Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Decarboxylative Propargylation/Hydroamination/Aromatization Enabled by Copper/ Amine Cooperative Catalysis: Construction of Cyclopenta[b]indole Derivatives

Author(s): Jiale Xiong, Xiaoyun Zhao, Xing Feng and Jiang Xianxing*

Volume 24, Issue 12, 2020

Page: [1384 - 1395] Pages: 12

DOI: 10.2174/1385272824999200701115141

Price: $65

Abstract

An efficient decarboxylative cycloaddition of 2,3-dioxopyrrolidines and ethynyl benzoxazinanones has been established by cooperative copper/amine catalysis. A copper– allenylidene complex and enolate intermediate, each catalytically generated from distinct substrates, underwent a cascade propargylation/hydroamination/aromatization process to construct a big library of cyclopenta[b]indole derivatives with good to excellent yields and excellent diastereoselectivity.

Keywords: Cooperative catalysis, cascade reaction, cyclopenta[b]indole, ethynyl benzoxazinanone, 2, 3-dioxopyrrolidine, copper– allenylidene.

« Previous
Graphical Abstract
[1]
Bartoli, G.; Dalpozzo, R.; Nardi, M. Applications of Bartoli indole synthesis. Chem. Soc. Rev., 2014, 43(13), 4728-4750.
[http://dx.doi.org/10.1039/C4CS00045E] [PMID: 24718836]
[2]
Lancianesi, S.; Palmieri, A.; Petrini, M. Synthetic approaches to 3-(2-nitroalkyl) indoles and their use to access tryptamines and related bioactive compounds. Chem. Rev., 2014, 114(14), 7108-7149.
[http://dx.doi.org/10.1021/cr400676v] [PMID: 24905229]
[3]
Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat. Prod. Rep., 2013, 30(5), 694-752.
[http://dx.doi.org/10.1039/c3np20118j] [PMID: 23467716]
[4]
Chen, H.; Bai, J.; Fang, Z.F.; Yu, S.S.; Ma, S.G.; Xu, S.; Li, Y.; Qu, J.; Ren, J.H.; Li, L.; Si, Y.K.; Chen, X.G. Indole alkaloids and quassinoids from the stems of Brucea mollis. J. Nat. Prod., 2011, 74(11), 2438-2445.
[http://dx.doi.org/10.1021/np200712y] [PMID: 22070654]
[5]
Ishikura, M.; Yamada, K.; Abe, T. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep., 2010, 27(11), 1630-1680.
[http://dx.doi.org/10.1039/c005345g] [PMID: 20838695]
[6]
Kochanowska-Karamyan, A.J.; Hamann, M.T. Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem. Rev., 2010, 110(8), 4489-4497.
[http://dx.doi.org/10.1021/cr900211p] [PMID: 20380420]
[7]
Fernandez, L.S.; Buchanan, M.S.; Carroll, A.R.; Feng, Y.J.; Quinn, R.J.; Avery, V.M. Flinderoles A-C: antimalarial bis-indole alkaloids from Flindersia species. Org. Lett., 2009, 11(2), 329-332.
[http://dx.doi.org/10.1021/ol802506n] [PMID: 19090698]
[8]
Chen, F.E.; Huang, J. Reserpine: a challenge for total synthesis of natural products. Chem. Rev., 2005, 105(12), 4671-4706.
[http://dx.doi.org/10.1021/cr050521a] [PMID: 16351058]
[9]
Wang, Y.; Lu, H.; Xu, P.F. Asymmetric catalytic cascade reactions for constructing diverse scaffolds and complex molecules. Acc. Chem. Res., 2015, 48(7), 1832-1844.
[http://dx.doi.org/10.1021/acs.accounts.5b00217] [PMID: 26099943]
[10]
Jones, S.B.; Simmons, B.; Mastracchio, A.; MacMillan, D.W.C. Collective synthesis of natural products by means of organocascade catalysis. Nature, 2011, 475(7355), 183-188.
[http://dx.doi.org/10.1038/nature10232] [PMID: 21753848]
[11]
Zhang, W.; Liu, Z.; Li, S.; Yang, T.; Zhang, Q.; Ma, L.; Tian, X.; Zhang, H.; Huang, C.; Zhang, S.; Ju, J.; Shen, Y.; Zhang, C. Spiroindimicins A-D: new bisindole alkaloids from a deep-sea-derived actinomycete. Org. Lett., 2012, 14(13), 3364-3367.
[http://dx.doi.org/10.1021/ol301343n] [PMID: 22694269]
[12]
Cheng, K.F.; Kong, Y.C.; Chan, T.Y. Biomimetic synthesis of yeuhchukene. J. Chem. Soc. Chem. Commun., 1985, 2, 48-49.
[http://dx.doi.org/10.1039/c39850000048]
[13]
Richter, J.M.; Ishihara, Y.; Masuda, T.; Whitefield, B.W.; Llamas, T.; Pohjakallio, A.; Baran, P.S. Enantiospecific total synthesis of the hapalindoles, fischerindoles, and welwitindolinones via a redox economic approach. J. Am. Chem. Soc., 2008, 130(52), 17938-17954.
[http://dx.doi.org/10.1021/ja806981k] [PMID: 19035635]
[14]
Uhlig, S.; Botha, C.J.; Vrålstad, T.; Rolén, E.; Miles, C.O. Indole-diterpenes and ergot alkaloids in Cynodon dactylon (Bermuda grass) infected with Claviceps cynodontis from an outbreak of tremors in cattle. J. Agric. Food Chem., 2009, 57(23), 11112-11119.
[http://dx.doi.org/10.1021/jf902208w] [PMID: 19891432]
[15]
Sturino, C.F.; O’Neill, G.; Lachance, N.; Boyd, M.; Berthelette, C.; Labelle, M.; Li, L.; Roy, B.; Scheigetz, J.; Tsou, N.; Aubin, Y.; Bateman, K.P.; Chauret, N.; Day, S.H.; Lévesque, J.F.; Seto, C.; Silva, J.H.; Trimble, L.A.; Carriere, M.C.; Denis, D.; Greig, G.; Kargman, S.; Lamontagne, S.; Mathieu, M.C.; Sawyer, N.; Slipetz, D.; Abraham, W.M.; Jones, T.; McAuliffe, M.; Piechuta, H.; Nicoll-Griffith, D.A.; Wang, Z.; Zamboni, R.; Young, R.N.; Metters, K.M. Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524). J. Med. Chem., 2007, 50(4), 794-806.
[http://dx.doi.org/10.1021/jm0603668] [PMID: 17300164]
[16]
Gandhi, S.; Baire, B. Unusual formation of cyclopenta[b]indoles from 3-indolylmethanols and alkynes. J. Org. Chem., 2019, 84(7), 3904-3918.
[http://dx.doi.org/10.1021/acs.joc.8b03027] [PMID: 30852894]
[17]
Yadav, S.; Hazra, R.; Singh, A.; Ramasastry, S.S.V. Substituent-guided palladium-ene reaction for the synthesis of carbazoles and cyclopenta[b]indoles. Org. Lett., 2019, 21(9), 2983-2987.
[http://dx.doi.org/10.1021/acs.orglett.9b00410] [PMID: 30985137]
[18]
Capretz Agy, A.; Rodrigues, M.T., Jr; Zeoly, L.A.; Simoni, D.A.; Coelho, F. Palladium-mediated oxidative annulation of δ-indolyl-α,γ-unsaturated compounds toward the synthesis of cyclopenta[b]indoles and heterogeneous hydrogenation to access fused indolines. J. Org. Chem., 2019, 84(9), 5564-5581.
[http://dx.doi.org/10.1021/acs.joc.9b00505] [PMID: 30939011]
[19]
Vivekanand, T.; Satpathi, B.; Bankar, S.K.; Ramasastry, S.S.V. Recent metal-catalysed approaches for the synthesis of cyclopenta[b]indoles. RSC Advances, 2018, 8, 18576-18588.
[http://dx.doi.org/10.1039/C8RA03480J]
[20]
Wang, J.Y.; Wu, P.; Wu, J.L.; Mei, G.J.; Shi, F. Chemodivergent tandem cyclizations of 2-indolylmethanols with tryptophols: C–N versus C–C bond formation. J. Org. Chem., 2018, 83(11), 5931-5946.
[http://dx.doi.org/10.1021/acs.joc.8b00414] [PMID: 29733638]
[21]
Wang, G.P.; Chen, M.Q.; Zhu, S.F.; Zhou, Q.L. Enantioselective Nazarov cyclization of indole enones cooperatively catalyzed by Lewis acids and chiral Brønsted acids. Chem. Sci. (Camb.), 2017, 8(10), 7197-7202.
[http://dx.doi.org/10.1039/C7SC03183A] [PMID: 29081952]
[22]
Lebée, C.; Kataja, A.O.; Blanchard, F.; Masson, G. Formal asymmetric organocatalytic [3 + 2] cyclization between enecarbamates and 3-indolylmethanols: rapid access to 3-aminocyclopenta[b]indoles. Chemistry, 2015, 21(23), 8399-8402.
[http://dx.doi.org/10.1002/chem.201500749] [PMID: 25892287]
[23]
Zi, W.; Wu, H.; Toste, F.D. Gold(I)-catalyzed dearomative Rautenstrauch rearrangement: enantioselective access to cyclopenta[b]indoles. J. Am. Chem. Soc., 2015, 137(9), 3225-3228.
[http://dx.doi.org/10.1021/jacs.5b00613] [PMID: 25710515]
[24]
Chen, J.; Han, X.; Lu, X. Atom-economic synthesis of pentaleno[2,1-b]indoles via tandem cyclization of alkynones initiated by aminopalladation. J. Org. Chem., 2017, 82(4), 1977-1985.
[http://dx.doi.org/10.1021/acs.joc.6b02817] [PMID: 28088855]
[25]
Xu, M.M.; Wang, H.Q.; Wan, Y.; Wang, S.L.; Shi, F. Enantioselective construction of cyclopenta[b]indole scaffolds via the catalytic asymmetric [3 + 2] cycloaddition of 2-indolylmethanols with p-hydroxystyrenes. J. Org. Chem., 2017, 82(19), 10226-10233.
[http://dx.doi.org/10.1021/acs.joc.7b01731] [PMID: 28920688]
[26]
Xu, B.; Guo, Z.L.; Jin, W.Y.; Wang, Z.P.; Peng, Y.G.; Guo, Q.X. Multistep one-pot synthesis of enantioenriched polysubstituted cyclopenta[b]indoles. Angew. Chem. Int. Ed. Engl., 2012, 51(4), 1059-1062.
[http://dx.doi.org/10.1002/anie.201107308] [PMID: 22170868]
[27]
Ferreira, E.M.; Stoltz, B.M. Catalytic C-H bond functionalization with palladiumII: aerobic oxidative annulations of indoles. J. Am. Chem. Soc., 2003, 125(32), 9578-9579.
[http://dx.doi.org/10.1021/ja035054y] [PMID: 12904010]
[28]
Zhu, Z.Q.; Shen, Y.; Sun, X.X.; Tao, J.Y.; Liu, J.X.; Shia, F. Catalytic asymmetric [3 + 2] cycloadditions of C-3 unsubstituted 2-indolylmethanols: regio-, diastereo- and enantioselective construction of the cyclopenta[b]in-dole framework. Adv. Synth. Catal., 2016, 358, 3797-3808.
[http://dx.doi.org/10.1002/adsc.201600931]
[29]
Scarpi, D.; Petrović, M.; Fiser, B.; Gómez-Bengoa, E.; Occhiato, E.G. Construction of cyclopenta[b]indol-1-ones by a tandem gold(I)-catalyzed rearrangement/nazarov reaction and application to the synthesis of Bruceolline H. Org. Lett., 2016, 18(15), 3922-3925.
[http://dx.doi.org/10.1021/acs.orglett.6b01990] [PMID: 27436791]
[30]
Manisha; Dhiman, S.; Mathew, J.; Ramasastry, S.S. One-pot relay catalysis: divergent synthesis of furo[3,4-b]indoles and cyclopenta[b]indoles from 3-(2-aminophenyl)-1,4-enynols. Org. Biomol. Chem., 2016, 14(24), 5563-5568.
[http://dx.doi.org/10.1039/C6OB00319B] [PMID: 26935907]
[31]
Birbaum, L.; Gillard, L.; Gérard, H.; Oulyadi, H.; Vincent, G.; Moreau, X.; De Paolis, M.; Chataigner, I. Dearomatization of 3-nitroindoles with highly γ-functionalized allenoates in formal (3 + 2) cycloadditions. Chemistry, 2019, 25(60), 13688-13693.
[http://dx.doi.org/10.1002/chem.201903455] [PMID: 31507002]
[32]
Li, T.R.; Cheng, B.Y.; Wang, Y.N.; Zhang, M.M.; Lu, L.Q.; Xiao, W.J. A copper-catalyzed decarboxylative amination/hydroamination sequence: switchable synthesis of functionalized indoles. Angew. Chem. Int. Ed. Engl., 2016, 55(40), 12422-12426.
[http://dx.doi.org/10.1002/anie.201605900] [PMID: 27593696]
[33]
Wang, Q.; Li, T.R.; Lu, L.Q.; Li, M.M.; Zhang, K.; Xiao, W.J. Catalytic asymmetric [4 + 1] annulation of sulfur ylides with copper-allenylidene intermediates. J. Am. Chem. Soc., 2016, 138(27), 8360-8363.
[http://dx.doi.org/10.1021/jacs.6b04414] [PMID: 27355096]
[34]
Ji, D.; Wang, C.; Sun, J. Asymmetric [4 + 2]-cycloaddition of copper–allenylidenes with hexahydro-1,3,5-triazines: access to chiral tetrahydroquinazolines. Org. Lett., 2018, 20(12), 3710-3713.
[http://dx.doi.org/10.1021/acs.orglett.8b01584] [PMID: 29877089]
[35]
Chen, H.; Lu, X.; Xia, X.; Zhu, Q.; Song, Y.; Chen, J.; Cao, W.; Wu, X. Asymmetric catalytic [4 + 2] cycloaddition via Cu–allenylidene intermediate: stereoselective synthesis of tetrahydroquinolines fused with a γ-lactone moiety. Org. Lett., 2018, 20(7), 1760-1763.
[http://dx.doi.org/10.1021/acs.orglett.8b00253] [PMID: 29537854]
[36]
Sun, B.B.; Hua, Q.X.; Hu, J.M.; Yu, J.Q.; Jia, J.; Wang, X.W. Asymmetric [4 + 2] cycloaddition of azlactones with dipolar copper–allenylidene intermediates for chiral 3,4-dhydroquinolin-2-one derivatives. Tetrahedron Lett., 2019, 60, 1967-1970.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.041]
[37]
Yuan, W.K.; Sun, S.Z.; Zhang, L.B.; Wen, L.R.; Li, M. A concise construction of 4-alkynylquinazolines via [4 + 2] annulation of 4-alkynylbenzo-xazinanones with acylhydroxamates under transition-metal-free conditions. Org. Chem. Front., 2019, 6, 2892-2896.
[http://dx.doi.org/10.1039/C9QO00668K]
[38]
Jiang, F.; Feng, X.; Wang, R.; Gao, X.; Jia, H.; Xiao, Y.; Zhang, C.; Guo, H. Asymmetric [3 + 3] annulation of copper–allenylidenes with pyrazolones: synthesis of chiral 1,4-dihydropyrano[2,3-c]pyrazoles. Org. Lett., 2018, 20(17), 5278-5281.
[http://dx.doi.org/10.1021/acs.orglett.8b02214] [PMID: 30141947]
[39]
Li, T.R.; Lu, L.Q.; Wang, Y.N.; Wang, B.C.; Xiao, W.J. Divergent synthesis of polycyclic indolines: copper-catalyzed cascade reactions of propargylic carbamates and indoles. Org. Lett., 2017, 19(15), 4098-4101.
[http://dx.doi.org/10.1021/acs.orglett.7b01903] [PMID: 28742365]
[40]
Lu, X.; Ge, L.; Cheng, C.; Chen, J.; Cao, W.; Wu, X. Enantioselective cascade reaction for synthesis of quinolinones through synergistic catalysis using Cu–Pybox and chiral benzotetramisole as catalysts. Chemistry, 2017, 23(32), 7689-7693.
[http://dx.doi.org/10.1002/chem.201701741] [PMID: 28425212]
[41]
Shao, W.; You, S.L. Highly diastereo- and enantioselective synthesis of tetrahydro-5H-indolo[2,3-b]quinolines through copper-catalyzed propargylic dearomatization of indoles. Chemistry, 2017, 23(51), 12489-12493.
[http://dx.doi.org/10.1002/chem.201703443] [PMID: 28748548]
[42]
Wang, B.C.; Wang, Y.N.; Zhang, M.M.; Xiao, W.J.; Lu, L.Q. Copper-catalyzed decarboxylative cyclization via tandem C-P and C-N bond formation: access to 2-phosphorylmethyl indoles. Chem. Commun. (Camb.), 2018, 54(25), 3154-3157.
[http://dx.doi.org/10.1039/C8CC00739J] [PMID: 29527612]
[43]
Wang, S.; Liu, M.; Chen, X.; Wang, H.; Zhai, H. Copper-catalyzed decarboxylative propargylation/hydroamination reactions: access to C3 β-ketoester-functionalized indoles. Chem. Commun. (Camb.), 2018, 54(60), 8375-8378.
[http://dx.doi.org/10.1039/C8CC04499F] [PMID: 29998241]
[44]
Afewerki, S.; Córdova, A. Combinations of aminocatalysts and metal catalysts: a powerful cooperative approach in selective organic synthesis. Chem. Rev., 2016, 116(22), 13512-13570.
[http://dx.doi.org/10.1021/acs.chemrev.6b00226] [PMID: 27723291]
[45]
Chen, D.F.; Han, Z.Y.; Zhou, X.L.; Gong, L.Z. Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept, and beyond. Acc. Chem. Res., 2014, 47(8), 2365-2377.
[http://dx.doi.org/10.1021/ar500101a] [PMID: 24911184]
[46]
Du, Z.; Shao, Z. Combining transition metal catalysis and organocatalysis--an update. Chem. Soc. Rev., 2013, 42(3), 1337-1378.
[http://dx.doi.org/10.1039/C2CS35258C] [PMID: 23154522]
[47]
Shao, Z.; Zhang, H. Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Chem. Soc. Rev., 2009, 38(9), 2745-2755.
[http://dx.doi.org/10.1039/b901258n] [PMID: 19690751]
[48]
Park, Y.J.; Park, J.W.; Jun, C.H. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery. Acc. Chem. Res., 2008, 41(2), 222-234.
[http://dx.doi.org/10.1021/ar700133y] [PMID: 18247521]
[49]
Lee, J.M.; Na, Y.; Han, H.; Chang, S. Cooperative multi-catalyst systems for one-pot organic transformations. Chem. Soc. Rev., 2004, 33(5), 302-312.
[http://dx.doi.org/10.1039/b309033g] [PMID: 15272370]
[50]
Song, J.; Zhang, Z.J.; Gong, L.Z. Asymmetric [4 + 2] annulation of C1 ammonium enolates with copper-allenylidenes. Angew. Chem. Int. Ed. Engl., 2017, 56(19), 5212-5216.
[http://dx.doi.org/10.1002/anie.201700105] [PMID: 28370965]
[51]
Zhang, Z.J.; Zhang, L.; Geng, R.L.; Song, J.; Chen, X.H.; Gong, L.Z. N-heterocyclic carbene/copper cooperative catalysis for the asymmetric synthesis of spirooxindoles. Angew. Chem. Int. Ed. Engl., 2019, 58(35), 12190-12194.
[http://dx.doi.org/10.1002/anie.201907188] [PMID: 31250946]
[52]
Simlandy, A.K.; Ghosh, B.; Mukherjee, S. Enantioselective [4 + 2]-annulation of azlactones with copper-allenylidenes under cooperative catalysis: synthesis of α-quaternary α-acylaminoamides. Org. Lett., 2019, 21(9), 3361-3366.
[http://dx.doi.org/10.1021/acs.orglett.9b01103] [PMID: 30998368]
[53]
Zhang, Y.C.; Zhang, Z.J.; Fan, L.F.; Song, J. Enantioselective decarboxylative propargylation/hydroamination enabled by organo/metal cooperative catalysis. Org. Lett., 2018, 20(9), 2792-2795.
[http://dx.doi.org/10.1021/acs.orglett.8b01101] [PMID: 29676576]
[54]
Wang, Y.; Zhu, L.; Wang, M.; Xiong, J.; Chen, N.; Feng, X.; Xu, Z.; Jiang, X. Catalytic asymmetric [4 + 3] annulation of C,N-cyclic azomethine imines with copper allenylidenes. Org. Lett., 2018, 20(20), 6506-6510.
[http://dx.doi.org/10.1021/acs.orglett.8b02828] [PMID: 30289720]
[55]
Lu, Y.; Zhou, Y.; Lin, L.; Zheng, H.; Fu, K.; Liu, X.; Feng, X.N. N′-Dioxide/nickel(II)-catalyzed asymmetric Diels-Alder reaction of cyclopentadiene with 2,3-dioxopyrrolidines and 2-alkenoyl pyridines. Chem. Commun. (Camb.), 2016, 52(53), 8255-8258.
[http://dx.doi.org/10.1039/C6CC03346F] [PMID: 27284594]
[56]
Li, Y.; Li, Q.Z.; Huang, L.; Liang, H.; Yang, K.C.; Leng, H.J.; Liu, Y.; Shen, X.D.; Gou, X.J.; Li, J.L. Diastereoselective synthesis of spirocyclopropanes under mild conditions via formal [2 + 1] cycloadditions using 2,3-dioxo-4-benzylidene-pyrrolidines. Molecules, 2017, 22(2), 328-346.
[http://dx.doi.org/10.3390/molecules22020328] [PMID: 28241452]
[57]
Wang, C.; Jia, H.; Zhang, C.; Gao, Z.; Zhou, L.; Yuan, C.; Xiao, Y.; Guo, H. Phosphine-catalyzed enantioselective [2 + 4] cycloaddition to synthesize pyrrolidin-2-one fused dihydropyrans using α-substituted allenoates as C2 synthons. J. Org. Chem., 2017, 82(1), 633-641.
[http://dx.doi.org/10.1021/acs.joc.6b02659] [PMID: 27991792]
[58]
Li, J.L.; Fu, L.; Wu, J.; Yang, K.C.; Li, Q.Z.; Gou, X.J.; Peng, C.; Han, B.; Shen, X.D. Highly enantioselective synthesis of fused bicyclic dihydropyranones via low-loading N-heterocyclic carbene organocatalysis. Chem. Commun. (Camb.), 2017, 53(51), 6875-6878.
[http://dx.doi.org/10.1039/C7CC02921G] [PMID: 28604911]
[59]
Hu, X.; Zhou, Y.; Lu, Y.; Zou, S.; Lin, L.; Liu, X.; Feng, X. Catalytic asymmetric inverse-electron-demand hetero-Diels−Alder reaction of dioxopyrrolidines with hetero-substituted alkenes. J. Org. Chem., 2018, 83(15), 8679-8687.
[http://dx.doi.org/10.1021/acs.joc.8b00839] [PMID: 29870249]
[60]
Zhao, X.Y.; Xiong, J.L.; An, J.K.; Yu, J.C.; Zhu, L.P.; Feng, X.; Jiang, X.X. Diastereodivergent construction of bispiro[oxindole-bipyrrolidines]s with four consecutive stereocenters via asymmetric [3 + 2] cycloaddition of 2,3-dioxopyrrolidines by identical catalysts. Org. Chem. Front., 2019, 6, 1989-1995.
[http://dx.doi.org/10.1039/C9QO00452A]
[61]
Li, Q.; Zhou, L.; Shen, X.D.; Yang, K.C.; Zhang, X.; Dai, Q.S.; Leng, H.J.; Li, Q.Z.; Li, J.L. Stereoselective construction of halogenated quaternary carbon centers by brønsted base catalyzed [4 + 2] cycloaddition of α-haloaldehydes. Angew. Chem. Int. Ed. Engl., 2018, 57(7), 1913-1917.
[http://dx.doi.org/10.1002/anie.201711813] [PMID: 29276812]
[62]
Wales, S.M.; Rivinoja, D.J.; Gardiner, M.G.; Bird, M.J.; Meyer, A.G.; Ryan, J.H.; Hyland, C.J.T. Benzoazepine-fused isoindolines via intramolecular (3 + 2)-cycloadditions of azomethine ylides with dinitroarenes. Org. Lett., 2019, 21(12), 4703-4708.
[http://dx.doi.org/10.1021/acs.orglett.9b01580] [PMID: 31188010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy