Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Bioprospecting of Nitrogenous Heterocyclic Scaffolds with Potential Action for Neglected Parasitosis: A Review

Author(s): Sonaly L. Albino, Jamire M. da Silva, Michelangela S. de C. Nobre, Yvnni M. S. de M. e Silva, Mirelly B. Santos, Rodrigo S. A. de Araújo, Maria do C. A. de Lima, Martine Schmitt and Ricardo O. de Moura*

Volume 26, Issue 33, 2020

Page: [4112 - 4150] Pages: 39

DOI: 10.2174/1381612826666200701160904

Price: $65

conference banner
Abstract

Neglected parasitic diseases are a group of infections currently considered as a worldwide concern. This fact can be attributed to the migration of these diseases to developed and developing countries, associated with therapeutic insufficiency resulted from the low investment in the research and development of new drugs. In order to overcome this situation, bioprospecting supports medicinal chemistry in the identification of new scaffolds with therapeutically appropriate physicochemical and pharmacokinetic properties. Among them, we highlight the nitrogenous heterocyclic compounds, as they are secondary metabolites of many natural products with potential biological activity. The objective of this work was to review studies within a 10-year timeframe (2009- 2019), focusing on the pharmacological application of nitrogen bioprospectives (pyrrole, pyridine, indole, quinoline, acridine, and their respective derivatives) against neglected parasitic infections (malaria, leishmania, trypanosomiases, and schistosomiasis), and their application as a template for semi-synthesis or total synthesis of potential antiparasitic agents. In our studies, it was observed that among the selected articles, there was a higher focus on the attempt to identify and obtain novel antimalarial compounds, in a way that an extensive amount of studies involving all heterocyclic nitrogen nuclei were found. On the other hand, the parasites with the lowest number of publications up until the present date have been trypanosomiasis, especially those caused by Trypanosoma cruzi, and schistosomiasis, where some heterocyclics have not even been cited in recent years. Thus, we conclude that despite the great biodiversity on the planet, little attention has been given to certain neglected tropical diseases, especially those that reach countries with a high poverty rate.

Keywords: Natural products, neglected tropical diseases, molecular design, medicinal chemistry, semi-synthesis, heterocyclic compounds.

[1]
Pushpangadan P, Ijinu TP, Dan VM, George V. Trends in bioprospecting of biodiversity in new drug design. Pleione 2015; 9(2): 267-82.
[2]
Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015; 14(2): 111-29.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[3]
Li JW, Vederas JC. Drug discovery and natural products: end of an era or an endless frontier? Science 2009; 325(5937): 161-5.
[http://dx.doi.org/10.1126/science.1168243] [PMID: 19589993]
[4]
Sukuru SCK, Jenkins JL, Beckwith RE, et al. Plate-based diversity selection based on empirical HTS data to enhance the number of hits and their chemical diversity. J Biomol Screen 2009; 14(6): 690-9.
[http://dx.doi.org/10.1177/1087057109335678] [PMID: 19531667]
[5]
Habtemariam S, Lentini G. Plant-derived anticancer agents: lessons from the pharmacology of geniposide and its aglycone, Genipin. Biomedicines 2018; 6(2): 1-28.
[http://dx.doi.org/10.3390/biomedicines6020039] [PMID: 29587429]
[6]
Mukhtar E, Adhami VM, Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 2014; 13(2): 275-84.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
[7]
Amin A, Gali-Muhtasib H, Ocker M, Schneider-Stock R. Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci 2009; 5(1): 1-11.
[PMID: 23675107]
[8]
Guimarães DO, Momesso LS, Pupo MT. Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Quim Nova 2010; 33(3): 667-79.
[http://dx.doi.org/10.1590/S0100-40422010000300035]
[9]
Wallace RJ. Antimicrobial properties of plant secondary metabolites. Proc Nutr Soc 2004; 63(4): 621-9.
[http://dx.doi.org/10.1079/PNS2004393] [PMID: 15831135]
[10]
Wink M. Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules 2012; 17(11): 12771-91.
[http://dx.doi.org/10.3390/molecules171112771] [PMID: 23114614]
[11]
Buenz EJ, Verpoorte R, Bauer BA. The Ethnopharmacologic Contribution to Bioprospecting Natural Products. Annu Rev Pharmacol Toxicol 2018; 58: 509-30.
[http://dx.doi.org/10.1146/annurev-pharmtox-010617-052703] [PMID: 29077533]
[12]
Soeiro MNC, de Castro SL. Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opin Ther Targets 2009; 13(1): 105-21.
[http://dx.doi.org/10.1517/14728220802623881] [PMID: 19063710]
[13]
Simoben CV, Ntie-Kang F, Akone SH, Sippl W. Compounds from African Medicinal Plants with Activities Against Selected Parasitic Diseases: Schistosomiasis, Trypanosomiasis and Leishmaniasis. Nat Prod Bioprospect 2018; 8(3): 151-69.
[http://dx.doi.org/10.1007/s13659-018-0165-y] [PMID: 29744736]
[14]
Kalaria PN, Karad SC, Raval DK. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur J Med Chem 2018; 158: 917-36.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467]
[15]
Large JM, Birchall K, Bouloc NS, et al. Potent inhibitors of malarial P. Falciparum protein kinase G: Improving the cell activity of a series of imidazopyridines. Bioorg Med Chem Lett 2019; 29(3): 509-14.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.039] [PMID: 30553738]
[16]
Tripathi M, Taylor D, Khan SI, et al. Hybridization of fluoro-amodiaquine (FAQ) with pyrimidines: Synthesis and antimalarial efficacy of FAQ-pyrimidines. ACS Med Chem Lett 2019; 10(5): 714-9.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00496] [PMID: 31097988]
[17]
Maurya SS, Khan SI, Bahuguna A, Kumar D, Rawat DS. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids. Eur J Med Chem 2017; 129: 175-85.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.024] [PMID: 28222317]
[18]
Noonan TJ, Chibale K, Cheuka PM, Bourne SA, Caira MR. Cocrystal and salt forms of an imidazopyridazine antimalarial drug lead. J Pharm Sci 2019; 108(7): 2349-57.
[http://dx.doi.org/10.1016/j.xphs.2019.02.006] [PMID: 30817923]
[19]
Cheuka PM, Lawrence N, Taylor D, Wittlin S, Chibale K. Antiplasmodial imidazopyridazines: structure-activity relationship studies lead to the identification of analogues with improved solubility and hERG profiles. MedChemComm 2018; 9(10): 1733-45.
[http://dx.doi.org/10.1039/C8MD00382C] [PMID: 30429978]
[20]
Kumar V, Mahajan A, Chibale K. Synthetic medicinal chemistry of selected antimalarial natural products. Bioorg Med Chem 2009; 17(6): 2236-75.
[http://dx.doi.org/10.1016/j.bmc.2008.10.072] [PMID: 19157883]
[21]
Park BS, Kim DY, Rosenthal PJ, et al. Synthesis and evaluation of new antimalarial analogues of quinoline alkaloids derived from Cinchona ledgeriana Moens ex Trimen. Bioorg Med Chem Lett 2002; 12(10): 1351-5.
[http://dx.doi.org/10.1016/S0960-894X(02)00173-7] [PMID: 11992775]
[22]
Kumar A, Katiyar SB, Agarwal A, Chauhan PMS. Perspective in antimalarial chemotherapy. Curr Med Chem 2003; 10(13): 1137-50.
[http://dx.doi.org/10.2174/0929867033457494] [PMID: 12678807]
[23]
Dewick PM. Medicinal Natural Products: A Biosynthetic Approach. 3rd ed. Chichester: John Wiley & Sons 2009.
[http://dx.doi.org/10.1002/9780470742761]
[24]
Adam R, Bilbao-Ramos P, Abarca B, et al. Triazolopyridopyrimidines: an emerging family of effective DNA photocleavers. DNA binding. Antileishmanial activity. Org Biomol Chem 2015; 13(17): 4903-17.
[http://dx.doi.org/10.1039/C5OB00280J] [PMID: 25812028]
[25]
Marhadour S, Marchand P, Pagniez F, et al. Synthesis and biological evaluation of 2,3-diarylimidazo[1,2-a]pyridines as antileishmanial agents. Eur J Med Chem 2012; 58: 543-56.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.048] [PMID: 23164660]
[26]
Marchand P, Bazin MA, Pagniez F, et al. Synthesis, antileishmanial activity and cytotoxicity of 2,3-diaryl- and 2,3,8-trisubstituted imidazo[1,2-a]pyrazines. Eur J Med Chem 2015; 103: 381-95.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.002] [PMID: 26383125]
[27]
Lapier M, Ballesteros-Garrido R, Guzman-Rivera D, et al. Novel [1,2,3]triazolo[1,5-a]pyridine derivatives are trypanocidal by sterol biosynthesis pathway alteration. Future Med Chem 2019; 11(10): 1137-55.
[http://dx.doi.org/10.4155/fmc-2018-0242] [PMID: 31280672]
[28]
Salvador RRS, Bello ML, Barreto IRL, et al. New carbohydrazide derivatives of 1H-pyrazolo[3,4-b]pyridine and trypanocidal activity. An Acad Bras Cienc 2016; 88(4): 2341-8.
[http://dx.doi.org/10.1590/0001-3765201620160087] [PMID: 27925033]
[29]
Thomas MG, De Rycker M, Cotillo Torrejon I, et al. 2,4-Diamino-6-methylpyrimidines for the potential treatment of Chagas’ disease. Bioorg Med Chem Lett 2018; 28(18): 3025-30.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.005] [PMID: 30104093]
[30]
Fersing C, Boudot C, Pedron J, et al. 8-Aryl-6-chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridines as potent antitrypanosomatid molecules bioactivated by type 1 nitroreductases. Eur J Med Chem 2018; 157: 115-26.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.064] [PMID: 30092366]
[31]
Venkatraj M, Salado IG, Heeres J, et al. Novel triazine dimers with potent antitrypanosomal activity. Eur J Med Chem 2018; 143: 306-19.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.075] [PMID: 29197735]
[32]
da Silva VBR, Campos BRKL, de Oliveira JF, Decout JL, do Carmo Alves de Lima M. Medicinal chemistry of antischistosomal drugs: Praziquantel and oxamniquine. Bioorg Med Chem 2017; 25(13): 3259-77.
[http://dx.doi.org/10.1016/j.bmc.2017.04.031] [PMID: 28495384]
[33]
Brooker S, Clements AC, Bundy DA. Global epidemiology, ecology and control of soil-transmitted helminth infections. Adv Parasitol 2006; 62: 221-61.
[http://dx.doi.org/10.1016/S0065-308X(05)62007-6] [PMID: 16647972]
[34]
Gryseels B, Polman K, Clerinx J, Kestens L. Human schistosomiasis. Lancet 2006; 368(9541): 1106-18.
[http://dx.doi.org/10.1016/S0140-6736(06)69440-3] [PMID: 16997665]
[35]
Ouellette M. Biochemical and molecular mechanisms of drug resistance in parasites. Trop Med Int Health 2001; 6(11): 874-82.
[http://dx.doi.org/10.1046/j.1365-3156.2001.00777.x] [PMID: 11703841]
[36]
Pramanik PK, Alam MN, Roy Chowdhury D, Chakraborti T. Drug resistance in protozoan parasites: an incessant wrestle for survival. J Glob Antimicrob Resist 2019; 18: 1-11.
[http://dx.doi.org/10.1016/j.jgar.2019.01.023] [PMID: 30685461]
[37]
Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg Med Chem 2019; 27(16): 3511-31.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[38]
Dai Y, Zhang T, Yiang’ai P, et al. Computational study on fused five membered heterocyclic compounds containing tertiary oxygen. J Mol Struct 2017; 1129: 98-104.
[http://dx.doi.org/10.1016/j.molstruc.2016.09.058]
[39]
Menegatti R, Fraga CAM, Barreiro EJA. Importância da síntese de fármacos. QNEsc 2001; 3: 16-22.
[40]
Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem 2014; 57(24): 10257-74.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[41]
Barbosa-Filho JM, Piuvezam MR, Moura MD, et al. Anti-inflammatory activity of alkaloids: a twenty-century review. Rev Bras Farmacogn 2006; 16: 109-39.
[http://dx.doi.org/10.1590/S0102-695X2006000100020]
[42]
Perviz S, Khan H, Pervaiz A. Plant alkaloids as an emerging therapeutic alternative for the treatment of depression. Front Pharmacol 2016; 7(28): 28.
[http://dx.doi.org/10.3389/fphar.2016.00028] [PMID: 26913004]
[43]
do Amaral Rodrigues J, de Araújo AR, Pitombeira NA, et al. Acetylated cashew gum-based nanoparticles for the incorporation of alkaloid epiisopiloturine. Int J Biol Macromol 2019; 128: 965-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.206] [PMID: 30711562]
[44]
Santos JO, Pereira GR, Brandão GC, et al. Synthesis, in vitro antimalarial activity and in silico studies of hybrid kauranoid 1,2,3-triazoles derived from naturally occurring diterpenes. J Braz Chem Soc 2016; 27(3): 551-65.
[http://dx.doi.org/10.5935/0103-5053.20150287]
[45]
Li H, Aneja R, Chaiken I. Click chemistry in peptide-based drug design. Molecules 2013; 18(8): 9797-817.
[http://dx.doi.org/10.3390/molecules18089797] [PMID: 23959192]
[46]
Chu C, Liu R. Application of click chemistry on preparation of separation materials for liquid chromatography. Chem Soc Rev 2011; 40(5): 2177-88.
[http://dx.doi.org/10.1039/c0cs00066c] [PMID: 21212875]
[47]
Agalave SG, Maujan SR, Pore VS. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem Asian J 2011; 6(10): 2696-718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[48]
Pagliai F, Pirali T, Del Grosso E, et al. Rapid synthesis of triazole-modified resveratrol analogues via click chemistry. J Med Chem 2006; 49(2): 467-70.
[http://dx.doi.org/10.1021/jm051118z] [PMID: 16420033]
[49]
Guantai EM, Ncokazi K, Egan TJ, et al. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg Med Chem 2010; 18(23): 8243-56.
[http://dx.doi.org/10.1016/j.bmc.2010.10.009] [PMID: 21044845]
[50]
Raether W, Hänel H. Nitroheterocyclic drugs with broad spectrum activity. Parasitol Res 2003; 90(1)(Suppl. 1): S19-39.
[http://dx.doi.org/10.1007/s00436-002-0754-9] [PMID: 12811546]
[51]
Wilkinson SR, Bot C, Kelly JM, Hall BS. Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives. Curr Top Med Chem 2011; 11(16): 2072-84.
[http://dx.doi.org/10.2174/156802611796575894] [PMID: 21619510]
[52]
Penna-Coutinho J, Cortopassi WA, Oliveira AA, França TC, Krettli AU. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PLoS One 2011; 6(7)e21237
[http://dx.doi.org/10.1371/journal.pone.0021237] [PMID: 21779323]
[53]
Hitchcock CA. Cytochrome P-450-dependent 14 alpha-sterol demethylase of Candida albicans and its interaction with azole antifungals. Biochem Soc Trans 1991; 19(3): 782-7.
[http://dx.doi.org/10.1042/bst0190782] [PMID: 1783216]
[54]
Fromtling RA. Overview of medically important antifungal azole derivatives. Clin Microbiol Rev 1988; 1(2): 187-217.
[http://dx.doi.org/10.1128/CMR.1.2.187] [PMID: 3069196]
[55]
Fairlamb AH, Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 1992; 46: 695-729.
[http://dx.doi.org/10.1146/annurev.mi.46.100192.003403] [PMID: 1444271]
[56]
Botros SS, William S, Sabra AA, et al. Screening of a PDE-focused library identifies imidazoles with in vitro and in vivo antischistosomal activity. Int J Parasitol Drugs Drug Resist 2019; 9: 35-43.
[http://dx.doi.org/10.1016/j.ijpddr.2019.01.001] [PMID: 30669086]
[57]
Riffel A, Medina LF, Stefani V, Santos RC, Bizani D, Brandelli A. In vitro antimicrobial activity of a new series of 1,4-naphthoquinones. Braz J Med Biol Res 2002; 35(7): 811-8.
[http://dx.doi.org/10.1590/S0100-879X2002000700008] [PMID: 12131921]
[58]
de Andrade-Neto VF, Goulart MOF, da Silva Filho JF, et al. Antimalarial activity of phenazines from lapachol, beta-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg Med Chem Lett 2004; 14(5): 1145-9.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.069] [PMID: 14980653]
[59]
Brandão GC, Rocha Missias FC, Arantes LM, et al. Antimalarial naphthoquinones. Synthesis via click chemistry, in vitro activity, docking to PfDHODH and SAR of lapachol-based compounds. Eur J Med Chem 2018; 145: 191-205.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.051] [PMID: 29324340]
[60]
Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today 2017; 22(10): 1572-81.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014] [PMID: 28676407]
[61]
Amaratunga C, Lim P, Suon S, et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis 2016; 16(3): 357-65.
[http://dx.doi.org/10.1016/S1473-3099(15)00487-9] [PMID: 26774243]
[62]
Spring MD, Lin JT, Manning JE, et al. Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study. Lancet Infect Dis 2015; 15(6): 683-91.
[http://dx.doi.org/10.1016/S1473-3099(15)70049-6] [PMID: 25877962]
[63]
Lobo L, Cabral LIL, Sena MI, et al. New endoperoxides highly active in vivo and in vitro against artemisinin-resistant Plasmodium falciparum. Malar J 2018; 17(1): 145-55.
[http://dx.doi.org/10.1186/s12936-018-2281-x] [PMID: 29615130]
[64]
Gerber NN. A new prodiginne (prodigiosin-like) pigment from Streptomyces. Antimalarial activity of several prodiginnes. J Antibiot (Tokyo) 1975; 28(3): 194-9.
[http://dx.doi.org/10.7164/antibiotics.28.194] [PMID: 1092639]
[65]
Rahul S, Chandrashekhar P, Hemant B, et al. In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol Int 2015; 64(5): 353-6.
[http://dx.doi.org/10.1016/j.parint.2015.05.004] [PMID: 25986963]
[66]
Kancharla P, Kelly JX, Reynolds KA. Synthesis and structure activity relationships of tambjamines and B-Ring functionalized prodiginines as potent antimalarials. J Med Chem 2015; 58(18): 7286-309.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00560] [PMID: 26305125]
[67]
Salem SM, Kancharla P, Florova G, Gupta S, Lu W, Reynolds KA. Elucidation of final steps of the marineosins biosynthetic pathway through identification and characterization of the corresponding gene cluster. J Am Chem Soc 2014; 136(12): 4565-74.
[http://dx.doi.org/10.1021/ja411544w] [PMID: 24575817]
[68]
Teixeira RR, Gazolla PAR, da Silva AM, et al. Synthesis and leishmanicidal activity of eugenol derivatives bearing 1,2,3-triazole functionalities. Eur J Med Chem 2018; 146: 274-86.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.046] [PMID: 29407957]
[69]
Ueda-Nakamura T, Mendonça-Filho RR, Morgado-Díaz JA, et al. Antileishmanial activity of Eugenol-rich essential oil from Ocimum gratissimum. Parasitol Int 2006; 55(2): 99-105.
[http://dx.doi.org/10.1016/j.parint.2005.10.006] [PMID: 16343984]
[70]
Dwivedi P, Mishra KB, Mishra BB, Singh N, Singh RK, Tiwari VK. Click inspired synthesis of antileishmanial triazolyl O-benzylquercetin glycoconjugates. Glycoconj J 2015; 32(3-4): 127-40.
[http://dx.doi.org/10.1007/s10719-015-9582-x] [PMID: 25869315]
[71]
Cassamale TB, Costa EC, Carvalho DB, et al. Synthesis and antitrypanosomastid activity of 1,4-diaryl-1,2,3-triazole analogs of neolignans veraguensin, grandisin and machilin G. J Braz Chem Soc 2016; 27(7): 1217-28.
[http://dx.doi.org/10.5935/0103-5053.20160017]
[72]
Costa EC, Cassamale TB, Carvalho DB, et al. Antileishmanial activity and structure-activity relationship of triazolic compounds derived from the neolignans grandisin, veraguensin, and machilin G. Molecules 2016; 21(6): 802-12.
[http://dx.doi.org/10.3390/molecules21060802] [PMID: 27331807]
[73]
Rodríguez-Hernández D, Barbosa LCA, Demuner AJ, de Almeida RM, Fujiwara RT, Ferreira SR. Highly potent anti-leishmanial derivatives of hederagenin, a triperpenoid from Sapindus saponaria L. Eur J Med Chem 2016; 124: 153-9.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.030] [PMID: 27569196]
[74]
Rodríguez-Hernández D, Barbosa LCA, Demuner AJ, et al. Leishmanicidal and cytotoxic activity of hederagenin-bistriazolyl derivatives. Eur J Med Chem 2017; 140: 624-35.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.045] [PMID: 29024910]
[75]
Sousa MC, Varandas R, Santos RC, Santos-Rosa M, Alves V, Salvador JAR. Antileishmanial activity of semisynthetic lupane triterpenoids betulin and betulinic acid derivatives: synergistic effects with miltefosine. PLoS One 2014; 9(3)e89939
[http://dx.doi.org/10.1371/journal.pone.0089939] [PMID: 24643019]
[76]
Zimmermann LA, de Moraes MH, da Rosa R, et al. Synthesis and SAR of new isoxazole-triazole bis-heterocyclic compounds as analogues of natural lignans with antiparasitic activity. Bioorg Med Chem 2018; 26(17): 4850-62.
[http://dx.doi.org/10.1016/j.bmc.2018.08.025] [PMID: 30173929]
[77]
Gould ER, King EFB, Menzies SK, et al. Simplifying nature: Towards the design of broad spectrum kinetoplastid inhibitors, inspired by acetogenins. Bioorg Med Chem 2017; 25(22): 6126-36.
[http://dx.doi.org/10.1016/j.bmc.2017.01.021] [PMID: 28185724]
[78]
Bermejo A, Figadere B, Zafra-Polo MC, Barrachina I, Estornell E, Cortes D. Acetogenins from Annonaceae: recent progress in isolation, synthesis and mechanisms of action. Nat Prod Rep 2005; 22(2): 269-303.
[http://dx.doi.org/10.1039/B500186M] [PMID: 15806200]
[79]
Tulloch LB, Menzies SK, Fraser AL, et al. Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues. PLoS Negl Trop Dis 2017; 11(9)e0005886
[http://dx.doi.org/10.1371/journal.pntd.0005886] [PMID: 28873407]
[80]
Scott FJ, Khalaf AI, Giordani F, et al. An evaluation of Minor Groove Binders as anti-Trypanosoma brucei brucei therapeutics. Eur J Med Chem 2016; 116: 116-25.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.064] [PMID: 27060763]
[81]
Boger DL, Johnson DS. CC-1065 and the Duocarmycins: Understanding their biological function through mechanistic studies. Angew Chem 1996; 35: 1438-74.
[http://dx.doi.org/10.1002/anie.199614381]
[82]
Guimarães MA, Campelo YD, Véras LM, et al. Nanopharmaceutical approach of epiisopiloturine alkaloid carried in liposome system: preparation and in vitro schistosomicidal activity. J Nanosci Nanotechnol 2014; 14(6): 4519-28.
[http://dx.doi.org/10.1166/jnn.2014.8248] [PMID: 24738423]
[83]
Guimarães MA, de Oliveira RN, Véras LMC, et al. Anthelmintic activity in vivo of epiisopiloturine against juvenile and adult worms of Schistosoma mansoni. PLoS Negl Trop Dis 2015; 9(3)e0003656
[http://dx.doi.org/10.1371/journal.pntd.0003656] [PMID: 25816129]
[84]
Rocha JA, Andrade IM, Véras LM, et al. Anthelmintic, antibacterial and cytotoxicity activity of imidazole alkaloids from Pilocarpus microphyllus leaves. Phytother Res 2017; 31(4): 624-30.
[http://dx.doi.org/10.1002/ptr.5771] [PMID: 28111828]
[85]
de Lima LI, Py-Daniel KR, Guimarães MA, et al. Self-nanoemulsifying drug-delivery systems improve oral absorption and antischistosomal activity of epiisopiloturine. Nanomedicine (Lond) 2018; 13(7): 689-702.
[http://dx.doi.org/10.2217/nnm-2017-0308] [PMID: 29564947]
[86]
Rocha JA, Rego NCS, Carvalho BTS, et al. Computational quantum chemistry, molecular docking, and ADMET predictions of imidazole alkaloids of Pilocarpus microphyllus with schistosomicidal properties. PLoS One 2018; 13(6)e0198476
[http://dx.doi.org/10.1371/journal.pone.0198476] [PMID: 29944674]
[87]
Portes MC, De Moraes J, Véras LMC, et al. Structural and spectroscopic characterization of epiisopiloturine-metal complexes, and anthelmintic activity vs, S. mansoni. J Coord Chem 2016; 69(10): 1663-83.
[http://dx.doi.org/10.1080/00958972.2016.1182162]
[88]
Véras LMC, Guimarães MA, Campelo YD, et al. Activity of epiisopiloturine against Schistosoma mansoni. Curr Med Chem 2012; 19(13): 2051-8.
[http://dx.doi.org/10.2174/092986712800167347] [PMID: 22420337]
[89]
Guimarães MA, de Oliveira RN, de Almeida RL, et al. Epiisopilosine alkaloid has activity against Schistosoma mansoni in mice without acute toxicity. PLoS One 2018; 13(5)e0196667
[http://dx.doi.org/10.1371/journal.pone.0196667] [PMID: 29750792]
[90]
Xue L, Shi DH, Harjani JR, et al. 3,3′-Disubstituted 5,5′-Bi(1,2,4-triazine) derivatives with Potent in vitro and in vivo Antimalarial Activity. J Med Chem 2019; 62(5): 2485-98.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01799] [PMID: 30715882]
[91]
Pathak M, Ojha H, Tiwari AK, Sharma D, Saini M, Kakkar R. Design, synthesis and biological evaluation of antimalarial activity of new derivatives of 2,4,6-s-triazine. Chem Cent J 2017; 11(1): 132-.
[http://dx.doi.org/10.1186/s13065-017-0362-5] [PMID: 29256159]
[92]
García Liñares G, Parraud G, Labriola C, Baldessari A. Chemoenzymatic synthesis and biological evaluation of 2- and 3-hydroxypyridine derivatives against Leishmania mexicana. Bioorg Med Chem 2012; 20(15): 4614-24.
[http://dx.doi.org/10.1016/j.bmc.2012.06.028] [PMID: 22781310]
[93]
Suryawanshi SN, Kumar S, Shivahare R, Pandey S, Tiwari A, Gupta S. Design, synthesis and biological evaluation of aryl pyrimidine derivatives as potential leishmanicidal agents. Bioorg Med Chem Lett 2013; 23(18): 5235-8.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.060] [PMID: 23910597]
[94]
Khattab SN, Khalil HH, Bekhit AA, et al. 1,3,5-triazino-peptide derivatives: synthesis, characterization and preliminary antileishmanial activity. ChemMedChem 2018; 13(7): 725-35.
[http://dx.doi.org/10.1002/cmdc.201700770] [PMID: 29388337]
[95]
Chauhan K, Sharma M, Shivahare R, et al. Discovery of triazine mimetics as potent antileishmanial agents. ACS Med Chem Lett 2013; 4(11): 1108-13.
[http://dx.doi.org/10.1021/ml400317e] [PMID: 24900613]
[96]
Davison EK, Sperry J. Natural Products with Heteroatom-Rich Ring Systems. J Nat Prod 2017; 80(11): 3060-79.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00575] [PMID: 29135244]
[97]
Morita H, Oshimi S, Hirasawa Y, et al. Cassiarins A and B, novel antiplasmodial alkaloids from Cassia siamea. Org Lett 2007; 9(18): 3691-3.
[http://dx.doi.org/10.1021/ol701623n] [PMID: 17685627]
[98]
Zheng L, Bin Y, Wang Y, Hua R. Synthesis of Natural Product-like Polyheterocycles via One-Pot Cascade Oximation, C-H Activation, and Alkyne Annulation. J Org Chem 2016; 81(19): 8911-9.
[http://dx.doi.org/10.1021/acs.joc.6b01460] [PMID: 27626812]
[99]
Noonan TJ, Chibale K, Cheuka PM, Bourne SA, Caira MR. Co-crystal and salt forms of an imidazopyridazine antimalarial drug lead. J Pharm Sci 2019; 108(7): 2349-57.
[http://dx.doi.org/10.1016/j.xphs.2019.02.006] [PMID: 30817923]
[100]
Le Manach C, Gonzàlez Cabrera D, Douelle F, et al. Medicinal chemistry optimization of antiplasmodial imidazopyridazine hits from high throughput screening of a SoftFocus kinase library: part 1. J Med Chem 2014; 57(6): 2789-98.
[http://dx.doi.org/10.1021/jm500098s] [PMID: 24568587]
[101]
Le Manach C, Nchinda AT, Paquet T, et al. Identification of a Potential Antimalarial Drug Candidate from a Series of 2-Aminopyrazines by Optimization of Aqueous Solubility and Potency across the Parasite Life Cycle. J Med Chem 2016; 59(21): 9890-905.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01265] [PMID: 27748596]
[102]
Acevedo CH, Scotti L, Alves MF, Diniz MFFM, Scotti MT. Hybrid compounds in the search for alternative chemotherapeutic agents against neglected tropical diseases. Lett Org Chem 2019; 16: 81-92.
[http://dx.doi.org/10.2174/1570178615666180402123057]
[103]
Castera-Ducros C, Paloque L, Verhaeghe P, et al. Targeting the human parasite Leishmania donovani: discovery of a new promising anti-infectious pharmacophore in 3-nitroimidazo[1,2-a]pyridine series. Bioorg Med Chem 2013; 21(22): 7155-64.
[http://dx.doi.org/10.1016/j.bmc.2013.09.002] [PMID: 24080103]
[104]
Anjum K, Kaleem S, Yi W, Zheng G, Lian X, Zhang Z. Novel antimicrobial indolepyrazines A and B from the marine-associated Acinetobacter sp. ZZ1275. Mar Drugs 2019; 17(2): 89-94.
[http://dx.doi.org/10.3390/md17020089] [PMID: 30717135]
[105]
Medeiros ACRF, Borges JC, Becker KM, et al. Synthesis of new conjugates 1H-pyrazolo[3,4-b]pyridine-phosphoramidate and evaluation against Leishmania amazonensis. J Braz Chem Soc 2018; 29: 159-67.
[http://dx.doi.org/10.21577/0103-5053.20170126]
[106]
Kumar R, Kumar N, Roy RK, Singh A. Triazines - A comprehensive review of their synthesis and diverse biological importance. Curr Med Drug Res 2017; 1: 1.
[107]
Scotti MT, Scotti L, Ishiki H, et al. Natural Products as a Source for Antileishmanial and Antitrypanosomal Agents. Comb Chem High Throughput Screen 2016; 19(7): 537-53.
[http://dx.doi.org/10.2174/1386207319666160506123921] [PMID: 27682867]
[108]
Braga SFP, Martins LC, da Silva EB, et al. Synthesis and biological evaluation of potential inhibitors of the cysteine proteases cruzain and rhodesain designed by molecular simplification. Bioorg Med Chem 2017; 25(6): 1889-900.
[http://dx.doi.org/10.1016/j.bmc.2017.02.009] [PMID: 28215783]
[109]
Neves BJ, Andrade CH, Cravo PVL. Natural products as leads in schistosome drug discovery. Molecules 2015; 20(2): 1872-903.
[http://dx.doi.org/10.3390/molecules20021872] [PMID: 25625682]
[110]
Bracca ABJ, Heredia DA, Larghi EL, Kaufman TS. Neocryptolepine (cryprotackieine), a unique bioactive natural product: isolation, synthesis, and profile of Its biological activity. Eur J Org Chem 2014; 7979-8003.
[http://dx.doi.org/10.1002/ejoc.201402910]
[111]
Félix MB, de Souza ER, de Lima MDCA, et al. Antileishmanial activity of new thiophene-indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies. Bioorg Med Chem 2016; 24(18): 3972-7.
[http://dx.doi.org/10.1016/j.bmc.2016.04.057] [PMID: 27515718]
[112]
Júnior ASAA, Oliveira JF. In vitro activity, ultrastructural studies and in silico pharmacokinetic properties of indol-3-yl-thiosemicarbazones derivatives and analogs against juvenile and adult worms of S. mansoni. Eur J Pharm Sci 2019; 138.
[http://dx.doi.org/10.1016/j.ejps.2019.104985]
[113]
Ngantchou I, Nyasse B, Denier C, Blonski C, Hannaert V, Schneider B. Antitrypanosomal alkaloids from Polyalthia suaveolens (Annonaceae): their effects on three selected glycolytic enzymes of Trypanosoma brucei. Bioorg Med Chem Lett 2010; 20(12): 3495-8.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.145] [PMID: 20529682]
[114]
Sangshetti JN, Kalam Khan FA, Kulkarni AA, et al. Antileishmanial activity of novel indolyl-coumarin hybrids: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. Bioorg Med Chem Lett 2016; 26(3): 829-35.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.085] [PMID: 26778149]
[115]
Svogie AL, Isaacs M, Hoppe HC, Khanye SD, Veale CGL. Indolyl-3-ethanone-α-thioethers: A promising new class of non-toxic antimalarial agents. Eur J Med Chem 2016; 114: 79-88.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.056] [PMID: 26974377]
[116]
Cimanga K, De Bruyne T, Pieters L, Vlietinck AJ, Turger CA. In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. J Nat Prod 1997; 60(7): 688-91.
[http://dx.doi.org/10.1021/np9605246] [PMID: 9249972]
[117]
Lisgarten JN, Coll M, Portugal J, Wright CW, Aymami J. The antimalarial and cytotoxic drug cryptolepine intercalates into DNA at cytosine-cytosine sites. Nat Struct Biol 2002; 9(1): 57-60.
[http://dx.doi.org/10.1038/nsb729] [PMID: 11731803]
[118]
Yadav RR, Khan SI, Singh S, Khan IA, Vishwakarma RA, Bharate SB. Synthesis, antimalarial and antitubercular activities of meridianin derivatives. Eur J Med Chem 2015; 98: 160-9.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.020] [PMID: 26005918]
[119]
Onambele LA, Riepl H, Fischer R, Pradel G, Prokop A, Aminake MN. Synthesis and evaluation of the antiplasmodial activity of tryptanthrin derivatives. Int J Parasitol Drugs Drug Resist 2015; 5(2): 48-57.
[http://dx.doi.org/10.1016/j.ijpddr.2015.03.002] [PMID: 25949928]
[120]
Fusetani N, Asano M, Matsunaga S, Hashimoto K. Bioactive marine metabolites-XV. Isolation of aplysinopsin from the scleractinian coral Tubastrea aurea as an inhibitor of development of fertilized sea urchin eggs. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 1986; 85: 845-6.
[http://dx.doi.org/10.1016/0305-0491(86)90184-7]
[121]
Yadav BPI, Ahmad I, Thakur M. Synthesis of some novel indole derivatives as potential antibacterial, antifungal and antimalarial agents. IOSR J Pharm 2016; 6: 27-33.
[122]
Luthra T, Nayak AK, Bose S, Chakrabarti S, Gupta A, Sen S. Indole based antimalarial compounds targeting the melatonin pathway: Their design, synthesis and biological evaluation. Eur J Med Chem 2019; 168: 11-27.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.019] [PMID: 30798050]
[123]
Landa S, Macháček V. Sur l’adamantane, nouvel hydrocarbure extrait du naphte. Collect Czech Chem Commun 1933; 5: 1-5.
[http://dx.doi.org/10.1135/cccc19330001]
[124]
Maugh TH II. Panel urges wide use of antiviral drug. Science 1979; 206(4422): 1058-60.
[http://dx.doi.org/10.1126/science.386515] [PMID: 386515]
[125]
Blanpied TA, Clarke RJ, Johnson JW. Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J Neurosci 2005; 25(13): 3312-22.
[http://dx.doi.org/10.1523/JNEUROSCI.4262-04.2005] [PMID: 15800186]
[126]
Devender N, Gunjan S, Tripathi R, Tripathi RP. Synthesis and antiplasmodial activity of novel indoleamide derivatives bearing sulfonamide and triazole pharmacophores. Eur J Med Chem 2017; 131: 171-84.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.010] [PMID: 28319782]
[127]
Yeung BKS. KAE609 (Cipargamin): Discovery of Spiroindolone AntimalarialsComprehensive Medicinal Chemistry III. Amsterdam: Elsevier 2017; pp. 529-43.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12469-2]
[128]
Gellért E, Raymond-Hamet e Schlittler E. Die Konstitution des Alkaloids Cryptolepin. Helv Chim Acta 1951; 34: 642-51.
[http://dx.doi.org/10.1002/hlca.19510340228]
[129]
Aroonkit P, Thongsornkleeb C, Tummatorn J, Krajangsri S, Mungthin M, Ruchirawat S. Synthesis of isocryptolepine analogues and their structure-activity relationship studies as antiplasmodial and antiproliferative agents. Eur J Med Chem 2015; 94: 56-62.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.047] [PMID: 25747499]
[130]
Chakka SK, Kalamuddin M, Sundararaman S, et al. Identification of novel class of falcipain-2 inhibitors as potential antimalarial agents. Bioorg Med Chem 2015; 23(9): 2221-40.
[http://dx.doi.org/10.1016/j.bmc.2015.02.062] [PMID: 25840796]
[131]
Ugwu DI, Okoro UC, Ukoha PO, Okafor S, Ibezim A, Kumar NM. Synthesis, characterization, molecular docking and in vitro antimalarial properties of new carboxamides bearing sulphonamide. Eur J Med Chem 2017; 135: 349-69.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.029] [PMID: 28460310]
[132]
Tempone AG, Martins de Oliveira C, Berlinck RG. Current approaches to discover marine antileishmanial natural products. Planta Med 2011; 77(6): 572-85.
[http://dx.doi.org/10.1055/s-0030-1250663] [PMID: 21243582]
[133]
Ashok P, Chander S, Chow LMC, et al. Synthesis and in-vitro anti-leishmanial activity of (4-arylpiperazin-1-yl)(1-(thiophen-2-yl)-9H-pyrido[3,4-b]indol-3-yl)methanone derivatives. Bioorg Chem 2017; 70: 100-6. a.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.013] [PMID: 27939960]
[134]
Ashok P, Chander S, Tejería A, García-Calvo L, Balaña-Fouce R, Murugesan S. Synthesis and anti-leishmanial evaluation of 1-phenyl-2,3,4,9-tetrahydro-1H-β-carboline derivatives against Leishmania infantum. Eur J Med Chem 2016; 123: 814-821.b.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.014] [PMID: 27541264]
[135]
Ashok P, Chander S, Smith TK, Sankaranarayanan M. Design, synthesis and biological evaluation of piperazinyl-β-carbolinederivatives as anti-leishmanial agents. Eur J Med Chem 2018; 150: 559-66.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.022] [PMID: 29549840]
[136]
Ashok P, Chander S, Smith TK, Prakash Singh R, Jha PN, Sankaranarayanan M. Biological evaluation and structure activity relationship of 9-methyl-1-phenyl-9H-pyrido[3,4-b]indole derivatives as anti-leishmanial agents. Bioorg Chem 2019; 84: 98-105.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.037] [PMID: 30500524]
[137]
Murray RDH. Naturally Occurring Plant Coumarins SpringerVerlag 1978; 1: 200-9.
[http://dx.doi.org/10.1007/978-3-7091-8505-6_4]
[138]
Meyer V. Ueber den begleiter des benzols im steinkohlentheer. Ber Dtsch Chem Ges 1883; 1: 1465-78.
[http://dx.doi.org/10.1002/cber.188301601324]
[139]
Rodrigues KADF, Silva DKF, Serafim VL, et al. SB-83, a 2-Amino-thiophene derivative orally bioavailable candidate for the leishmaniasis treatment. Biomed Pharmacother 2018; 108: 1670-8.
[http://dx.doi.org/10.1016/j.biopha.2018.10.012] [PMID: 30372869]
[140]
Santiago Ede F, de Oliveira SA, de Oliveira Filho GB, et al. Evaluation of the anti-Schistosoma mansoni activity of thiosemicarbazones and thiazoles. Antimicrob Agents Chemother 2014; 58(1): 352-63.
[http://dx.doi.org/10.1128/AAC.01900-13] [PMID: 24165185]
[141]
Fonseca NC, da Cruz LF, da Silva Villela F, et al. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob Agents Chemother 2015; 59(5): 2666-77.
[http://dx.doi.org/10.1128/AAC.04601-14] [PMID: 25712353]
[142]
Miana GE, Ribone SR, Vera DMA, Sánchez-Moreno M, Mazzieri MR, Quevedo MA. Design, synthesis and molecular docking studies of novel N-arylsulfonyl-benzimidazoles with anti Trypanosoma cruzi activity. Eur J Med Chem 2019; 165: 1-10.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.013] [PMID: 30641409]
[143]
Karaman B, Alhalabi Z, Swyter S, et al. Identification of Bichalcones as Sirtuin Inhibitors by Virtual Screening and In Vitro Testing. Molecules 2018; 23(2): 416.
[http://dx.doi.org/10.3390/molecules23020416] [PMID: 29443909]
[144]
Farahat AA, Ismail MA, Kumar A, et al. Indole and benzimidazole bichalcophenes: Synthesis, DNA binding and antiparasitic activity. Eur J Med Chem 2018; 143: 1590-6.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.056] [PMID: 29126729]
[145]
Ferrigno F, Biancofiore I, Malancona S, et al. Discovery of 2-(1H-imidazo-2-yl)piperazines as a new class of potent and non-cytotoxic inhibitors of Trypanosoma brucei growth in vitro. Bioorg Med Chem Lett 2018; 28(23-24): 3689-92.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.028] [PMID: 30482621]
[146]
Lacerda RB. Alcaloides Marinhos Bromopirrólicos. Rev Virtual Quim 2015; 7: 713-29.
[http://dx.doi.org/10.5935/1984-6835.20150032]
[147]
Orban OCF, Korn RS, Benítez D, et al. 5-Substituted 3-chlorokenpaullone derivatives are potent inhibitors of Trypanosoma brucei bloodstream forms. Bioorg Med Chem 2016; 24(16): 3790-800.
[http://dx.doi.org/10.1016/j.bmc.2016.06.023] [PMID: 27349574]
[148]
Liu J-F, Jiang Z-Y, Wang R-R, et al. Isatisine A, um alcalóide novo com um esqueleto sem precedentes das folhas de Isatis indigotica. Org Lett 2007; 9: 4127-9.
[http://dx.doi.org/10.1021/ol701540y] [PMID: 17850153]
[149]
Jiang L, Peng X, Huang P, Chen Z, Liu L. Tempo-catalyzed oxidative dimerization and cyanation of indoles for the synthesis of 2-(1H-indol-3-yl)-3-oxoindoline-2-carbonitriles. Tetrahedron 2017; 73: 1389-96.
[http://dx.doi.org/10.1016/j.tet.2017.01.032]
[150]
Foley M, Tilley L. Quinoline antimalarials: Mechanisms of action and resistance ‎. Int J Parasitol 1997; 27(2): 231-40.
[http://dx.doi.org/101016/s0020-7519]
[151]
Lechuga GC, Borges JC, Calvet CM, et al. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi. Int J Parasitol Drugs Drug Resist 2016; 6(3): 154-64.
[http://dx.doi.org/10.1016/j.ijpddr.2016.07.001] [PMID: 27490082]
[152]
Chanquia SN, Larregui F, Puente V, Labriola C, Lombardo E, García Liñares G. Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents. Bioorg Chem 2019; 83: 526-34.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.053] [PMID: 30469145]
[153]
Corrêa Soares JB, Menezes D, Vannier-Santos MA, et al. Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols. PLoS Negl Trop Dis 2009; 3(7)e477
[http://dx.doi.org/10.1371/journal.pntd.0000477] [PMID: 19597543]
[154]
Tejería A, Pérez-Pertejo Y, Reguera RM, et al. Antileishmanial activity of new hybrid tetrahydroquinoline and quinoline derivatives with phosphorus substituents. Eur J Med Chem 2019; 162: 18-31.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.065] [PMID: 30408746]
[155]
Upadhyay A, Chandrakar P, Gupta S, et al. Synthesis, Biological Evaluation, Structure-Activity Relationship, and Mechanism of Action Studies of Quinoline-Metronidazole Derivatives Against Experimental Visceral Leishmaniasis. J Med Chem 2019; 62(11): 5655-71.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00628] [PMID: 31124675]
[156]
Roberts BF, Zheng Y, Cleaveleand J, et al. 4-Nitro styrylquinoline is an antimalarial inhibiting multiple stages of Plasmodium falciparum asexual life cycle. Int J Parasitol Drugs Drug Resist 2017; 7(1): 120-9.
[http://dx.doi.org/10.1016/j.ijpddr.2017.02.002] [PMID: 28285258]
[157]
El Sayed I, Van der Veken P, Steert K, et al. Synthesis and antiplasmodial activity of aminoalkylamino-substituted neocryptolepine derivatives. J Med Chem 2009; 52(9): 2979-88.
[http://dx.doi.org/10.1021/jm801490z] [PMID: 19364118]
[158]
Mei ZW, Wang L, Lu WJ, et al. Synthesis and in vitro antimalarial testing of neocryptolepines: SAR study for improved activity by introduction and modifications of side chains at C2 and C11 on indolo[2,3-b]quinolines. J Med Chem 2013; 56(4): 1431-42.
[http://dx.doi.org/10.1021/jm300887b] [PMID: 23360309]
[159]
Wang N, Wicht KJ, Wang L, et al. Synthesis and in vitro testing of antimalarial activity of non-natural-type neocryptolepines: structure-activity relationship study of 2,11- and 9,11-disubstituted 6-methylindolo[2,3-b]quinolines. Chem Pharm Bull (Tokyo) 2013; 61(12): 1282-90.
[http://dx.doi.org/10.1248/cpb.c13-00639] [PMID: 24436959]
[160]
Rocha e Silva LF, Montoia A, Amorim RC, et al. Comparative in vitro and in vivo antimalarial activity of the indole alkaloids ellipticine, olivacine, cryptolepine and a synthetic cryptolepine analog. Phytomedicine 2012; 20(1): 71-6.
[http://dx.doi.org/10.1016/j.phymed.2012.09.008] [PMID: 23092722]
[161]
Çapcı A, Lorion MM, Wang H, et al. Artemisinin-(Iso)quinoline Hybrids by C-H Activation and Click Chemistry: Combating Multidrug-Resistant Malaria. Angew Chem Int Ed Engl 2019; 58(37): 13066-79.
[http://dx.doi.org/10.1002/anie.201907224] [PMID: 31290221]
[162]
Okanya PW, Mohr KI, Gerth K, Jansen R, Müller R. Marinoquinolines A-F, pyrroloquinolines from Ohtaekwangia kribbensis (Bacteroidetes). J Nat Prod 2011; 74(4): 603-8.
[http://dx.doi.org/10.1021/np100625a] [PMID: 21456549]
[163]
Davis RA, Buchanan MS, Duffy S, et al. Antimalarial activity of pyrroloiminoquinones from the Australian marine sponge Zyzzya sp. J Med Chem 2012; 55(12): 5851-8.
[http://dx.doi.org/10.1021/jm3002795] [PMID: 22686608]
[164]
Stringer T, Wiesner L, Smith GS. Ferroquine-derived polyamines that target resistant Plasmodium falciparum. Eur J Med Chem 2019; 179: 78-83.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.023] [PMID: 31238252]
[165]
Mombo-Ngoma G, Supan C, Dal-Bianco MP, et al. Phase I randomized dose-ascending placebo-controlled trials of ferroquine-a candidate anti-malarial drug-in adults with asymptomatic Plasmodium falciparum infection. Malar J 2011; 10: 53.
[http://dx.doi.org/10.1186/1475-2875-10-53] [PMID: 21362162]
[166]
Wani WA, Jameel E, Baig U, Mumtazuddin S, Hun LT. Ferroquine and its derivatives: new generation of antimalarial agents. Eur J Med Chem 2015; 101: 534-51.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.009] [PMID: 26188909]
[167]
Raj R, Saini A, Gut J, Rosenthal PJ, Kumar V. Synthesis and in vitro antiplasmodial evaluation of 7-chloroquinoline-chalcone and 7-chloroquinoline-ferrocenylchalcone conjugates. Eur J Med Chem 2015; 95: 230-9.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.045] [PMID: 25817773]
[168]
Coa JC, García E, Carda M, et al. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids. Med Chem Res 2017; 26: 1405-14.
[http://dx.doi.org/10.1007/s00044-017-1846-5] [PMID: 26218652]
[169]
Antinarelli LM, Carmo AM, Pavan FR, et al. Increase of leishmanicidal and tubercular activities using steroids linked to aminoquinoline. Org Med Chem Lett 2012; 2(1): 16.
[http://dx.doi.org/10.1186/2191-2858-2-16] [PMID: 22551300]
[170]
Sobarzo-Sánchez E, Bilbao-Ramos P, Dea-Ayuela M, et al. Synthetic oxoisoaporphine alkaloids: in vitro, in vivo and in silico assessment of antileishmanial activities. PLoS One 2013; 8(10)e77560
[http://dx.doi.org/10.1371/journal.pone.0077560] [PMID: 24204870]
[171]
Sharma M, Chauhan K, Shivahare R, et al. Discovery of a new class of natural product-inspired quinazolinone hybrid as potent antileishmanial agents. J Med Chem 2013; 56(11): 4374-92.
[http://dx.doi.org/10.1021/jm400053v] [PMID: 23611626]
[172]
Sharma R, Pandey AK, Shivahare R, Srivastava K, Gupta S, Chauhan PM. Triazino indole-quinoline hybrid: a novel approach to antileishmanial agents. Bioorg Med Chem Lett 2014; 24(1): 298-301.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.018] [PMID: 24314395]
[173]
Upadhyay A, Kushwaha P, Gupta S, et al. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur J Med Chem 2018; 154: 172-81.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.014] [PMID: 29793211]
[174]
Almandil NB, Taha M, Rahim F, et al. Synthesis of novel quinoline-based thiadiazole, evaluation of their antileishmanial potential and molecular docking studies. Bioorg Chem 2019; 85: 109-16.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.025] [PMID: 30605884]
[175]
Valdivieso E, Mejías F, Torrealba C, et al. In vitro 4-Aryloxy-7-chloroquinoline derivatives are effective in mono- and combined therapy against Leishmania donovani and induce mitocondrial membrane potential disruption. Acta Trop 2018; 183: 36-42.
[http://dx.doi.org/10.1016/j.actatropica.2018.03.023] [PMID: 29604246]
[176]
Cretton S, Breant L, Pourrez L, et al. Antitrypanosomal quinoline alkaloids from the roots of Waltheria indica. J Nat Prod 2014; 77(10): 2304-11.
[http://dx.doi.org/10.1021/np5006554] [PMID: 25314007]
[177]
Cretton S, Bréant L, Pourrez L, et al. Chemical constituents from Waltheria indica exert in vitro activity against Trypanosoma brucei and T. cruzi. Fitoterapia 2015; 105: 55-60.
[http://dx.doi.org/10.1016/j.fitote.2015.06.007] [PMID: 26072041]
[178]
Ramírez-Prada J, Robledo SM, Vélez ID, et al. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur J Med Chem 2017; 131: 237-54.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.016] [PMID: 28329730]
[179]
Coa JC, Castrillón W, Cardona W, et al. Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids. Eur J Med Chem 2015; 101: 746-53.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.018] [PMID: 26218652]
[180]
Muscia GC, Cazorla SI, Frank FM, et al. Synthesis, trypanocidal activity and molecular modeling studies of 2-alkylaminomethylquinoline derivatives. Eur J Med Chem 2011; 46(9): 3696-703.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.035] [PMID: 21664012]
[181]
Upadhayaya RS, Dixit SS, Földesi A, Chattopadhyaya J. New antiprotozoal agents: their synthesis and biological evaluations. Bioorg Med Chem Lett 2013; 23(9): 2750-8.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.054] [PMID: 23518280]
[182]
Van Baelen G, Hostyn S, Dhooghe L, et al. Structure-activity relationship of antiparasitic and cytotoxic indoloquinoline alkaloids, and their tricyclic and bicyclic analogues. Bioorg Med Chem 2009; 17(20): 7209-17.
[http://dx.doi.org/10.1016/j.bmc.2009.08.057] [PMID: 19781948]
[183]
Krstin S, Peixoto HS, Wink M. Combinations of alkaloids affecting different molecular targets with the saponin digitonin can synergistically enhance trypanocidal activity against Trypanosoma brucei brucei. Antimicrob Agents Chemother 2015; 59(11): 7011-7.
[http://dx.doi.org/10.1128/AAC.01315-15] [PMID: 26349826]
[184]
Di Pietro O, Vicente-García E, Taylor MC, et al. Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity. Eur J Med Chem 2015; 105: 120-37.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.007] [PMID: 26479031]
[185]
Leverrier A, Bero J, Cabrera J, Frédérich M, Quetin-Leclercq J, Palermo JA. Structure-activity relationship of hybrids of Cinchona alkaloids and bile acids with in vitro antiplasmodial and antitrypanosomal activities. Eur J Med Chem 2015; 100: 10-7.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.044] [PMID: 26063305]
[186]
Babanezhad Harikandei K, Salehi P, Ebrahimi SN, et al. N-substituted noscapine derivatives as new antiprotozoal agents: Synthesis, antiparasitic activity and molecular docking study. Bioorg Chem 2019.91103116
[http://dx.doi.org/10.1016/j.bioorg.2019.103116] [PMID: 31377384]
[187]
Zhang SM, Coultas KA. Identification of plumbagin and sanguinarine as effective chemotherapeutic agents for treatment of schistosomiasis. Int J Parasitol Drugs Drug Resist 2013; 3: 28-34.
[http://dx.doi.org/10.1016/j.ijpddr.2012.12.001] [PMID: 23641325]
[188]
El Bardicy S, El Sayed I, Yousif F, et al. Schistosomicidal and molluscicidal activities of aminoalkylamino substituted neo- and norneocryptolepine derivatives. Pharm Biol 2012; 50(2): 134-40.
[http://dx.doi.org/10.3109/13880209.2011.578278] [PMID: 22338119]
[189]
Eweas AF, Allam G, Abu-Elsaad ASA, Maghrabi IA, AlGhamdi AH. Synthesis, Anti-Schistosomal Activity and Molecular Modeling of Two Novel 8-Hydroxyquinoline Derivatives. Antiinfect Agents 2013; 11: 31-40.
[http://dx.doi.org/10.2174/22113626130104]
[190]
Eweas AF, Allam G, Abuelsaad AS. ALGhamdi AH, Maghrabi IA. Design, synthesis, anti-schistosomal activity and molecular docking of novel 8-hydroxyquinoline-5-sufonyl 1,4-diazepine derivatives. Bioorg Chem 2013; 46: 17-25.
[http://dx.doi.org/10.1016/j.bioorg.2012.10.003] [PMID: 23247256]
[191]
Allam G, Eweas AF, Abuelsaad AS. In vivo schistosomicidal activity of three novels 8-hydroxyquinoline derivatives against adult and immature worms of Schistosoma mansoni. Parasitol Res 2013; 112(9): 3137-49.
[http://dx.doi.org/10.1007/s00436-013-3490-4] [PMID: 23793335]
[192]
Ehsanian R, Van Waes C, Feller SM. Beyond DNA binding - a review of the potential mechanisms mediating quinacrine’s therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun Signal 2011; 9: 13.
[http://dx.doi.org/10.1186/1478-811X-9-13] [PMID: 21569639]
[193]
de Lima Serafim V, Félix MB, Frade Silva DK, et al. New thiophene-acridine compounds: Synthesis, antileishmanial activity, DNA binding, chemometric, and molecular docking studies. Chem Biol Drug Des 2018; 91(6): 1141-55.
[http://dx.doi.org/10.1111/cbdd.13176] [PMID: 29415325]
[194]
Montalvo-Quirós S, Taladriz-Sender A, Kaiser M, Dardonville C. Antiprotozoal activity and DNA binding of dicationic acridones. J Med Chem 2015; 58(4): 1940-9.
[http://dx.doi.org/10.1021/jm5018303] [PMID: 25642604]
[195]
Ihmels H, Faulhaber K, Vedaldi D, Dall’Acqua F, Viola G. Intercalation of organic dye molecules into double-stranded DNA. Part 2: the annelated quinolizinium ion as a structural motif in DNA intercalators. Photochem Photobiol 2005; 81(5): 1107-15.
[http://dx.doi.org/10.1562/2005-01-25-IR-427] [PMID: 15934789]
[196]
Lafayette EA, Vitalino de Almeida SM, Pitta MG, et al. Synthesis, DNA binding and topoisomerase I inhibition activity of thiazacridine and imidazacridine derivatives. Molecules 2013; 18(12): 15035-50.
[http://dx.doi.org/10.3390/molecules181215035] [PMID: 24322489]
[197]
Croft SL, Duparc S, Arbe-Barnes SJ, et al. Review of pyronaridine anti-malarial properties and product characteristics. Malar J 2012; 11: 270-98.
[http://dx.doi.org/10.1186/1475-2875-11-270] [PMID: 22877082]
[198]
Cross RM, Maignan JR, Mutka TS, et al. Optimization of 1,2,3,4-tetrahydroacridin-9(10H)-ones as antimalarials utilizing structure-activity and structure-property relationships. J Med Chem 2011; 54(13): 4399-426.
[http://dx.doi.org/10.1021/jm200015a] [PMID: 21630666]
[199]
Kumar R, Sharma S, Prasad D. Acridones: A Relatively Lesser Explored Heterocycle for Multifactorial DiseasesKey Heterocycle Cores for Designing Multitargeting Molecules. Amsterdam: Elsevier 2018; pp. 53-132.
[http://dx.doi.org/10.1016/B978-0-08-102083-8.00003-0]
[200]
Wernsdorfer WH, Payne D. The dynamics of drug resistance in Plasmodium falciparum Pharmacol Therapeut 1991; 50(1): 95-121.
[http://dx.doi.org/10.1016/0163-7258(91)90074-V]
[201]
Kurth F, Pongratz P, Bélard S, Mordmüller B, Kremsner PG, Ramharter M. In vitro activity of pyronaridine against Plasmodium falciparum and comparative evaluation of anti-malarial drug susceptibility assays. Malar J 2009; 8: 79-84.
[http://dx.doi.org/10.1186/1475-2875-8-79] [PMID: 19389221]
[202]
Chang C, Lin-Hua T, Jantanavivat C. Studies on a new antimalarial compound: pyronaridine. Trans R Soc Trop Med Hyg 1992; 86: 7-10.
[http://dx.doi.org/10.1016/0035-9203(92)90414-8]
[203]
Fonte M, Fagundes N, Gomes A, et al. Development of a synthetic route towards N4,N9-disubstituted 4,9-diaminoacridines: on the way to multi-stage antimalarials. Tetrahedron Lett 2019; 60: 1166-9.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.052]
[204]
Sereekhajornjaru N, Somboon C, Rattanajak R, Denny WA, Wilairat P, Auparakkitanon S. Comparison of hematin-targeting properties of pynacrine, an acridine analog of the benzonaphthyridine antimalarial pyronaridine. Acta Trop 2014; 140: 181-3.
[http://dx.doi.org/10.1016/j.actatropica.2014.09.002] [PMID: 25220507]
[205]
de M Silva M, Macedo TS, Teixeira HMP, et al.. Correlation between DNA/HSA-interactions and antimalarial activity of acridine derivatives: Proposing a possible mechanism of action. J Photochem Photobiol B 2018; 189: 165-75.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.10.016] [PMID: 30366283]
[206]
Prajapati SP, Kaushik NK, Zaveri M, Mohanakrishanan D, Kawathekar N, Sahal D. Synthesis, characterization and antimalarial evaluation of new β-benzoylstyrene derivatives of acridine. Arab J Chem 2017; 10: S274-80.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.033]
[207]
Wang C, Wan J, Mei Z, Yang X. Acridone alkaloids with cytotoxic and antimalarial activities from Zanthoxylum simullans Hance. Pharmacogn Mag 2014; 10(37): 73-6.
[http://dx.doi.org/10.4103/0973-1296.126669] [PMID: 24696549]
[208]
Schmidt I, Pradel G, Sologub L, et al. Bistacrine derivatives as new potent antimalarials. Bioorg Med Chem 2016; 24(16): 3636-42.
[http://dx.doi.org/10.1016/j.bmc.2016.06.003] [PMID: 27316542]
[209]
Pérez B, Teixeira C, Gomes AS, et al. In vitro efficiency of 9-(N-cinnamoylbutyl)aminoacridines against blood- and liver-stage malaria parasites. Bioorg Med Chem Lett 2013; 23(3): 610-3.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.032] [PMID: 23290049]
[210]
Fernández-Calienes A, Pellón R, Docampo M, et al. Antimalarial activity of new acridinone derivatives. Biomed Pharmacother 2011; 65(3): 210-4.
[http://dx.doi.org/10.1016/j.biopha.2011.04.001] [PMID: 21641752]
[211]
Baquedano Y, Alcolea V, Toro MÁ, et al. Novel heteroaryl selenocyanates and diselenides as potent antileishmanial agents. Antimicrob Agents Chemother 2016; 60(6): 3802-12.
[http://dx.doi.org/10.1128/AAC.02529-15] [PMID: 27067328]
[212]
Vajrodaya S, Bacher M, Greger H, Hofer O. Organ-specific chemical differences in Glycosmis trichanthera. Phytochemistry 1998; 48: 897-902.
[http://dx.doi.org/10.1016/S0031-9422(97)00986-2]
[213]
Astelbauer F, Obwaller A, Raninger A, et al. Anti-leishmanial activity of plant-derived acridones, flavaglines, and sulfur-containing amides. Vector Borne Zoonotic Dis 2011; 11(7): 793-8.
[http://dx.doi.org/10.1089/vbz.2010.0087] [PMID: 21417924]
[214]
Peniche AG, Osorio Y, Renslo AR, Frantz DE, Melby PC, Travi BL. Development of an ex vivo lymph node explant model for identification of novel molecules active against Leishmania major. Antimicrob Agents Chemother 2014; 58(1): 78-87.
[http://dx.doi.org/10.1128/AAC.00887-13] [PMID: 24126577]
[215]
Makwali JA, Wanjala FME, Kaburi JC, Ingonga J, Byrum WW, Anjili CO. Combination and monotherapy of Leishmania major infection in BALB/c mice using plant extracts and herbicides. J Vector Borne Dis 2012; 49(3): 123-30.
[PMID: 23135005]
[216]
Mwangi ESK, Keriko JM, Machocho AK, et al. Antiprotozoal activity and cytotoxicity of metabolites from leaves of Teclea trichocarpa. J Med Plants Res 2010; 4(9): 726-31.
[http://dx.doi.org/10.5897/JMPR10.188]
[217]
Lacroix D, Prado S, Kamoga D, Kasenene J, Bodo B. Structure and in vitro antiparasitic activity of constituents of Citropsis articulata root bark. J Nat Prod 2011; 74(10): 2286-9.
[http://dx.doi.org/10.1021/np2004825] [PMID: 21985060]
[218]
Khalil Bey M, Salah M. Treatment of schistosomiasis with acridine compounds. Lancet 1934; 224(5799): 862-3.
[http://dx.doi.org/10.1016/S0140-6736(00)74658-7]
[219]
Newsome J. Experiments with some miracil, acridine, and diamidine compounds on Schistosoma mansoni infections in baboons. Trans R Soc Trop Med Hyg 1953; 47(5)
[http://dx.doi.org/10.1016/S0035-9203(53)80027-1]
[220]
Panic G, Keiser J. Acting beyond 2020: better characterization of praziquantel and promising antischistosomal leads. Curr Opin Pharmacol 2018; 42: 27-33.
[http://dx.doi.org/10.1016/j.coph.2018.06.004] [PMID: 30077117]
[221]
Stohler HR, Montavon M. 9-Acridanone-hydrazones, a novel class of broad-spectrum schistosomal agents International Congress for Tropical Medicine and Malaria 11, Calgary, Canada. 16-22.
[222]
Metwally A, Abdel Hadi A, Mikhail EG, Aboú Shadi O, Sabry H, el-Nahal H. Study of the efficacy of the new antischistosomal drug 10-[2-(diethylamino)ethyl]-9-acridanone-(thiazolidin-2-ylidene) hydrazone against an Egyptian strain of S. mansoni in mice. Arzneimittelforschung 1997; 47(8): 975-9.
[PMID: 9296287]
[223]
Guirguis FR. Efficacy of praziquantel and Ro 15-5458, a 9-acridanone-hydrazone derivative, against Schistosoma haematobium. Arzneimittelforschung 2003; 53(1): 57-61.
[http://dx.doi.org/10.1055/s-0031-1297071] [PMID: 12608016]
[224]
Abdul-Ghani RA, Loutfy N, Hassan A. Experimentally promising antischistosomal drugs: a review of some drug candidates not reaching the clinical use. Parasitol Res 2009; 105(4): 899-906.
[http://dx.doi.org/10.1007/s00436-009-1546-2] [PMID: 19588166]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy