Abstract
[18F]-labeled drugs and radioligands are most frequently used in positron-emission tomography (PET) radiopharmaceuticals for both clinical and preclinical research. Various methods for the introduction of [18F]fluorine into complex molecules through fluorination reactions have been reported. Herein, recent advances in [18F]-fluorination utilizing aryliodonium(III) compounds are highlighted.
Keywords: [18F]fluorine, aryliodonium compound, fluoroarene, late-stage fluorination, PET imaging, radiosynthesis.
[http://dx.doi.org/10.1038/nrcardio.2009.201] [PMID: 19935740]
(b) Hicks, R.J.; Hofman, M.S. Is there still a role for SPECT-CT in oncology in the PET-CT era? Nat. Rev. Clin. Oncol., 2012, 9(12), 712-720.
[http://dx.doi.org/10.1038/nrclinonc.2012.188] [PMID: 23149896]
(c) Dierckx, R.A.J.O.; Otte, A.; de Vries, E.F.J.; van Waarde, A.; Leenders, K.L. PET and SPECT in Neurology; Springer: New York, 2014.
[http://dx.doi.org/10.1007/978-3-642-54307-4]
(d) Piel, M.; Vernaleken, I.; Rösch, F. Positron emission tomography in CNS drug discovery and drug monitoring. J. Med. Chem., 2014, 57, 9232.
[http://dx.doi.org/10.1021/jm5001858]
(e) Coenen, H.H.; Elsinga, P.H.; Iwata, R.; Kilbourn, M.R.; Pillai, M.R.A.; Rajan, M.G.R.; Wagner, H.N., Jr; Zaknun, J.J. Fluorine-18 radio-pharmaceuticals beyond [18F]FDG for use in oncology and neurosciences. Nucl. Med. Biol., 2010, 37(7), 727-740.
[http://dx.doi.org/10.1016/j.nucmedbio.2010.04.185] [PMID: 20870148]
[http://dx.doi.org/10.2174/156802605774297056] [PMID: 16181131]
(b) Aboagye, E.O.; Price, P.M.; Jones, T. In vivo pharmacokinetics and pharmacodynamics in drug development using positron-emission tomography. Drug Discov. Today, 2001, 6(6), 293-302.
[http://dx.doi.org/10.1016/S1359-6446(01)01684-1] [PMID: 11257581]
(c) Gee, A.D. Neuropharmacology and drug development. Br. Med. Bull., 2003, 65, 169-177.
[http://dx.doi.org/10.1093/bmb/65.1.169] [PMID: 12697624]
(d) Lever, J.R. PET and SPECT imaging of the opioid system: Receptors, radioligands and avenues for drug discovery and development. Curr. Pharm. Des., 2007, 13(1), 33-49.
[http://dx.doi.org/10.2174/138161207779313821] [PMID: 17266587]
(e) Matthews, P.M.; Rabiner, E.A.; Passchier, J.; Gunn, R.N. Positron emission tomography molecular imaging for drug develop-ment. Br. J. Clin. Pharmacol., 2012, 73(2), 175-186.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04085.x] [PMID: 21838787]
[http://dx.doi.org/10.1021/ar960068c]
(b) Phelps, M.E. Pos-itron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. USA, 2000, 97(16), 9226-9233.
[http://dx.doi.org/10.1073/pnas.97.16.9226] [PMID: 10922074]
(c) Paans, A.M.J.; van Waarde, A.; Elsinga, P.H.; Willemsen, A.T.M.; Vaalburg, W. Positron emission tomography: The conceptual idea using a multidisciplinary approach. Methods, 2002, 27(3), 195-207.
[http://dx.doi.org/10.1016/S1046-2023(02)00075-0] [PMID: 12183107]
(d) Willmann, J.K.; van Bruggen, N.; Dinkelborg, L.M.; Gambhir, S.S. Molecular imaging in drug development. Nat. Rev. Drug Discov., 2008, 7(7), 591-607.
[http://dx.doi.org/10.1038/nrd2290] [PMID: 18591980]
(e) Ametamey, S.M.; Honer, M.; Schubiger, P.A. Molecular imaging with PET. Chem. Rev., 2008, 108(5), 1501-1516.
[http://dx.doi.org/10.1021/cr0782426] [PMID: 18426240]
(f) Miller, P.W.; Long, N.J.; Vilar, R.; Gee, A.D. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission to-mography. Angew. Chem. Int. Ed., 2008, 47, 8998-9093.
[http://dx.doi.org/10.1002/anie.200800222]
(g) Deng, X.; Rong, J.; Wang, L.; Vasdev, N.; Zhang, L.; Josephson, L.; Liang, S.H. Chemistry for positron emission tomography: recent advances in 11C-, 18F-, 13N-, and 15O-labeling reactions. Angew. Chem. Int. Ed., 2019, 58, 2580-2605.
[http://dx.doi.org/10.1002/anie.201805501]
[http://dx.doi.org/10.1002/jlcr.2580140204]
(b) Fowler, J.S.; Ido, T. Handbook of Radiopharma-ceuticals, Radiochemistry and Applications; Welch, M.J; Redvanly, C.S., Ed.; Wiley: Chichester, 2003, p. 307.
[http://dx.doi.org/10.1016/0969-8051(95)02043-8] [PMID: 8832693]
(b) Bergman, J.; Solin, O. Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl. Med. Biol., 1997, 24(7), 677-683.
[http://dx.doi.org/10.1016/S0969-8051(97)00078-4] [PMID: 9352540]
[http://dx.doi.org/10.3413/nukmed-0112]
[http://dx.doi.org/10.1002/jlcr.2580230502]
[http://dx.doi.org/10.1016/0020-708X(82)90162-4]
[http://dx.doi.org/10.1016/S0040-4039(00)84980-1]
[http://dx.doi.org/10.1021/ja00257a051]
[http://dx.doi.org/10.1039/c39920000595]
[http://dx.doi.org/10.1021/jo01346a512]
(b) Kohlhepp, S.V.; Gulder, T. Hypervalent iodine(iii) fluorinations of alkenes and diazo compounds: New opportunities in fluorination chemistry. Chem. Soc. Rev., 2016, 45(22), 6270-6288.
[http://dx.doi.org/10.1039/C6CS00361C] [PMID: 27417189]
[http://dx.doi.org/10.1039/B701177F ] [PMID: 17844736]
(b) Satyamurthy, N.; Bida, G.T.; Phelps, M.E.; Barrio, J.R.N. -[18F]fluoro-N-alkylsulfonamides: Novel reagents for mild and regiose-lective radiofluorination. Int. J. Rad. Appl. Instrum. [A], 1990, 41(8), 733-738.
[http://dx.doi.org/10.1016/0883-2889(90)90020-H] [PMID: 2172185]
[http://dx.doi.org/10.1002/anie.201002310]
[PMID: 3712040]
[http://dx.doi.org/10.1016/0020-708X(67)90040-3]
[http://dx.doi.org/10.1039/c39790001149]
[http://dx.doi.org/10.2174/1874471011003030163]
[http://dx.doi.org/10.1126/science.1212625] [PMID: 22053044]
[http://dx.doi.org/10.1039/C8CC00526E] [PMID: 29632936]
[http://dx.doi.org/10.1021/jacs.5b06307] [PMID: 26177230]
[http://dx.doi.org/10.1039/C39950002215]
(b) Shah, A.; Pike, V.W.; Widdowson, D.A. The synthesis of [18F]fluoroarenes from the reaction of cyclotron-produced [18F]fluoride ion with diaryliodonium salts. J. Chem. Soc., Perkin Trans. 1, 1998, 2043-2046.
[http://dx.doi.org/10.1039/a802349b]
(c) Ross, T.L.; Ermert, J.; Hocke, C.; Coenen, H.H. Nucle-ophilic 18F-fluorination of heteroaromatic iodonium salts with no-carrier-added [18F]fluoride. J. Am. Chem. Soc., 2007, 129(25), 8018-8025.
[http://dx.doi.org/10.1021/ja066850h] [PMID: 17536798]
(d) Kwon, Y-D.; Son, J.; Chun, J-H. Chemoselective radiosyntheses of electron-rich [18F]Fluoroarenes from aryl(2,4,6-trimethoxy-phenyl)iodonium tosylates. J. Org. Chem., 2019, 84(6), 3678-3686.
[http://dx.doi.org/10.1021/acs.joc.9b00019] [PMID: 30777757]
(b) Rotstein, B.H.; Stephenson, N.A.; Vasdev, N.; Liang, S.H. Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered ar-omatics. Nat. Commun., 2014, 5, 4365.
[http://dx.doi.org/10.1038/ncomms5365] [PMID: 25007318]
[http://dx.doi.org/10.1039/C9CC06905D] [PMID: 31625541]
[http://dx.doi.org/10.1002/ejoc.200800114]
(b) Yusubov, M.S.; Svitich, D.Y.; Larkina, M.S.; Zhdankin, V.V. Applications of iodonium salts and iodonium ylides as precursors for nucleophilic fluorination in positron emission tomography. ARKIVOC, 2013, 364-395.
(c) Preshlock, S.; Tredwell, M.; Gouverneur, V. (18)F-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem. Rev., 2016, 116(2), 719-766.
[http://dx.doi.org/10.1021/acs.chemrev.5b00493] [PMID: 26751274]
(d) Buckingham, F.; Gouverneur, V. Asymmetric 18F-fluorination for applications in positron emission tomography. Chem. Sci. (Camb.), 2016, 7, 1645-1652.
[http://dx.doi.org/10.1039/C5SC04229A]
(e) van der Born, D.; Pees, A.; Poot, A.J.; Orru, R.V.A.; Windhorst, A.D.; Vugts, D.J. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem. Soc. Rev., 2017, 46(15), 4709-4773.
[http://dx.doi.org/10.1039/C6CS00492J] [PMID: 28608906]
(f) Pike, V.W. Hypervalent aryliodine compounds as precursors for radiofluorination. J. Labelled Comp. Radiopharm., 2018, 61(3), 196-227.
[http://dx.doi.org/10.1002/jlcr.3570] [PMID: 28981159]
[http://dx.doi.org/10.1021/ja01107a046]
(b) Beringer, F.M.; Brierley, A.; Drexler, M.; Gindler, E.M.; Lumpkin, C.C. Diaryliodonium salts. II. The phenylation of organic and inorganic bases. J. Am. Chem. Soc., 1953, 75, 2708-2712.
[http://dx.doi.org/10.1021/ja01107a047]
[http://dx.doi.org/10.1021/cr940424+] [PMID: 11848783]
(b) Merritt, E.A.; Olofsson, B. Diaryliodonium salts: A journey from obscurity to fame. Angew. Chem. Int. Ed., 2009, 48, 9052-9072.
[http://dx.doi.org/10.1002/anie.200904689]
(c) Yusubov, M.S.; Maskaev, A.V.; Zhdankin, V.V. Iodonium salts in organic synthesis. ARKIVOC, 2011, 370-409.
(d) Olofsson, B. Arylation with dia-ryliodonium salts. Top. Curr. Chem. (Cham), 2016, 373, 135-16.
(e) Aradi, K.; Toth, B.L.; Tolnai, G.L.; Novak, Z. Diaryliodonium salts in organic syntheses: A useful compound class for novel aryla-tion strategies. Synlett, 2016, 27, 1456-1485.
[http://dx.doi.org/10.1055/s-0035-1561369]
(f) Villo, P.; Olofsson, B. Arylations Promoted by Hypervalent Iodine Reagents.In: Patai's Chemistry of Functional Groups (Hypervalent Halogen Compounds). John Wiley & Sons: Chichester, , 2018.
[http://dx.doi.org/10.1002/9780470682531.pat0950]
[http://dx.doi.org/10.1055/s-1993-26024]
(b) Kasumov, T.M.; Brel, V.K.; Koz’min, A.S.; Zefirov, N.S. Phenyliodine(III) sulfate as a new reagent for synthesis of diaryliodonium salts. Synthesis, 1995, 775-776.
[http://dx.doi.org/10.1055/s-1995-4005]
[http://dx.doi.org/10.1055/s-1992-26272]
(b) Shah, A.; Pike, V.W.; Widdowson, D.A. Synthesis of functionalised unsymmetrical diaryliodonium salts. J. Chem. Soc., Perkin Trans. 1, 1997, 2463-2466.
[http://dx.doi.org/10.1039/a704062h]
(c) Kitamura, T.; Inoue, D.; Wakimoto, I.; Nakamura, T.; Katsuno, R.; Fujiwara, Y. Reaction of] (diacetoxy-iodo)benzene with excess of trifluoromethanesulfonic acid. A convenient route to para-phenylene type hypervalent iodine oligomers. Tetrahedron, 2004, 60, 8855-8860.
[http://dx.doi.org/10.1016/j.tet.2004.07.026]
(d) Dohi, T.; Hayashi, T.; Ueda, S.; Shoji, T.; Ko-miyama, K.; Takeuchi, H.; Kita, Y. Recyclable synthesis of mesityl iodonium(III) salts. Tetrahedron, 2019, 75, 3617-3627.
[http://dx.doi.org/10.1016/j.tet.2019.05.033]
[http://dx.doi.org/10.1021/jo01296a049]
(b) Margida, A.J.; Koser, G.F. Direct condensation of [hydroxy(tosyloxy)iodo]arenes with thiophenes. A convenient, mild synthesis of aryl(2-thienyl)iodonium tosylates. J. Org. Chem., 1984, 49, 3643-3646.
[http://dx.doi.org/10.1021/jo00193a039]
(c) Dohi, T.; Ito, M.; Morimoto, K.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. Versatile direct dehydrative approach for diaryliodonium(III) salts in fluoroalcohol media. Chem. Commun. (Camb.), 2007, (40), 4152-4154.
[http://dx.doi.org/10.1039/b708802g] [PMID: 17925959]
(d) Dohi, T.; Yamaoka, N.; Kita, Y. Fluoroalcohols: Versatile solvents in hyperva-lent iodine chemistry and syntheses of diaryliodonium(III) salts. Tetrahedron, 2010, 66, 5775-5785.
[http://dx.doi.org/10.1016/j.tet.2010.04.116]
(e) Ito, M.; Ogawa, C.; Yamaoka, N.; Fujioka, H.; Dohi, T.; Kita, Y. Enhanced reactivity of [hydroxy(tosyloxy)iodo]benzene in fluoroalcohol media. Ef-ficient direct synthesis of thienyl(aryl) iodonium salts. Molecules, 2010, 15(3), 1918-1931.
[http://dx.doi.org/10.3390/molecules15031918] [PMID: 20336022]
(b) Merritt, E.A.; Carneiro, V.M.T.; Silva, L.F., Jr; Olofsson, B. Facile synthesis of Koser’s reagent and derivatives from iodine or aryl iodides. J. Org. Chem., 2010, 75(21), 7416-7419.
[http://dx.doi.org/10.1021/jo101227j] [PMID: 20925420]
[http://dx.doi.org/10.1021/ja01496a066]
(b) Koser, G.F.; Wettach, R.H.; Smith, C.S. New methodology in iodonium salt synthesis. Reactions of [hydroxy(to-syl-oxy)iodo]arenes with aryltrimethylsilanes. J. Org. Chem., 1980, 45, 1543-1544.
[http://dx.doi.org/10.1021/jo01296a050]
(c) Radhakrishnan, U.; Stang, P.J. Synthesis and charac-terization of cationic iodonium macrocycles. J. Org. Chem., 2003, 68(24), 9209-9213.
[http://dx.doi.org/10.1021/jo030246x] [PMID: 14629137]
(d) Stang, With Sn: P.J.; Zhdankin, V.V. Preparation and characterization of a macrocyclic tetraaryltetraiodonium compound, cy-clo(Ar4I4)4+.cntdot.4X-. A unique, charged, cationic molecular box. J. Am. Chem. Soc., 1993, 115, 9808-9809.
[http://dx.doi.org/10.1021/ja00074a061]
(e) Pike, V.W.; Butt, F.; Shah, A.; Widdowson, D.A. Facile synthesis of substituted diaryliodonium tosylates by treatment of aryl-tributylstannanes with Koser’s reagent. J. Chem. Soc., Perkin Trans. 1, 1999, 3, 245-248.
[http://dx.doi.org/10.1039/a809349k]
(f) Ochiai, M.; Kitagawa, Y.; Takayama, N.; Takaoka, Y.; Shiro, M. Synthesis of chiral diaryliodonium salts, 1,1‘-binaphthyl-2-yl(phenyl)iodonium tetrafluorob-orates: Asymmetric α-phenylation of β-keto ester enolates. J. Am. Chem. Soc., 1999, 121, 9233-9234.
[http://dx.doi.org/10.1021/ja992236c]
(g) Bykowski, D.; McDonald, R.; Hinkle, R.J.; Tykwinski, R.R. Structural and electronic characteristics of thienyl(aryl)iodonium triflates. J. Org. Chem., 2002, 67, 2798-2804.
(h) Chen, D-W.; Ochiai, M. Chromium(II)-mediated reactions of iodonium tetra-fluoroborates with aldehydes: Umpolung of reactivity of diaryl-, alkenyl(aryl)-, and al-kynyl(aryl)iodonium tetrafluoroborates. J. Org. Chem., 1999, 64(18), 6804-6814.
[http://dx.doi.org/10.1021/jo990809y] [PMID: 11674690]
(i) Carroll, M.A.; Pike, V.W.; Widdowson, D.A. New synthesis of diaryliodonium sulfonates from arylboronic acids. Tetrahedron Lett., 2000, 41, 5393-5396.
(j) Ochiai, M.; Toyonari, M.; Sueda, T.; Kitagawa, Y. Boron-iodine(III) exchange reaction: Direct synthesis of diaryliodonium tetraarylborates from] (diacetoxyiodo)arenes by the reaction with alkali metal tetraaryl-borates in acetic acid. Tetrahedron Lett., 1996, 37, 8421-8422.
[http://dx.doi.org/10.1016/0040-4039(96)01926-0]
[http://dx.doi.org/10.1021/jo01255a044]
(b) Stang, P.J.; Zhdankin, V.V.; Tykwinski, R.; Zefirov, N.S. Iodosyl trifluoromethanesulfonate - an efficient reagent for the single step preparation of diaryl iodonium triflate salts. Tetrahedron Lett., 1991, 32, 7497-7498.
[http://dx.doi.org/10.1016/0040-4039(91)80516-9]
(c) Stang, P.J.; Zhdankin, V.V.; Tykwinski, R.; Zefirov, N.S. (Dicyano)iodonium triflate- novel iodonium species and a versatile reagent for the preparation of iodonium salts via an iodonium transfer reaction with organostannanes. Tetrahedron Lett., 1992, 33, 1419-1422.
[http://dx.doi.org/10.1016/S0040-4039(00)91636-8]
[http://dx.doi.org/10.1055/s-1995-4045]
(b) Hossain, M.D.; Kitamura, T. Reaction of iodoarenes with potassium peroxodisulfate/trifluoroacetic acid in the presence of aromatics. Direct preparation of diaryliodonium triflates from iodoarenes. Tetrahedron, 2006, 62, 6955-6960.
[http://dx.doi.org/10.1016/j.tet.2006.04.073]
(c) Bielawski, M.; Ol-ofsson, B. High-yielding one-pot synthesis of diaryliodonium triflates from arenes and iodine or aryl iodides. Chem. Commun. (Camb.), 2007, (24), 2521-2523.
[http://dx.doi.org/10.1039/b701864a] [PMID: 17563816]
(d) Bielawski, M.; Zhu, M.; Olofsson, B. Efficient and general one-pot synthesis of diaryliodonium triflates. Adv. Synth. Catal., 2007, 349, 2610-2618.
[http://dx.doi.org/10.1002/adsc.200700373]
(e) Zhu, M.; Jalalian, N.; Olofsson, B. One-pot syn-thesis of diaryliodonium salts using toluenesulfonic acid: A fast entry to electron-rich diaryliodonium tosylates and triflates. Synlett, 2008, 592-596.
(f) Merritt, E.A.; Malmgren, J.; Klinke, F.J.; Olofsson, B. Synthesis of diaryliodonium triflates using environmentally benign oxidizing agents. Synlett, 2009, 2277-2280.
(g) Dohi, T.; Yamaoka, N.; Itani, I.; Kita, Y. One-pot syntheses of diaryliodonium salts from aryl iodides using peracetic acid as green oxidant. Aust. J. Chem., 2011, 64, 529-535.
[http://dx.doi.org/10.1071/CH11057]
[http://dx.doi.org/10.1021/ja00310a072]
(b) Zhu, S.; Chen, Q. Phenyliodonium bis(perfluoroalkane sulphonyl) methide; synthesis and reactions as a precursor of bis(perfluoroalkanesulphonyl) carbine. J. Chem. Soc. Chem. Commun., 1990, 1459-1460.
[http://dx.doi.org/10.1039/c39900001459]
(c) Goudreau, S.R.; Marcoux, D.; Charette, A.B. Gen-eral method for the synthesis of phenyliodonium ylides from malonate esters: Easy access to 1,1-cyclopropane diesters. J. Org. Chem., 2009, 74(1), 470-473.
[http://dx.doi.org/10.1021/jo802208q] [PMID: 19032040]
(d) Yu, J.; Liu, S-S.; Cui, J.; Hou, X-S.; Zhang, C. A mild and efficient direct α-amination of β-dicarbonyl compounds using iodosobenzene and p-toluenesulfonamide catalyzed by perchlorate zinc hexahydrate. Org. Lett., 2012, 14(3), 832-835.
[http://dx.doi.org/10.1021/ol203358f] [PMID: 22260345]
[http://dx.doi.org/10.1016/j.tetlet.2013.02.018]
[http://dx.doi.org/10.1002/chem.201702732] [PMID: 28793179]
[http://dx.doi.org/10.1021/ja00170a063]
(b) Ochiai, M. Reac-tivities, properties and structures. Top. Curr. Chem., 2003, 224, 5-68.
[http://dx.doi.org/10.1007/3-540-46114-0_2]
[http://dx.doi.org/10.1246/bcsj.45.1860]
(b) Lancer, K.M.; Wiegand, G.H. The ortho effect in the pyrolysis of iodonium halides. A case for a sterically controlled nucleophilic aromatic (SN) substitution reaction. J. Org. Chem., 1976, 41, 3360-3364.
[http://dx.doi.org/10.1021/jo00883a004]
(c) Grushin, V.V.; Demkina, I.I.; Tolstaya, T. Unified mechanistic analysis of polar reactions of diaryliodonium salts. J. Chem. Soc., Perkin Trans. 2, 1992, 505.
[http://dx.doi.org/10.1039/p29920000505]
[http://dx.doi.org/10.1002/chem.201300860] [PMID: 23788251]
(b) Seidl, T.L.; Sundalam, S.K.; McCullough, B.; Stuart, D.R. Unsymmetrical Aryl(2,4,6-trimethoxyphenyl)iodonium salts: One-pot synthesis, scope, stability, and synthetic studies. J. Org. Chem., 2016, 81(5), 1998-2009.
[http://dx.doi.org/10.1021/acs.joc.5b02833] [PMID: 26828570]
(c) Dohi, T.; Ueda, S.; Hirai, A.; Kojima, Y.; Morimoto, K.; Kita, Y. Selective aryl radical transfers into N-heteroaromatics from dia-ryliodonoium salts with trimethoxybenzene auxiliary. Heterocycles, 2017, 95, 1272-1284.
[http://dx.doi.org/10.3987/COM-16-S(S)90]
(d) Carreras, V.; Sandtorv, A.H.; Stuart, D.R. Syn-thesis of aryl(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate salts. J. Org. Chem., 2017, 82(2), 1279-1284.
[http://dx.doi.org/10.1021/acs.joc.6b02811] [PMID: 28001410]
(e) Dohi, T.; Koseki, D.; Sumida, K.; Okada, K.; Mizuno, S.; Kato, A.; Morimoto, K.; Kita, Y. Metal-free O-arylation of car-boxylic acid by active diaryliodonium(III) intermediates generated in situ from iodosoarenes. Adv. Synth. Catal., 2017, 359, 3503-3508.
[http://dx.doi.org/10.1002/adsc.201700843]
(f) Koseki, D.; Aoto, E.; Shoji, T.; Watanabe, K. In, Y.; Kita, Y.; Dohi, T. Efficient N-arylation of azole compounds utiliz-ing selective aryl-transfer TMP-iodonium(III) reagents. Tetrahedron Lett., 2019, 60, 1281-1286.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.012]
[http://dx.doi.org/10.1021/ja801767s] [PMID: 18543910]
(b) Phipps, R.J.; Gaunt, M.J. A meta-selective copper-catalyzed CH bond arylation. Science, 2009, 323(5921), 1593-1597.
[http://dx.doi.org/10.1126/science.1169975] [PMID: 19299616]
(c) Sokolovs, I.; Lubriks, D.; Suna, E. Copper-catalyzed intermolecular C–H amination of] (hetero)arenes via transient unsymmet-rical λ3-iodanes. J. Am. Chem. Soc., 2014, 136, 6920-6928.
(d) Bigot, A.E. Williamson, M.J. Enantioselective α-arylation of Nacyloxazolidinones with copper(II)-bisoxazoline catalysts and diaryliodonium salts. J. Am. Chem. Soc., 2011, 133, 13778.
(e) Tang, D-T.D.; Collins, K.D.; Ernst, J.B.; Glorius, F. Pd/C as a catalyst for completely regioselective C−H functionalization of thiophenes under mild conditions. Angew. Chem. Int. Ed., 2014, 53, 1809-1813.
(f) Saravanan, P.; Anbarasan, P. Copper-catalyzed trifluoromethylthiolation of di(hetero)aryl-λ3-iodanes: Mechanistic insight and application to synthesis of] (hetero)aryl trifluoromethyl sulfides. Adv. Synth. Catal., 2015, 357, 3521-3528.
(g) N., Ichiishi; A.J., Canty; B.F., Yates; M.S., Sanford Mechanistic investigations of Cu-catalyzed fluorination of diaryliodonium salts: Elaborating the CuI/CuIII manifold in copper catalysis. Organometallics, 2014, 33, 5525-5534.
[http://dx.doi.org/10.1021/jo100361d] [PMID: 20361793]
[http://dx.doi.org/10.1002/chem.201604803] [PMID: 28145069]
[http://dx.doi.org/10.1002/jlcr.1189]
[http://dx.doi.org/10.3390/molecules17066625] [PMID: 22728358]
(b) Pongratz, E.; Kappe, T. Ylides of heterocycles, VIII. Reactions of iodonium-ylides with acids. Monatsh. Chem., 1984, 115, 231-242.
[http://dx.doi.org/10.1007/BF00798414]
[http://dx.doi.org/10.2967/jnumed.109.065664] [PMID: 19910423]
(b) Morrish, P.K.; Sawle, G.V.; Brooks, D.J. Regional changes in [18F]dopa metabolism in the striatum in Parkinson’s disease. Brain, 1996, 119, 2097-2103.
[http://dx.doi.org/10.1093/brain/119.6.2097] [PMID: 9010013]
[http://dx.doi.org/10.1016/0883-2889(92)90217-3] [PMID: 1330984]
(b) de Vries, E.F.J.; Luurtsema, G.; Brüssermann, M.; Elsinga, P.H.; Vaalburg, W. Fully automated synthesis module for the high yield one-pot preparation of 6-[18F]fluoro-l-DOPA. Appl. Radiat. Isot., 1999, 51, 389-394.
[http://dx.doi.org/10.1016/S0969-8043(99)00057-3]
[http://dx.doi.org/10.1016/0883-2889(91)90033-W]
(b) Lemaire, C.; Gillet, S.; Guillouet, S.; Plenevaux, A.; Aerts, J.; Luxen, A. Eur. J. Org. Chem., 2004, 2899-2904.
[http://dx.doi.org/10.1002/ejoc.200400059]
(c) Libert, L.C.; Franci, X.; Plenevaux, A.R.; Ooi, T.; Maruoka, K.; Luxen, A.J.; Lemaire, C.F. Production at the Curie level of no-carrier-added 6-18F-fluoro-L-dopa. J. Nucl. Med., 2013, 54(7), 1154-1161.
[http://dx.doi.org/10.2967/jnumed.112.112284] [PMID: 23658219]
(d) Lemaire, C.; Libert, L.; Franci, X.; Genon, J-L.; Kuci, S.; Giacomelli, F.; Lux-en, A. Automated production at the curie level of no-carrier-added 6-[18F]fluoro-L-dopa and 2-[18F]fluoro-L-tyrosine on a FASTlab synthesizer. J. Labelled Comp. Radiopharm., 2015, 58(7), 281-290.
[http://dx.doi.org/10.1002/jlcr.3291] [PMID: 26011311]
[http://dx.doi.org/10.2967/jnumed.109.063297] [PMID: 19759110]
(b) Adam, M.J.; Jivan, S. Synthesis and purification of l-6[18F]fluorodopa. Appl. Radiat. Isot., 1988, 39, 1203.
(c) Luxen, A.; Perlmutter, M.; Bida, G.T.; Van Moffaert, G.; Cook, J.S.; Satyamurthy, N.; Phelps, M.E.; Barrio, J.R. Remote, semiautomated production of 6-[18F]fluoro-l-dopa for human studies with PET. Appl. Radiat. Isot., 1990, 41, 275-281.
(d) Stenhagen, I.S.R.; Kirjavainen, A.K.; Forsback, S.J.; Jørgensen, C.G.; Robins, E.G.; Luthra, S.K.; Solin, O.; Gouverneur, V. [18F]fluorination of an arylboronic ester using [18F]selectfluor bis(triflate): Application to 6-[18F]fluoro-L-DOPA. Chem. Commun. (Camb.), 2013, 49(14), 1386-1388.
[http://dx.doi.org/10.1039/c2cc38646a] [PMID: 23321570]
[http://dx.doi.org/10.1021/ja3084797] [PMID: 23061667]
(b) Tredwell, M.; Preshlock, S.M.; Taylor, N.J.; Gruber, S.; Huiban, M.; Passchier, J.; Mercier, J.; Génicot, C.; Gouverneur, V. A general copper-mediated nucleophilic 18F fluorination of arenes. Angew. Chem. Int. Ed., 2014, 53, 7751-7755.
[http://dx.doi.org/10.1002/anie.201404436]
[http://dx.doi.org/10.1021/ol501243g] [PMID: 24890658]
[http://dx.doi.org/10.1002/ejoc.201403378]
(b) Kuik, W-J.; Kema, I.P.; Brouwers, A.H.; Zijlma, R.; Neumann, K.D.; Dierckx, R.A.J.O.; DiMagno, S.G.; Elsinga, P.H. In vivo biodistribution of no-carrier-added 6-18F-fluoro-3,4-dihydroxy-L-phenylalanine (18F-DOPA), produced by a new nucleo-philic substitution approach, compared with carrier-added 18F-DOPA, prepared by conventional elec-trophilic substitution. J. Nucl. Med., 2015, 56(1), 106-112.
[http://dx.doi.org/10.2967/jnumed.114.145730] [PMID: 25500826]
[http://dx.doi.org/10.1016/j.tetlet.2007.10.025]
[http://dx.doi.org/10.1016/j.nucmedbio.2008.11.002] [PMID: 19217526]
[http://dx.doi.org/10.1016/j.bmc.2011.03.029] [PMID: 21478020]
[http://dx.doi.org/10.1039/c1ob05555k] [PMID: 21845279]
[http://dx.doi.org/10.1039/c1ob06277h] [PMID: 22057475]
[http://dx.doi.org/10.1021/jm4012017] [PMID: 24147864]
[http://dx.doi.org/10.1039/C4RA00674G]
[http://dx.doi.org/10.2967/jnumed.114.151332] [PMID: 25655630]
(b) Calderwood, S.; Collier, T.L.; Gouverneur, V.; Liang, S.H.; Vasdev, N. Synthesis of 18F-arenes from spirocyclic iodonium(III) ylides via continuous-flow microfluidics. J. Fluorine Chem., 2015, 178, 249-253.
[http://dx.doi.org/10.1016/j.jfluchem.2015.08.006] [PMID: 27512233]
[http://dx.doi.org/10.1039/C7OB00253J]
[http://dx.doi.org/10.1002/anie.201606381]
[http://dx.doi.org/10.2174/13852728113179990106]
[http://dx.doi.org/10.1002/ejoc.201101730]
[http://dx.doi.org/10.3390/molecules20010470] [PMID: 25558857]
[http://dx.doi.org/10.1016/j.nucmedbio.2014.05.140] [PMID: 24993371]
[http://dx.doi.org/10.1039/C4OB01953A] [PMID: 25420542]
[http://dx.doi.org/10.1016/j.bmcl.2016.07.078] [PMID: 27546294]
[http://dx.doi.org/10.1016/j.jfluchem.2012.03.015]
[http://dx.doi.org/10.1002/jlcr.1853] [PMID: 21532942]
[http://dx.doi.org/10.1039/c3ob41353e] [PMID: 23942997]
[http://dx.doi.org/10.1002/jlcr.1898]
[http://dx.doi.org/10.1016/j.bmcl.2013.01.106] [PMID: 23416009]
[http://dx.doi.org/10.1021/jm400770g] [PMID: 23965035]
[http://dx.doi.org/10.3390/molecules21091160]
[http://dx.doi.org/10.1002/ejoc.201200695]
[http://dx.doi.org/10.1002/anie.201505927]
[http://dx.doi.org/10.1002/jlcr.828]
[http://dx.doi.org/10.1002/jlcr.1565]
[http://dx.doi.org/10.1016/0969-8043(95)00022-6]
(b) Ludwig, T.; Ermert, J.; Coenen, H.H. 4-[18F]fluoroarylalkylethers via an improved synthesis of N.C.A. 4-[18F]fluorophenol. Nucl. Med. Biol., 2002, 29(2), 255-262.
[http://dx.doi.org/10.1016/S0969-8051(01)00302-X] [PMID: 11823131]
[http://dx.doi.org/10.3390/molecules16097621] [PMID: 21900864]
[http://dx.doi.org/10.1016/j.apradiso.2013.08.011] [PMID: 24100001]