Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Piperine from Black Pepper Decreased the Expression of Intercellular Adhesion Molecule-1 in Macrophages

Author(s): Nasser Gholijani, Esmaeil Hashemi and Zahra Amirghofran*

Volume 20 , Issue 2 , 2021

Published on: 02 July, 2020

Page: [201 - 205] Pages: 5

DOI: 10.2174/1871523019666200702093759

Price: $65

Abstract

Background: Macrophages are the main players involved in inflammation. Intercellular adhesion molecule-1 (ICAM-1) facilitates macrophage polarization prior to extravasation into inflamed tissue. Piperine, a natural product derived from black pepper, possesses useful biological and pharmacological activities. In the current study, the possible anti-inflammatory effect of piperine on the expression of ICAM-1 on J774.1 murine macrophage cell line was investigated.

Methods: Lipopolysaccharide (LPS)-stimulated J774.1 cells were cultured in the presence of different concentrations of piperine to examine the changes in ICAM-1 expression by real-time PCR and flow cytometry.

Results: We found that piperine decreased ICAM-1 gene expression level from 2.4 ± 0.25 RFC (relative fold change) in LPS-only treated cells to 0.85 ± 0.525 RFC at 1µg/ml (p<0.05), 0.43 ± 0.27 RFC at 10µg/ml (p<0.01), and 0.26 ± 0.25 RFC at 20µg/ml (p<0.01). In flow cytometry, piperine at all concentrations significantly decreased ICAM-1 surface expressions (P<0.05). The geometric mean fluorescence intensity (g-MFI) in LPS-only treated cells (792 ± 57.3) decreased to 482±70 g-MFI at 20 μg/ml piperine.

Conclusion: According to the results of this study, by decreasing the expression of ICAM-1, piperine has been suggested to reduce inflammation and have the potential to provide therapeutic benefits for immune-mediated diseases.

Keywords: Piperine, J774.1 cell line, macrophage, intercellular adhesion molecule-1, inflammation, lipopolysaccharide.

Graphical Abstract
[1]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[2]
Qian, C.; Liu, J.; Cao, X. Innate signaling in the inflammatory immune disorders. Cytokine Growth Factor Rev., 2014, 25(6), 731-738.
[http://dx.doi.org/10.1016/j.cytogfr.2014.06.003] [PMID: 25007741]
[3]
Muller, W.A. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol., 2003, 24(6), 327-334.
[http://dx.doi.org/10.1016/S1471-4906(03)00117-0] [PMID: 12810109]
[4]
de Sousa, J.; Sousa Aarão, T.L.; Rodrigues de Sousa, J.; Hirai, K.E.; Silva, L.M.; Dias, L.B., Jr; Oliveira Carneiro, F.R.; Fuzii, H.T.; Quaresma, J.A.S. Endothelium adhesion molecules ICAM-1, ICAM-2, VCAM-1 and VLA-4 expression in leprosy. Microb. Pathog., 2017, 104, 116-124.
[http://dx.doi.org/10.1016/j.micpath.2017.01.021] [PMID: 28088473]
[5]
Ruetten, H.; Thiemermann, C.; Perretti, M. Upregulation of ICAM-1 expression on J774.2 macrophages by endotoxin involves activation of NF-kappaB but not protein tyrosine kinase: comparison to induction of iNOS. Mediators Inflamm., 1999, 8(2), 77-84.
[http://dx.doi.org/10.1080/09629359990568] [PMID: 10704144]
[6]
Arango Duque, G.; Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol., 2014, 5, 491.
[http://dx.doi.org/10.3389/fimmu.2014.00491] [PMID: 25339958]
[7]
Amirghofran, Z. Medicinal plants as immunosuppressive agents in traditional Iranian medicine. Iran. J. Immunol., 2010, 7(2), 65-73.
[PMID: 20574119]
[8]
Amirghofran, Z. Herbal medicines for immunosuppression. Iran. J. Allergy Asthma Immunol., 2012, 11(2), 111-119.
[PMID: 22761185]
[9]
Amirghofran, Z.; Ahmadi, H.; Karimi, M.H. Immunomodulatory activity of the water extract of Thymus vulgaris, Thymus daenensis, and Zataria multiflora on dendritic cells and T cells responses. J. Immunoassay Immunochem., 2012, 33(4), 388-402.
[http://dx.doi.org/10.1080/15321819.2012.655822] [PMID: 22963488]
[10]
Gholijani, N.; Gharagozloo, M.; Kalantar, F.; Ramezani, A.; Amirghofran, Z. Modulation of cytokine production and transcription factors activities in human jurkat T cells by thymol and carvacrol. Adv. Pharm. Bull., 2015, 5(Suppl. 1), 653-660.
[http://dx.doi.org/10.15171/apb.2015.089] [PMID: 26793612]
[11]
Meghwal, M.; Goswami, T.K. Chemical composition, nutritional, medicinal and functional properties of black pepper: A review. Open Access. Sci. Rep., 2012, 1, 1-5.
[12]
Pal, A.; Nayak, S.; Sahu, P.K.; Swain, T. Piperine protects epilepsy associated depression: a study on role of monoamines. Eur. Rev. Med. Pharmacol. Sci., 2011, 15(11), 1288-1295.
[PMID: 22195361]
[13]
Mao, Q.Q.; Huang, Z.; Zhong, X.M.; Xian, Y.F.; Ip, S.P. Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice. Behav. Brain Res., 2014, 261, 140-145.
[http://dx.doi.org/10.1016/j.bbr.2013.12.020] [PMID: 24361910]
[14]
BrahmaNaidu. P.; Nemani, H.; Meriga, B.; Mehar, S.K.; Potana, S.; Ramgopalrao, S. Mitigating efficacy of piperine in the physiological derangements of high fat diet induced obesity in Sprague Dawley rats. Chem. Biol. Interact., 2014, 221, 42-51.
[http://dx.doi.org/10.1016/j.cbi.2014.07.008] [PMID: 25087745]
[15]
Bai, Y.F.; Xu, H. Protective action of piperine against experimental gastric ulcer. Acta Pharmacol. Sin., 2000, 21(4), 357-359.
[PMID: 11324467]
[16]
Bae, G.S.; Kim, M.S.; Jeong, J.; Lee, H.Y.; Park, K.C.; Koo, B.S.; Kim, B.J.; Kim, T.H.; Lee, S.H.; Hwang, S.Y.; Shin, Y.K.; Song, H.J.; Park, S.J. Piperine ameliorates the severity of cerulein-induced acute pancreatitis by inhibiting the activation of mitogen activated protein kinases. Biochem. Biophys. Res. Commun., 2011, 410(3), 382-388.
[http://dx.doi.org/10.1016/j.bbrc.2011.05.136] [PMID: 21663734]
[17]
Zhai, W.J.; Zhang, Z.B.; Xu, N.N.; Guo, Y.F.; Qiu, C.; Li, C.Y.; Deng, G.Z.; Guo, M.Y. Piperine plays an anti-inflammatory role in staphylococcus aureus endometritis by inhibiting activation of NF-kappa B and MAPK pathways in mice. Evid. Based Complement. Alternat. Med., 2016.20168597208
[http://dx.doi.org/10.1155/2016/8597208] [PMID: 27293467]
[18]
Mihăilă, B.; Dinică, R.M.; Tatu, A.L.; Buzia, O.D. New insights in vitiligo treatments using bioactive compounds from Piper nigrum. Exp. Ther. Med., 2019, 17(2), 1039-1044.
[PMID: 30679971]
[19]
Murunikkara, V.; Pragasam, S.J.; Kodandaraman, G.; Sabina, E.P.; Rasool, M. Anti-inflammatory effect of piperine in adjuvant-induced arthritic rats--A biochemical approach. Inflammation, 2012, 35(4), 1348-1356.
[http://dx.doi.org/10.1007/s10753-012-9448-3] [PMID: 22389056]
[20]
Ying, X.; Chen, X.; Cheng, S.; Shen, Y.; Peng, L.; Xu, H.Z. Piperine inhibits IL-β induced expression of inflammatory mediators in human osteoarthritis chondrocyte. Int. Immunopharmacol., 2013, 17(2), 293-299.
[http://dx.doi.org/10.1016/j.intimp.2013.06.025] [PMID: 23838114]
[21]
Bae, G.S.; Kim, M.S.; Jung, W.S.; Seo, S.W.; Yun, S.W.; Kim, S.G.; Park, R.K.; Kim, E.C.; Song, H.J.; Park, S.J. Inhibition of lipopolysaccharide-induced inflammatory responses by piperine. Eur. J. Pharmacol., 2010, 642(1-3), 154-162.
[http://dx.doi.org/10.1016/j.ejphar.2010.05.026] [PMID: 20621590]
[22]
Janakiraman, K.; Manavalan, R. Studies on effect of piperine on oral bioavailability of ampicillin and norfloxacin. Afr. J. Tradit. Complement. Altern. Med., 2008, 5(3), 257-262.
[http://dx.doi.org/10.4314/ajtcam.v5i3.31281] [PMID: 20161946]
[23]
Ying, X.; Yu, K.; Chen, X.; Chen, H.; Hong, J.; Cheng, S.; Peng, L. Piperine inhibits LPS induced expression of inflammatory mediators in RAW 264.7 cells. Cell. Immunol., 2013, 285(1-2), 49-54.
[http://dx.doi.org/10.1016/j.cellimm.2013.09.001] [PMID: 24071564]
[24]
Cronstein, B.N.; Kimmel, S.C.; Levin, R.I.; Martiniuk, F.; Weissmann, G. A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc. Natl. Acad. Sci. USA, 1992, 89(21), 9991-9995.
[http://dx.doi.org/10.1073/pnas.89.21.9991] [PMID: 1279685]
[25]
Lam, J.; Herant, M.; Dembo, M.; Heinrich, V. Baseline mechanical characterization of J774 macrophages. Biophys. J., 2009, 96(1), 248-254.
[http://dx.doi.org/10.1529/biophysj.108.139154] [PMID: 18835898]
[26]
Meng, F.; Lowell, C.A. Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J. Exp. Med., 1997, 185(9), 1661-1670.
[http://dx.doi.org/10.1084/jem.185.9.1661] [PMID: 9151903]
[27]
Ishii, N.; Tsuzuki, Y.; Matsuzaki, K.; Miyazaki, J.; Okada, Y.; Hokari, R.; Kawaguchi, A.; Nagao, S.; Itoh, K.; Miura, S. Endotoxin stimulates monocyte-endothelial cell interactions in mouse intestinal Peyer’s patches and villus mucosa. Clin. Exp. Immunol., 2004, 135(2), 226-232.
[http://dx.doi.org/10.1111/j.1365-2249.2003.02369.x] [PMID: 14738449]
[28]
van de Stolpe, A.; Caldenhoven, E.; Raaijmakers, J.A.; van der Saag, P.T.; Koenderman, L. Glucocorticoid-mediated repression of intercellular adhesion molecule-1 expression in human monocytic and bronchial epithelial cell lines. Am. J. Respir. Cell Mol. Biol., 1993, 8(3), 340-347.
[http://dx.doi.org/10.1165/ajrcmb/8.3.340] [PMID: 8095395]
[29]
Bang, J.S.; Oh, D.H.; Choi, H.M.; Sur, B.J.; Lim, S.J.; Kim, J.Y.; Yang, H.I.; Yoo, M.C.; Hahm, D.H.; Kim, K.S. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res. Ther., 2009, 11(2), R49.
[http://dx.doi.org/10.1186/ar2662] [PMID: 19327174]
[30]
Liang, Y.D.; Bai, W.J.; Li, C.G.; Xu, L.H.; Wei, H.X.; Pan, H.; He, X.H.; Ouyang, D.Y. Piperine suppresses pyroptosis and interleukin-1β release upon ATP triggering and bacterial infection. Front. Pharmacol., 2016, 7, 390.
[http://dx.doi.org/10.3389/fphar.2016.00390] [PMID: 27812336]
[31]
Kumar, S.; Singhal, V.; Roshan, R.; Sharma, A.; Rembhotkar, G.W.; Ghosh, B. Piperine inhibits TNF-alpha induced adhesion of neutrophils to endothelial monolayer through suppression of NF-kappaB and IkappaB kinase activation. Eur. J. Pharmacol., 2007, 575(1-3), 177-186.
[http://dx.doi.org/10.1016/j.ejphar.2007.07.056] [PMID: 17764673]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy