Review Article

化妆品脂肪移植技术的研究综述

卷 21, 期 2, 2021

发表于: 03 July, 2020

页: [133 - 141] 页: 9

弟呕挨: 10.2174/1566524020666200703194355

价格: $65

摘要

目的:回顾目前用于脂肪移植的技术,以优化移植物的持久性并达到最佳的美容效果。 背景:脂肪移植已在重建和化妆品行业中广泛使用了很多年。但是,脂肪细胞的损失和重吸收率显着增加,导致外部化妆品体积的损失,并且需要重复进行手术。脂肪细胞损失可能发生在移植的所有四个阶段,本篇综述讨论了每种方法,目的是优化移植结果。 结果:已经讨论了几种新技术,包括吸脂技术,脂肪加工和辅助脂肪移植,这些技术显示了脂肪细胞存活,血管再形成和移植结果的改善。 结论:脂肪移植有许多改进,这些移植的实施将优化手术效果,但仍有进一步改进的策略。但是,仍然缺乏标准化的技术和培训。在脂肪加工和脂肪移植物中使用添加剂方面需要进行更多的研究。脂肪放置技术需要更多的临床研究,该技术发表的证据很少,目前的技术大多是整形外科医生所传闻的。

关键词: 抽脂,脂肪移植,人体脂肪加工,脂肪移植,化妆品脂肪移植,脂肪移植存活。

[1]
Strong AL, Cederna PS, Rubin JP, Coleman SR, Levi B. The Current State of Fat Grafting: A Review of Harvesting, Processing, and Injection Techniques. Plast Reconstr Surg 2015; 136(4): 897-912.
[http://dx.doi.org/10.1097/PRS.0000000000001590] [PMID: 26086386]
[2]
Zielins ER, Brett EA, Longaker MT, Wan DC. Autologous Fat Grafting: The Science Behind the Surgery. Aesthet Surg J 2016; 36(4): 488-96.
[http://dx.doi.org/10.1093/asj/sjw004] [PMID: 26961989]
[3]
Denadai R, Raposo-Amaral CA, Pinho AS, et al. Predictors of autologous free fat graft retention in the management of craniofacial contour deformities. Plast Reconstr Surg 2017; 140(1): 50e-61e.
[http://dx.doi.org/10.1097/PRS.0000000000003440]
[4]
Cheng K, Ho K, Stokes R, et al. Hypoxia-inducible factor-1α regulates β cell function in mouse and human islets. J Clin Invest 2010; 120(6): 2171-83.
[http://dx.doi.org/10.1172/JCI35846] [PMID: 20440072]
[5]
Stokes RA, Cheng K, Deters N, et al. Hypoxia-inducible factor-1α (HIF-1α) potentiates β-cell survival after islet transplantation of human and mouse islets. Cell Transplant 2013; 22(2): 253-66.
[http://dx.doi.org/10.3727/096368912X647180] [PMID: 22710383]
[6]
Ullmann Y, Shoshani O, Fodor A, et al. Searching for the favorable donor site for fat injection: in vivo study using the nude mice model. Comparative Study 2005; 31(10): 1304-7.
[http://dx.doi.org/10.1097/00042728-200510000-00007]
[7]
Padoin AV, Braga-Silva J, Martins P, et al. Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plast Reconstr Surg 2008; 122(2): 614-8.
[http://dx.doi.org/10.1097/PRS.0b013e31817d5476]
[8]
Tsekouras A, Mantas D, Tsilimigras DI, Moris D, Kontos M, Zografos GC. Comparison of the Viability and Yield of Adipose-Derived Stem Cells (ASCs) from Different Donor Areas. In Vivo 2017; 31(6): 1229-34.
[PMID: 29102952]
[9]
Bellini E, Grieco MP, Raposio E. A journey through liposuction and liposculture. Review Ann Med Surg (Lond) 2017; 24: 53-60.
[http://dx.doi.org/10.1016/j.amsu.2017.10.024] [PMID: 29158895]
[10]
Bellini E, Grieco MP, Raposio E. The science behind autologous fat grafting. Ann Med Surg (Lond) 2017; 24: 65-73.
[http://dx.doi.org/10.1016/j.amsu.2017.11.001] [PMID: 29188051]
[11]
Pu LL, Coleman SR, Cui X, Ferguson RE Jr, Vasconez HC. Autologous fat grafts harvested and refined by the Coleman technique: a comparative study. Plast Reconstr Surg 2008; 122(3): 932-7.
[http://dx.doi.org/10.1097/PRS.0b013e3181811ff0] [PMID: 18766062]
[12]
Fontes T, Brandão I, Negrão R, Martins MJ, Monteiro R. Autologous fat grafting: Harvesting techniques. Ann Med Surg (Lond) 2018; 36: 212-8.
[http://dx.doi.org/10.1016/j.amsu.2018.11.005] [PMID: 30505441]
[13]
Shiffman MA, Mirrafati S. Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatol Surg 2001; 27(9): 819-26.
[http://dx.doi.org/10.1097/00042728-200109000-00008] [PMID: 11553171]
[14]
Klein JAJTAJoCS. The tumescent technique for lipo-suction surgery. J Cutan Aesthet Surg 1987; 4(4): 263-7.
[15]
Klein JAJTJods. oncology Tumescent technique for regional anesthesia permits lidocaine doses of 35 mg/kg for liposuction. J Dermatol Surg Oncol 1990; 16(3): 248-63.
[16]
Simonacci F, Bertozzi N, Grieco MP, Grignaffini E, Raposio E. Procedure, applications, and outcomes of autologous fat grafting. Ann Med Surg (Lond) 2017; 20: 49-60.
[http://dx.doi.org/10.1016/j.amsu.2017.06.059] [PMID: 28702187]
[17]
Kim IH, Yang JD, Lee DG, Chung HY, Cho BC. Evaluation of centrifugation technique and effect of epinephrine on fat cell viability in autologous fat injection. Aesthet Surg J 2009; 29(1): 35-9.
[http://dx.doi.org/10.1016/j.asj.2008.09.004] [PMID: 19233004]
[18]
Moore JH Jr, Kolaczynski JW, Morales LM, et al. Viability of fat obtained by syringe suction lipectomy: effects of local anesthesia with lidocaine. Aesthetic Plast Surg 1995; 19(4): 335-9.
[http://dx.doi.org/10.1007/BF00451659] [PMID: 7484471]
[19]
Nie H, Kubrova E, Wu T, et al. Effect of Lidocaine on Viability and Gene Expression of Human Adipose-derived Mesenchymal Stem Cells: An in vitro Study. PM R 2019; 11(11): 1218-27.
[http://dx.doi.org/10.1002/pmrj.12141] [PMID: 30784215]
[20]
Livaoğlu M, Buruk CK, Uraloğlu M, et al. Effects of lidocaine plus epinephrine and prilocaine on autologous fat graft survival. J Craniofac Surg 2012; 23(4): 1015-8.
[http://dx.doi.org/10.1097/SCS.0b013e31824e7302] [PMID: 22777468]
[21]
Lunger A, Ismail T, Todorov A, et al. Improved Adipocyte Viability in Autologous Fat Grafting With Ascorbic Acid-Supplemented Tumescent Solution. Ann Plast Surg 2019; 83(4): 464-7.
[http://dx.doi.org/10.1097/SAP.0000000000001857] [PMID: 31524744]
[22]
Oranges CM, Striebel J, Tremp M, et al. The Preparation of the Recipient Site in Fat Grafting: A Comprehensive Review of the Preclinical Evidence. Plast Reconstr Surg 2019; 143(4): 1099-107.
[http://dx.doi.org/10.1097/PRS.0000000000005403] [PMID: 30921129]
[23]
Zhan W, Tan SS, Han X, Palmer JA, Mitchell GM, Morrison WA. Indomethacin Enhances Fat Graft Retention by Up-Regulating Adipogenic Genes and Reducing Inflammation. Plast Reconstr Surg 2017; 139(5): 1093e-104e.
[http://dx.doi.org/10.1097/PRS.0000000000003255] [PMID: 28445363]
[24]
Cao Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 2013; 18(4): 478-89.
[http://dx.doi.org/10.1016/j.cmet.2013.08.008] [PMID: 24035587]
[25]
Park J, Kim M, Sun K, An YA, Gu X, Scherer PE. VEGF-A-Expressing Adipose Tissue Shows Rapid Beiging and Enhanced Survival After Transplantation and Confers IL-4-Independent Metabolic Improvements. Diabetes 2017; 66(6): 1479-90.
[http://dx.doi.org/10.2337/db16-1081] [PMID: 28254844]
[26]
Geeroms M, Hamdi M, Hirano R, et al. Quality and Quantity-Cultured Murine Endothelial Progenitor Cells Increase Vascularization and Decrease Fibrosis in the Fat Graft. Plast Reconstr Surg 2019; 143(4): 744e-55e.
[http://dx.doi.org/10.1097/PRS.0000000000005439] [PMID: 30921123]
[27]
Qian Y, Han Q, Chen W, et al. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration. Front Chem 2017; 5: 89.
[http://dx.doi.org/10.3389/fchem.2017.00089] [PMID: 29164105]
[28]
Fisher C, Grahovac TL, Schafer ME, Shippert RD, Marra KG, Rubin JP. Comparison of harvest and processing techniques for fat grafting and adipose stem cell isolation. Plast Reconstr Surg 2013; 132(2): 351-61.
[http://dx.doi.org/10.1097/PRS.0b013e3182958796] [PMID: 23584621]
[29]
Gunton JE, Kulkarni RN, Yim S, et al. Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 2005; 122(3): 337-49.
[http://dx.doi.org/10.1016/j.cell.2005.05.027] [PMID: 16096055]
[30]
Simonacci F, Bertozzi N, Grieco MP, Raposio E. From liposuction to adipose-derived stem cells: indications and technique. Acta Biomed 2019; 90(2): 197-208.
[PMID: 31124996]
[31]
Doornaert M, Colle J, De Maere E, Declercq H, Blondeel P. Autologous fat grafting: Latest insights. Ann Med Surg (Lond) 2018; 37: 47-53.
[http://dx.doi.org/10.1016/j.amsu.2018.10.016] [PMID: 30622707]
[32]
Dong Z, Peng Z, Chang Q, Lu F. The survival condition and immunoregulatory function of adipose stromal vascular fraction (SVF) in the early stage of nonvascularized adipose transplantation. PLoS One 2013; 8(11)e80364
[http://dx.doi.org/10.1371/journal.pone.0080364] [PMID: 24260375]
[33]
Moseley TA, Zhu M, Hedrick MH. Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg 2006; 118(3)(Suppl.): 121S-8S.
[http://dx.doi.org/10.1097/01.prs.0000234609.74811.2e] [PMID: 16936551]
[34]
Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res 2017; 113(9): 1009-23.
[http://dx.doi.org/10.1093/cvr/cvx108] [PMID: 28838042]
[35]
Condé-Green A, Wu I, Graham I, et al. Comparison of 3 techniques of fat grafting and cell-supplemented lipotransfer in athymic rats: a pilot study. Aesthet Surg J 2013; 33(5): 713-21.
[http://dx.doi.org/10.1177/1090820X13487371] [PMID: 23718980]
[36]
Cai L, Han XF, Wang BQ, Li FC. Application of autologous fat grafting in breast reconstruction. Zhonghua wai ke za zhi [Chinese journal of surgery] 2017; 55(9): 696-701. .
[PMID: 28870056]
[37]
Chung NN, Ransom RC, Blackshear CP, et al. Fat Grafting into Younger Recipients Improves Volume Retention in an Animal Model. Plast Reconstr Surg 2019; 143(4): 1067-75.
[http://dx.doi.org/10.1097/PRS.0000000000005483] [PMID: 30730498]
[38]
Lee JH, Kirkham JC, McCormack MC, Nicholls AM, Randolph MA, Austen WG Jr. The effect of pressure and shear on autologous fat grafting. Plast Reconstr Surg 2013; 131(5): 1125-36.
[http://dx.doi.org/10.1097/PRS.0b013e3182879f4a] [PMID: 23385989]
[39]
Khouri RK Jr, Khouri RE, Lujan-Hernandez JR, Khouri KR, Lancerotto L, Orgill DP. Diffusion and perfusion: the keys to fat grafting. Plast Reconstr Surg Glob Open 2014; 2(9)e220
[http://dx.doi.org/10.1097/GOX.0000000000000183] [PMID: 25426403]
[40]
Uda H, Sugawara Y, Sarukawa S, Sunaga A. Brava and autologous fat grafting for breast reconstruction after cancer surgery. Plast Reconstr Surg 2014; 133(2): 203-13.
[http://dx.doi.org/10.1097/01.prs.0000437256.78327.12] [PMID: 24150122]
[41]
Topcu A, Aydin OE, Ünlü M, Barutcu A, Atabey A. Increasing the viability of fat grafts by vascular endothelial growth factor. Arch Facial Plast Surg 2012; 14(4): 270-6.
[http://dx.doi.org/10.1001/archfacial.2011.1633] [PMID: 22351845]
[42]
Shoshani O, Livne E, Armoni M, et al. The effect of interleukin-8 on the viability of injected adipose tissue in nude mice. Plast Reconstr Surg 2005; 115(3): 853-9.
[http://dx.doi.org/10.1097/01.PRS.0000153036.71928.30] [PMID: 15731687]
[43]
Gassman AA, Lewis MS, Lee JC. Remote Ischemic Preconditioning Recipient Tissues Improves the Viability of Murine Fat Transfer. Plast Reconstr Surg 2016; 138(1): 55e-63e.
[http://dx.doi.org/10.1097/PRS.0000000000002295] [PMID: 27348686]
[44]
Sezgin B, Ozmen S, Bulam H, et al. Improving fat graft survival through preconditioning of the recipient site with microneedling. J Plast Reconstr Aesthet Surg 2014; 67(5): 712-20.
[http://dx.doi.org/10.1016/j.bjps.2014.01.019] [PMID: 24529693]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy