Generic placeholder image

Current Pharmaceutical Biotechnology


ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Effect of the Phytochemical Agents against the SARS-CoV and Some of them Selected for Application to COVID-19: A Mini-Review

Author(s): Muhammad Idrees, Shamshad Khan, Nazakat H. Memon and Zhiyong Zhang*

Volume 22, Issue 4, 2021

Published on: 03 July, 2020

Page: [444 - 450] Pages: 7

DOI: 10.2174/1389201021666200703201458

Price: $65


Background: The aim of the present review is to provide basic knowledge regarding the treatment of Coronavirus via medicinal plants. Coronavirus (COVID-19, SARS-CoV, and MERS-CoV) as a viral pneumonia causative agent, has infected thousands of people in China and worldwide. Currently, there is no specific medicine or vaccine available that can treat or prevent this virus and this has posed a severe threat to human health; therefore, there is an urgent need to develop a novel drug or anticoronavirus vaccine. However, natural compounds to treat coronaviruses are the most effective alternative and complementary therapies due to their diverse range of biological and therapeutic properties.

Methods: We performed an open-ended, English restricted search of Scopus database, Web of Science, and Pubmed for all available literature from Jan-March, 2020, using terms related to phytochemical compounds, medicinal plants and coronavirus.

Results: The view on anti-coronavirus (anti-CoV) activity in the plant-derived phytochemicals and medicinal plants gives a strong base to develop a novel treatment employing these compounds for coronavirus. Various phytochemicals and medicinal plant extracts have been revised and are considered as potential anti-CoV agents for effective control of the virus and future drug development. Herein, we discuss some important plants (Scutellaria baicalensis, Psorothamnus arborescens, Glycyrrhiza radix, Glycyrrhiza uralensis, Lycoris radiate, Phyllanthus emblica, Camellia sinensis, Hyptis atrorubens Poit, Fraxinus sieboldiana, Erigeron breviscapus, Citri Reticulatae Pericarpium, Amaranthus tricolor, Phaseolus vulgaris, Rheum palmatum, Curcuma longa and Myrica cerifera) that have emerged to have broad-spectrum antiviral activity.

Conclusion: Nigella sativa has potent anti-SARS-CoV activity and it might be a useful source for developing novel antiviral therapies for coronavirus.

Keywords: COVID-19, SARS-CoV, MERS-CoV, viral pneumonia, phytochemicals, medicinal plants, anti-coronavirus, China.

Graphical Abstract
Dijkman, R.; van der Hoek, L. Human coronaviruses 229E and NL63: close yet still so far. J. Formos. Med. Assoc., 2009, 108(4), 270-279.
[] [PMID: 19369173]
Wu, Y.S.; Lin, W.H.; Hsu, J.T.; Hsieh, H.P. Antiviral drug discovery against SARS-CoV. Curr. Med. Chem., 2006, 13(17), 2003-2020.
[] [PMID: 16842194]
Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820.
[] [PMID: 23075143]
Lu, H.; Stratton, C.W.; Tang, Y.W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J. Med. Virol., 2020, 92(4), 401-402.
[] [PMID: 31950516]
Hui, D.S.; Azhar, I. E.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; Zumla, A.; Petersen, E. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis., 2020, 91, 264-266.
[] [PMID: 31953166]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. 2020.
Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; Wang, M.H. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis., 2020, 92, 214-217.
[] [PMID: 32007643]
Read, J.M.; Bridgen, J.R.; Cummings, D.A.; Ho, A.; Jewell, C.P. 2020.
Shen, M.; Peng, Z.; Xiao, Y.; Zhang, L. Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China BioRxiv, 2020.
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[] [PMID: 30531947]
Drosten, C.; Kellam, P.; Memish, Z.A. Evidence for camel-to-human transmission of MERS coronavirus. N. Engl. J. Med., 2014, 371(14), 1359-1360.
[] [PMID: 25271615]
Guan, Y.; Zheng, B.J.; He, Y.Q.; Liu, X.L.; Zhuang, Z.X.; Cheung, C.L.; Luo, S.W.; Li, P.H.; Zhang, L.J.; Guan, Y.J.; Butt, K.M.; Wong, K.L.; Chan, K.W.; Lim, W.; Shortridge, K.F.; Yuen, K.Y.; Peiris, J.S.; Poon, L.L. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 2003, 302(5643), 276-278.
[] [PMID: 12958366]
Li, F. 2016.
Song, Z.; Xu, Y.; Bao, L.; Zhang, L.; Yu, P.; Qu, Y.; Zhu, H.; Zhao, W.; Han, Y.; Qin, C. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses, 2019, 11(1)E59
[] [PMID: 30646565]
Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 2003, 300(5626), 1763-1767.
[] [PMID: 12746549]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[] [PMID: 32015507]
Ul Qamar, M.T.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020.
[] [PMID: 32296570]
Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.; Müller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.; Zaki, A.; Fouchier, R.A.; Thiel, V.; Drosten, C.; Rottier, P.J.; Osterhaus, A.D.; Bosch, B.J.; Haagmans, B.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495(7440), 251-254.
[] [PMID: 23486063]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[] [PMID: 14647384]
Needle, D.; Lountos, G.T.; Waugh, D.S. Structures of the Middle East respiratory syndrome coronavirus 3C-like protease reveal insights into substrate specificity. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(Pt 5), 1102-1111.
[] [PMID: 25945576]
Ghosh, A.K.; Xi, K.; Ratia, K.; Santarsiero, B.D.; Fu, W.; Harcourt, B.H.; Rota, P.A.; Baker, S.C.; Johnson, M.E.; Mesecar, A.D. Design and synthesis of peptidomimetic severe acute respiratory syndrome chymotrypsin-like protease inhibitors. J. Med. Chem., 2005, 48(22), 6767-6771.
[] [PMID: 16250632]
Kumar, V.; Tan, K.P.; Wang, Y.M.; Lin, S.W.; Liang, P.H. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors. Bioorg. Med. Chem., 2016, 24(13), 3035-3042.
[] [PMID: 27240464]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531-541.
[] [PMID: 27219696]
Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[] [PMID: 17663539]
Chang, F.R.; Yen, C.T.; Ei-Shazly, M.; Lin, W.H.; Yen, M.H.; Lin, K.H.; Wu, Y.C. Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Nat. Prod. Commun., 2012, 7(11), 1415-1417.
[] [PMID: 23285797]
Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. 2006.
Ververidis, F.; Trantas, E.; Douglas, C.; Vollmer, G.; Kretzschmar, G.; Panopoulos, N. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotechnol. J., 2007, 2(10), 1214-1234.
[] [PMID: 17935117]
Spencer, J.P. Flavonoids: modulators of brain function? Br. J. Nutr., 2008, 99(1), 60-77.
Chen, F.; Chan, K.H.; Jiang, Y.; Kao, R.Y.; Lu, H.T.; Fan, K.W.; Cheng, V.C.; Tsui, W.H.; Hung, I.F.; Lee, T.S.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J. Clin. Virol., 2004, 31(1), 69-75.
[] [PMID: 15288617]
Evers, D.L.; Chao, C.F.; Wang, X.; Zhang, Z.; Huong, S.M.; Huang, E.S. Human cytomegalovirus-inhibitory flavonoids: studies on antiviral activity and mechanism of action. Antiviral Res., 2005, 68(3), 124-134.
[] [PMID: 16188329]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Nguyen, T.T.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[] [PMID: 20934345]
Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer, 2011, 10, 12.
[] [PMID: 21299897]
Dei Cas, M.; Ghidoni, R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients, 2019, 11(9)E2147
[] [PMID: 31500361]
Devassy, J.G.; Nwachukwu, I.D.; Jones, P.J. Curcumin and cancer: barriers to obtaining a health claim. Nutr. Rev., 2015, 73(3), 155-165.
[] [PMID: 26024538]
Li, S.Y.; Chen, C.; Zhang, H.Q.; Guo, H.Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.N.; Yu, J.; Xiao, P.G.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[] [PMID: 15885816]
Kim, D.E.; Min, J.S.; Jang, M.S.; Lee, J.Y.; Shin, Y.S.; Song, J.H.; Kim, H.R.; Kim, S.; Jin, Y.H.; Kwon, S. Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus OC43 Infection of MRC-5 Human Lung Cells. Biomolecules, 2019, 9(11), 696.
[] [PMID: 31690059]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. 2003.
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[] [PMID: 16115693]
Chen, H.; Du, Q. Potential Natural Compounds for Preventing SARS-CoV-2 (2019-nCoV); Infection. Preprints, 2020.
Luo, W.; Su, X.; Gong, S.; Qin, Y.; Liu, W.; Li, J.; Yu, H.; Xu, Q. Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts. Biosci. Trends, 2009, 3(4), 124-126.
[PMID: 20103835]
Wong, D.K.; Cheung, A.M.; O’Rourke, K.; Naylor, C.D.; Detsky, A.S.; Heathcote, J. Effect of alpha-interferon treatment in patients with hepatitis B e antigen-positive chronic hepatitis B. A meta-analysis. Ann. Intern. Med., 1993, 119(4), 312-323.
[] [PMID: 8328741]
Zoulim, F. A preliminary benefit-risk assessment of lamivudine for the treatment of chronic hepatitis B virus infection. Drug Saf., 2002, 25(7), 497-510.
[] [PMID: 12093308]
Chen, C.J.; Michaelis, M.; Hsu, H.K.; Tsai, C.C.; Yang, K.D.; Wu, Y.C.; Cinatl, J., Jr; Doerr, H.W. Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. J. Ethnopharmacol., 2008, 120(1), 108-111.
[] [PMID: 18762235]
Kim, H.Y.; Eo, E.Y.; Park, H.; Kim, Y.C.; Park, S.; Shin, H.J.; Kim, K. Medicinal herbal extracts of Sophorae radix, Acanthopanacis cortex, Sanguisorbae radix and Torilis fructus inhibit coronavirus replication in vitro. Antivir. Ther. (Lond.), 2010, 15(5), 697-709.
[] [PMID: 20710051]
Wu, C.Y.; Jan, J.T.; Ma, S.H.; Kuo, C.J.; Juan, H.F.; Cheng, Y.S.; Hsu, H.H.; Huang, H.C.; Wu, D.; Brik, A.; Liang, F.S.; Liu, R.S.; Fang, J.M.; Chen, S.T.; Liang, P.H.; Wong, C.H. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. USA, 2004, 101(27), 10012-10017.
[] [PMID: 15226499]
Lau, K.M.; Lee, K.M.; Koon, C.M.; Cheung, C.S.; Lau, C.P.; Ho, H.M.; Lee, M.Y.; Au, S.W.; Cheng, C.H.; Lau, C.B.; Tsui, S.K.; Wan, D.C.; Waye, M.M.; Wong, K.B.; Wong, C.K.; Lam, C.W.; Leung, P.C.; Fung, K.P. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol., 2008, 118(1), 79-85.
[] [PMID: 18479853]
Salem, M.L.; Hossain, M.S. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection., 2000.
Ulasli, M.; Gurses, S.A.; Bayraktar, R.; Yumrutas, O.; Oztuzcu, S.; Igci, M.; Igci, Y.Z.; Cakmak, E.A.; Arslan, A. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol. Biol. Rep., 2014, 41(3), 1703-1711.
[] [PMID: 24413991]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy