Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Cosmetic Fat Transplantation: A Review

Author(s): Sarah Davis, Joseph Rizk and Jenny E. Gunton*

Volume 21 , Issue 2 , 2021

Published on: 03 July, 2020

Page: [133 - 141] Pages: 9

DOI: 10.2174/1566524020666200703194355

Price: $65

Abstract

Aim: To review current techniques used in fat grafting to optimise graft persistence and achieve optimal cosmetic outcomes.

Background: Fat transplantation has been used extensively in the reconstruction and cosmetic industry for many years. However, there is significant adipocyte loss and reabsorption rates, leading to the loss of external cosmetic volume and the need for repeat procedures. Adipocyte loss can occur at all four stages of transplantation and this review discusses each of these methods with the aim being to optimise graft outcome.

Results: Several new techniques have been discussed including liposuction techniques, fat processing, and assisted fat grafting which show an improvement in adipocyte survival, revasculisation and graft outcomes.

Conclusion: There have been many improvements in fat grafting and the implementation of these will optimise surgical outcomes but there are still strategies to improve further. However, there is still a lack of standardised techniques and training. More research is needed in the areas of fat processing and the use of additives to the fat graft. More clinical research is needed in the fat placement technique, which has very little published evidence and current techniques are mostly anecdotal by cosmetic surgeons.

Keywords: Liposuction, fat transplantation, human fat processing, fat graft, cosmetic fat graft, fat graft survival.

[1]
Strong AL, Cederna PS, Rubin JP, Coleman SR, Levi B. The Current State of Fat Grafting: A Review of Harvesting, Processing, and Injection Techniques. Plast Reconstr Surg 2015; 136(4): 897-912.
[http://dx.doi.org/10.1097/PRS.0000000000001590] [PMID: 26086386]
[2]
Zielins ER, Brett EA, Longaker MT, Wan DC. Autologous Fat Grafting: The Science Behind the Surgery. Aesthet Surg J 2016; 36(4): 488-96.
[http://dx.doi.org/10.1093/asj/sjw004] [PMID: 26961989]
[3]
Denadai R, Raposo-Amaral CA, Pinho AS, et al. Predictors of autologous free fat graft retention in the management of craniofacial contour deformities. Plast Reconstr Surg 2017; 140(1): 50e-61e.
[http://dx.doi.org/10.1097/PRS.0000000000003440]
[4]
Cheng K, Ho K, Stokes R, et al. Hypoxia-inducible factor-1α regulates β cell function in mouse and human islets. J Clin Invest 2010; 120(6): 2171-83.
[http://dx.doi.org/10.1172/JCI35846] [PMID: 20440072]
[5]
Stokes RA, Cheng K, Deters N, et al. Hypoxia-inducible factor-1α (HIF-1α) potentiates β-cell survival after islet transplantation of human and mouse islets. Cell Transplant 2013; 22(2): 253-66.
[http://dx.doi.org/10.3727/096368912X647180] [PMID: 22710383]
[6]
Ullmann Y, Shoshani O, Fodor A, et al. Searching for the favorable donor site for fat injection: in vivo study using the nude mice model. Comparative Study 2005; 31(10): 1304-7.
[http://dx.doi.org/10.1097/00042728-200510000-00007]
[7]
Padoin AV, Braga-Silva J, Martins P, et al. Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plast Reconstr Surg 2008; 122(2): 614-8.
[http://dx.doi.org/10.1097/PRS.0b013e31817d5476]
[8]
Tsekouras A, Mantas D, Tsilimigras DI, Moris D, Kontos M, Zografos GC. Comparison of the Viability and Yield of Adipose-Derived Stem Cells (ASCs) from Different Donor Areas. In Vivo 2017; 31(6): 1229-34.
[PMID: 29102952]
[9]
Bellini E, Grieco MP, Raposio E. A journey through liposuction and liposculture. Review Ann Med Surg (Lond) 2017; 24: 53-60.
[http://dx.doi.org/10.1016/j.amsu.2017.10.024] [PMID: 29158895]
[10]
Bellini E, Grieco MP, Raposio E. The science behind autologous fat grafting. Ann Med Surg (Lond) 2017; 24: 65-73.
[http://dx.doi.org/10.1016/j.amsu.2017.11.001] [PMID: 29188051]
[11]
Pu LL, Coleman SR, Cui X, Ferguson RE Jr, Vasconez HC. Autologous fat grafts harvested and refined by the Coleman technique: a comparative study. Plast Reconstr Surg 2008; 122(3): 932-7.
[http://dx.doi.org/10.1097/PRS.0b013e3181811ff0] [PMID: 18766062]
[12]
Fontes T, Brandão I, Negrão R, Martins MJ, Monteiro R. Autologous fat grafting: Harvesting techniques. Ann Med Surg (Lond) 2018; 36: 212-8.
[http://dx.doi.org/10.1016/j.amsu.2018.11.005] [PMID: 30505441]
[13]
Shiffman MA, Mirrafati S. Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatol Surg 2001; 27(9): 819-26.
[http://dx.doi.org/10.1097/00042728-200109000-00008] [PMID: 11553171]
[14]
Klein JAJTAJoCS. The tumescent technique for lipo-suction surgery. J Cutan Aesthet Surg 1987; 4(4): 263-7.
[15]
Klein JAJTJods. oncology Tumescent technique for regional anesthesia permits lidocaine doses of 35 mg/kg for liposuction. J Dermatol Surg Oncol 1990; 16(3): 248-63.
[16]
Simonacci F, Bertozzi N, Grieco MP, Grignaffini E, Raposio E. Procedure, applications, and outcomes of autologous fat grafting. Ann Med Surg (Lond) 2017; 20: 49-60.
[http://dx.doi.org/10.1016/j.amsu.2017.06.059] [PMID: 28702187]
[17]
Kim IH, Yang JD, Lee DG, Chung HY, Cho BC. Evaluation of centrifugation technique and effect of epinephrine on fat cell viability in autologous fat injection. Aesthet Surg J 2009; 29(1): 35-9.
[http://dx.doi.org/10.1016/j.asj.2008.09.004] [PMID: 19233004]
[18]
Moore JH Jr, Kolaczynski JW, Morales LM, et al. Viability of fat obtained by syringe suction lipectomy: effects of local anesthesia with lidocaine. Aesthetic Plast Surg 1995; 19(4): 335-9.
[http://dx.doi.org/10.1007/BF00451659] [PMID: 7484471]
[19]
Nie H, Kubrova E, Wu T, et al. Effect of Lidocaine on Viability and Gene Expression of Human Adipose-derived Mesenchymal Stem Cells: An in vitro Study. PM R 2019; 11(11): 1218-27.
[http://dx.doi.org/10.1002/pmrj.12141] [PMID: 30784215]
[20]
Livaoğlu M, Buruk CK, Uraloğlu M, et al. Effects of lidocaine plus epinephrine and prilocaine on autologous fat graft survival. J Craniofac Surg 2012; 23(4): 1015-8.
[http://dx.doi.org/10.1097/SCS.0b013e31824e7302] [PMID: 22777468]
[21]
Lunger A, Ismail T, Todorov A, et al. Improved Adipocyte Viability in Autologous Fat Grafting With Ascorbic Acid-Supplemented Tumescent Solution. Ann Plast Surg 2019; 83(4): 464-7.
[http://dx.doi.org/10.1097/SAP.0000000000001857] [PMID: 31524744]
[22]
Oranges CM, Striebel J, Tremp M, et al. The Preparation of the Recipient Site in Fat Grafting: A Comprehensive Review of the Preclinical Evidence. Plast Reconstr Surg 2019; 143(4): 1099-107.
[http://dx.doi.org/10.1097/PRS.0000000000005403] [PMID: 30921129]
[23]
Zhan W, Tan SS, Han X, Palmer JA, Mitchell GM, Morrison WA. Indomethacin Enhances Fat Graft Retention by Up-Regulating Adipogenic Genes and Reducing Inflammation. Plast Reconstr Surg 2017; 139(5): 1093e-104e.
[http://dx.doi.org/10.1097/PRS.0000000000003255] [PMID: 28445363]
[24]
Cao Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 2013; 18(4): 478-89.
[http://dx.doi.org/10.1016/j.cmet.2013.08.008] [PMID: 24035587]
[25]
Park J, Kim M, Sun K, An YA, Gu X, Scherer PE. VEGF-A-Expressing Adipose Tissue Shows Rapid Beiging and Enhanced Survival After Transplantation and Confers IL-4-Independent Metabolic Improvements. Diabetes 2017; 66(6): 1479-90.
[http://dx.doi.org/10.2337/db16-1081] [PMID: 28254844]
[26]
Geeroms M, Hamdi M, Hirano R, et al. Quality and Quantity-Cultured Murine Endothelial Progenitor Cells Increase Vascularization and Decrease Fibrosis in the Fat Graft. Plast Reconstr Surg 2019; 143(4): 744e-55e.
[http://dx.doi.org/10.1097/PRS.0000000000005439] [PMID: 30921123]
[27]
Qian Y, Han Q, Chen W, et al. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration. Front Chem 2017; 5: 89.
[http://dx.doi.org/10.3389/fchem.2017.00089] [PMID: 29164105]
[28]
Fisher C, Grahovac TL, Schafer ME, Shippert RD, Marra KG, Rubin JP. Comparison of harvest and processing techniques for fat grafting and adipose stem cell isolation. Plast Reconstr Surg 2013; 132(2): 351-61.
[http://dx.doi.org/10.1097/PRS.0b013e3182958796] [PMID: 23584621]
[29]
Gunton JE, Kulkarni RN, Yim S, et al. Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 2005; 122(3): 337-49.
[http://dx.doi.org/10.1016/j.cell.2005.05.027] [PMID: 16096055]
[30]
Simonacci F, Bertozzi N, Grieco MP, Raposio E. From liposuction to adipose-derived stem cells: indications and technique. Acta Biomed 2019; 90(2): 197-208.
[PMID: 31124996]
[31]
Doornaert M, Colle J, De Maere E, Declercq H, Blondeel P. Autologous fat grafting: Latest insights. Ann Med Surg (Lond) 2018; 37: 47-53.
[http://dx.doi.org/10.1016/j.amsu.2018.10.016] [PMID: 30622707]
[32]
Dong Z, Peng Z, Chang Q, Lu F. The survival condition and immunoregulatory function of adipose stromal vascular fraction (SVF) in the early stage of nonvascularized adipose transplantation. PLoS One 2013; 8(11)e80364
[http://dx.doi.org/10.1371/journal.pone.0080364] [PMID: 24260375]
[33]
Moseley TA, Zhu M, Hedrick MH. Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg 2006; 118(3)(Suppl.): 121S-8S.
[http://dx.doi.org/10.1097/01.prs.0000234609.74811.2e] [PMID: 16936551]
[34]
Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res 2017; 113(9): 1009-23.
[http://dx.doi.org/10.1093/cvr/cvx108] [PMID: 28838042]
[35]
Condé-Green A, Wu I, Graham I, et al. Comparison of 3 techniques of fat grafting and cell-supplemented lipotransfer in athymic rats: a pilot study. Aesthet Surg J 2013; 33(5): 713-21.
[http://dx.doi.org/10.1177/1090820X13487371] [PMID: 23718980]
[36]
Cai L, Han XF, Wang BQ, Li FC. Application of autologous fat grafting in breast reconstruction. Zhonghua wai ke za zhi [Chinese journal of surgery] 2017; 55(9): 696-701. .
[PMID: 28870056]
[37]
Chung NN, Ransom RC, Blackshear CP, et al. Fat Grafting into Younger Recipients Improves Volume Retention in an Animal Model. Plast Reconstr Surg 2019; 143(4): 1067-75.
[http://dx.doi.org/10.1097/PRS.0000000000005483] [PMID: 30730498]
[38]
Lee JH, Kirkham JC, McCormack MC, Nicholls AM, Randolph MA, Austen WG Jr. The effect of pressure and shear on autologous fat grafting. Plast Reconstr Surg 2013; 131(5): 1125-36.
[http://dx.doi.org/10.1097/PRS.0b013e3182879f4a] [PMID: 23385989]
[39]
Khouri RK Jr, Khouri RE, Lujan-Hernandez JR, Khouri KR, Lancerotto L, Orgill DP. Diffusion and perfusion: the keys to fat grafting. Plast Reconstr Surg Glob Open 2014; 2(9)e220
[http://dx.doi.org/10.1097/GOX.0000000000000183] [PMID: 25426403]
[40]
Uda H, Sugawara Y, Sarukawa S, Sunaga A. Brava and autologous fat grafting for breast reconstruction after cancer surgery. Plast Reconstr Surg 2014; 133(2): 203-13.
[http://dx.doi.org/10.1097/01.prs.0000437256.78327.12] [PMID: 24150122]
[41]
Topcu A, Aydin OE, Ünlü M, Barutcu A, Atabey A. Increasing the viability of fat grafts by vascular endothelial growth factor. Arch Facial Plast Surg 2012; 14(4): 270-6.
[http://dx.doi.org/10.1001/archfacial.2011.1633] [PMID: 22351845]
[42]
Shoshani O, Livne E, Armoni M, et al. The effect of interleukin-8 on the viability of injected adipose tissue in nude mice. Plast Reconstr Surg 2005; 115(3): 853-9.
[http://dx.doi.org/10.1097/01.PRS.0000153036.71928.30] [PMID: 15731687]
[43]
Gassman AA, Lewis MS, Lee JC. Remote Ischemic Preconditioning Recipient Tissues Improves the Viability of Murine Fat Transfer. Plast Reconstr Surg 2016; 138(1): 55e-63e.
[http://dx.doi.org/10.1097/PRS.0000000000002295] [PMID: 27348686]
[44]
Sezgin B, Ozmen S, Bulam H, et al. Improving fat graft survival through preconditioning of the recipient site with microneedling. J Plast Reconstr Aesthet Surg 2014; 67(5): 712-20.
[http://dx.doi.org/10.1016/j.bjps.2014.01.019] [PMID: 24529693]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy