00007691-200210000-00015] [PMID: 12352941]
[95]
Chan, K. Rifampicin concentrations in cerebrospinal fluid and plasma of the rabbit by high performance liquid chromatography. Methods Find. Exp. Clin. Pharmacol., 1986, 8(12), 721-726.
[PMID: 3807472]
[96]
Fernández-Torres, R.; Bello-López, M.A.; Callejón-Mochón, M.; Jiménez-Sánchez, J.C. Determination of imipenem and rifampicin in mouse plasma by high performance liquid chromatography-diode array detection. Anal. Chim. Acta, 2008, 608(2), 204-210.
[http://dx.doi.org/10.1016/j.aca.2007.12.026] [PMID: 18215652]
[97]
Fox, D.; O’Connor, R.; Mallon, P.; McMahon, G. Simultaneous determination of efavirenz, rifampicin and its metabolite desacetyl rifampicin levels in human plasma. J. Pharm. Biomed. Anal., 2011, 56(4), 785-791.
[http://dx.doi.org/10.1016/j.jpba.2011.07.041] [PMID: 21840662]
[98]
Hakkimane, S.S.; Guru, B.R. Nano formulation analysis: analytical method development of isoniazid and simultaneous estimation of anti-tubercular drugs isoniazid and rifampicin by RP-HPLC. Asian J. Pharm. Clin. Res., 2017, 10, 330-335.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i5.17582]
[99]
Harahap, Y.; Alkindy, F.; Ashiila, G. Analysis of rifampicin in dried blood spot of tuberculosis patients for therapeutic drug monitoring using high performance liquid chromatography J; Young Pharmacists, 2018, p. 10.
[http://dx.doi.org/10.5530/jyp.2018.10.12]
[100]
Khoiri, S.; Martono, S.; Rohman, A. Optimisation and validation of HPLC method for simultaneous quantification of rifampicin, isoniazid, pyrazinamide, and ethambutol hydrochloride in anti-tuberculosis 4-FDC tablet; Jurnal Teknologi, 2015, p. 77.
[101]
Khuhawar, M.Y.; Rind, F.M. High performance liquid chromatographic determination of isoniazid, pyrazinamide and rifampicin in pharmaceutical preparations. Pak. J. Pharm. Sci., 1998, 11(2), 49-54.
[PMID: 16414818]
[102]
Khuhawar, M.Y.; Rind, F.M.A. Liquid chromatographic determination of isoniazid, pyrazinamide and rifampicin from pharmaceutical preparations and blood. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 766(2), 357-363.
[http://dx.doi.org/10.1016/S0378-4347(01)00510-2] [PMID: 11829003]
[103]
Kishor Kumar, K.; Umesh, M.; Katariya, M.V.; Sushil, J.; Katariya, V.R.; Karva, G.S. Forced Degradation Study for Assay Method of Rifampicin, Isoniazid and Pyrazinamide in Combined Pharmaceutical Dosage Form. Asian J. Pharm. Tech. and Innov., 2016, 04, 68-73.
[104]
Manuilov, K.K.; Gagaeva, E.V. Quantitative analysis of rifampicin and 25-desacetylrifampicin in the plasma using high performance liquid chromatography. Antibiotics and chemoterapy, 1989, 34, 682-684.
[105]
Mariappan, T.; Singh, B.; Singh, S. A validated reversed‐phase (c18) hplc method for simultaneous determination of rifampicin, isoniazid and pyrazinamide in usp dissolution medium and simulated gastric fluid. Pharm. Pharmacol. Commun., 2000, 6, 345-349.
[http://dx.doi.org/10.1211/146080800128736187]
[106]
Mohan, B.; Sharda, N.; Singh, S. Evaluation of the recently reported USP gradient HPLC method for analysis of anti-tuberculosis drugs for its ability to resolve degradation products of rifampicin. J. Pharm. Biomed. Anal., 2003, 31(3), 607-612.
[http://dx.doi.org/10.1016/S0731-7085(02)00715-X] [PMID: 12615251]
[107]
Pal, A.; Bawankule, D.U.; Darokar, M.P.; Gupta, S.C.; Arya, J.S.; Shanker, K.; Gupta, M.M.; Yadav, N.P.; Singh Khanuja, S.P. Influence of Moringa oleifera on pharmacokinetic disposition of rifampicin using HPLC-PDA method: a pre-clinical study. Biomed. Chromatogr., 2011, 25(6), 641-645.
[http://dx.doi.org/10.1002/bmc.1494] [PMID: 20845375]
[108]
Panchagnula, R.; Sood, A.; Sharda, N.; Kaur, K.; Kaul, C.L. Determination of rifampicin and its main metabolite in plasma and urine in presence of pyrazinamide and isoniazid by HPLC method. J. Pharm. Biomed. Anal., 1999, 18(6), 1013-1020.
[http://dx.doi.org/10.1016/S0731-7085(98)00112-5] [PMID: 9925337]
[109]
Pereira, M.N.; Matos, B.N.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. Development and validation of a simple chromatographic method for simultaneous determination of clindamycin phosphate and rifampicin in skin permeation studies. J. Pharm. Biomed. Anal., 2018, 159, 331-340.
[http://dx.doi.org/10.1016/j.jpba.2018.07.007] [PMID: 30025298]
[110]
Sachin, B.S.; Bhat, V.; Koul, M.; Sharma, S.C.; Tikoo, M.K.; Tikoo, A.K.; Satti, N.K.; Suri, K.A.; Johri, R.K. Development and validation of a RP-HPLC method for the simultaneous determination of rifampicin and a flavonoid glycoside-a novel bioavailability enhancer of rifampicin. Trop. J. Pharm. Res., 2009, 8.
[111]
Sameh, T.; Hanene, E.; Rim, C.; Issam, S.; Jebabli, N.; Mohamed, L.; Anis, K. High-performance liquid chromatographic quantification of Rifampicin in human plasma: method for therapeutic drug monitoring. Biol. Sci.-. PJSIR, 2013, 56, 29-35.
[112]
Shah, U.; Jasani, A. UV spectrophotometric and RP-HPLC methods for simultaneous estimation of isoniazid, rifampicin and piperine in pharmaceutical dosage form. Int. J. Pharm. Pharm. Sci., 2014, 6, 274-280.
[113]
Smith, P.J.; van Dyk, J.; Fredericks, A. Determination of rifampicin, isoniazid and pyrazinamide by high performance liquid chromatography after their simultaneous extraction from plasma. Int. J. Tuberc. Lung Dis., 1999, 3(11)(Suppl. 3), S325-S328.
[PMID: 10593712]
[114]
Woo, J.; Wong, C.L.; Teoh, R.; Chan, K. Liquid chromatographic assay for the simultaneous determination of pyrazinamide and rifampicin in serum samples from patients with Tuberculous meningitis. J. Chromatogr. A, 1987, 420(1), 73-80.
[http://dx.doi.org/10.1016/0378-4347(87)80156-1] [PMID: 3667831]
[115]
Patil, J.S.; Suresh, S.; Sureshbabu, A.R.; Rajesh, M.S. Development and validation of liquid chromatography-mass spectrometry method for the estimation of rifampicin in plasma. Indian J. Pharm. Sci., 2011, 73(5), 558-563.
[http://dx.doi.org/10.4103/0250-474X.99014] [PMID: 22923869]
[116]
Srivastava, A.; Waterhouse, D.; Ardrey, A.; Ward, S.A. Quantification of rifampicin in human plasma and cerebrospinal fluid by a highly sensitive and rapid liquid chromatographic-tandem mass spectrometric method. J. Pharm. Biomed. Anal., 2012, 70, 523-528.
[http://dx.doi.org/10.1016/j.jpba.2012.05.028] [PMID: 22709606]
[117]
Temova Rakuša, Ž.; Roškar, R.; Klančar Andrejc, A.; Trdan Lušin, T.; Faganeli, N.; Grabnar, I.; Mrhar, A.; Kristl, A.; Trontelj, J. Fast and Simple LC-MS/MS Method for Rifampicin Quantification in Human Plasma. Int. J. Anal. Chem., 2019, •••20194848236
[http://dx.doi.org/10.1155/2019/4848236] [PMID: 30853987]
[118]
de Velde, F.; Alffenaar, J.W.C.; Wessels, A.M.A.; Greijdanus, B.; Uges, D.R. Simultaneous determination of clarithromycin, rifampicin and their main metabolites in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(18-19), 1771-1777.
[http://dx.doi.org/10.1016/j.jchromb.2009.04.038] [PMID: 19457725]
[119]
Thoithi, G.; Kibwage, I.; King’ondu, O. Hoogmartens. Liquid Chromatographic Separation of Isoniazid, Pyrazinamide and Rifampicin on a Reversed-Phase Silica Column. East Cent. Afr. J. Pharm. Sci., 2002, 5, 8-14.
[http://dx.doi.org/10.4314/ecajps.v5i1.9679]
[120]
van Ewijk-Beneken Kolmer, E.W.J.; Teulen, M.J.A.; van den Hombergh, E.C.A.; van Erp, N.E.; Te Brake, L.H.M.; Aarnoutse, R.E. Determination of protein-unbound, active rifampicin in serum by ultrafiltration and Ultra Performance Liquid Chromatography with UV detection. A method suitable for standard and high doses of rifampicin. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1063, 42-49.
[http://dx.doi.org/10.1016/j.jchromb.2017.08.004] [PMID: 28843937]
[121]
Gikas, E.; Bazoti, F.N.; Fanourgiakis, P.; Perivolioti, E.; Roussidis, A.; Skoutelis, A.; Tsarbopoulos, A. Simultaneous quantification of daptomycin and rifampicin in plasma by ultra performance liquid chromatography: Application to a pharmacokinetic study. J. Pharm. Biomed. Anal., 2010, 51(4), 901-906.
[http://dx.doi.org/10.1016/j.jpba.2009.10.013] [PMID: 19939597]
[122]
Baietto, L.; Calcagno, A.; Motta, I.; Baruffi, K.; Poretti, V.; Di Perri, G.; Bonora, S.; D’Avolio, A. A UPLC-MS-MS method for the simultaneous quantification of first-line antituberculars in plasma and in PBMCs. J. Antimicrob. Chemother., 2015, 70(9), 2572-2575.
[http://dx.doi.org/10.1093/jac/dkv148] [PMID: 26066583]
[123]
Chumbley, C.W.; Reyzer, M.L.; Allen, J.L.; Marriner, G.A.; Via, L.E.; Barry, C.E., III; Caprioli, R.M. Absolute quantitative MALDI imaging mass spectrometry: a case of rifampicin in liver tissues. Anal. Chem., 2016, 88(4), 2392-2398.
[http://dx.doi.org/10.1021/acs.analchem.5b04409] [PMID: 26814665]
[124]
Fang, P.F.; Cai, H.L.; Li, H.D.; Zhu, R.H.; Tan, Q.Y.; Gao, W.; Xu, P.; Liu, Y.P.; Zhang, W.Y.; Chen, Y.C.; Zhang, F. Simultaneous determination of isoniazid, rifampicin, levofloxacin in mouse tissues and plasma by high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(24), 2286-2291.
[http://dx.doi.org/10.1016/j.jchromb.2010.06.038] [PMID: 20663720]
[125]
Ghiciuc, C.M.; Raducanu, N.; Lenard, F.; Vlase, L.; Elena, C. Rapid simultaneous LC/MS2 determination of rifampicin and 25-desacetyl rifampicin in human plasma for therapeutic drug monitoring. Stud. Univ. Babes-Bolyai Chem., 2015, 60, 309-320.
[126]
Govender, K.; Adamson, J.H.; Owira, P. The development and validation of a LC-MS/MS method for the quantitation of metformin, rifampicin and isoniazid in rat plasma using HILIC chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1095, 127-137.
[http://dx.doi.org/10.1016/j.jchromb.2018.07.041] [PMID: 30077092]
[127]
Hagga, M.A.; Sultana, S.; Imran, M. A Novel Quantitative Method for the Simultaneous Assay of Rifampicin (RIF), Isoniazid (INH), Ethambutol (EMB), and Pyrazinamide (PYP) in 4-FDC Tablets. Orient. J. Chem., 2016, 32, 3081-3087.
[http://dx.doi.org/10.13005/ojc/320629]
[128]
Le Thi Luyen, T.M.H.; Le Thu Huyen, L.A.T. Duong thi ly huong, h.v.; duc, b.t.t. simultaneous determination of pyrazinamide, rifampicin, ethambutol, isoniazid and acetyl isoniazid in human plasma by lc-ms/ms method. J. Young Pharmacists., 2018, 8, 061-073.
[129]
LLopis, B.; Funck-Brentano, C.; Tissot, N.; Bleibtreu, A.; Jaureguiberry, S.; Fourniols, E.; Aubry, A.; Zahr, N. Development and validation of a UPLC-MS/MS method for simultaneous quantification of levofloxacin, ciprofloxacin, moxifloxacin and rifampicin in human plasma: Application to the therapeutic drug monitoring in osteoarticular infections. J. Pharm. Biomed. Anal., 2020.183113137
[http://dx.doi.org/10.1016/j.jpba.2020.113137] [PMID: 32086125]
[130]
Oswald, S.; Peters, J.; Venner, M.; Siegmund, W. LC-MS/MS method for the simultaneous determination of clarithromycin, rifampicin and their main metabolites in horse plasma, epithelial lining fluid and broncho-alveolar cells. J. Pharm. Biomed. Anal., 2011, 55(1), 194-201.
[http://dx.doi.org/10.1016/j.jpba.2011.01.019] [PMID: 21310577]
[131]
Swamy, N.; Basavaiah, K.; Vamsikrishna, P.; Krishnamurthy, G. Development and validation of a stability-indicating ultra-performance liquid chromatographic method for the determination of rifampicin in bulk drug and capsules. Thaiphesatchasan, 2015, 39.
[132]
Vu, D.H.; Koster, R.A.; Bolhuis, M.S.; Greijdanus, B.; Altena, R.V.; Nguyen, D.H.; Brouwers, J.R.; Uges, D.R.; Alffenaar, J.W. Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC-MS/MS. Talanta, 2014, 121, 9-17.
[http://dx.doi.org/10.1016/j.talanta.2013.12.043] [PMID: 24607103]
[133]
Wu, L.; Ye, Z.; Liu, H.; Guo, H.; Lin, J.; Zheng, L.; Chu, N.; Liu, X. Rapid and highly sensitive quantification of the anti-tuberculosis agents isoniazid, ethambutol, pyrazinamide, rifampicin and rifabutin in human plasma by UPLC-MS/MS. J. Pharm. Biomed. Anal., 2020, 180113076
[http://dx.doi.org/10.1016/j.jpba.2019.113076] [PMID: 31896523]
[134]
Baietto, L.; D’Avolio, A.; De Rosa, F.G.; Garazzino, S.; Michelazzo, M.; Ventimiglia, G.; Siccardi, M.; Simiele, M.; Sciandra, M.; Di Perri, G. Development and validation of a simultaneous extraction procedure for HPLC-MS quantification of daptomycin, amikacin, gentamicin, and rifampicin in human plasma. Anal. Bioanal. Chem., 2010, 396(2), 791-798.
[http://dx.doi.org/10.1007/s00216-009-3263-1] [PMID: 19898996]
[135]
Hartkoorn, R.C.; Khoo, S.; Back, D.J.; Tjia, J.F.; Waitt, C.J.; Chaponda, M.; Davies, G.; Ardrey, A.; Ashleigh, S.; Ward, S.A. A rapid and sensitive HPLC-MS method for the detection of plasma and cellular rifampicin. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 857(1), 76-82.
[http://dx.doi.org/10.1016/j.jchromb.2007.07.005] [PMID: 17643357]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy