Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Progress in [18F]Fluorination by Using Aryliodonium(III) Compounds and Application for PET Tracer Syntheses

Author(s): Kotaro Kikushima*, Ravi Kumar and Toshifumi Dohi*

Volume 18, Issue 2, 2021

Published on: 29 June, 2020

Page: [173 - 196] Pages: 24

DOI: 10.2174/1570193X17999200629155733

Price: $65

conference banner
Abstract

[18F]-labeled drugs and radioligands are most frequently used in positron-emission tomography (PET) radiopharmaceuticals for both clinical and preclinical research. Various methods for the introduction of [18F]fluorine into complex molecules through fluorination reactions have been reported. Herein, recent advances in [18F]-fluorination utilizing aryliodonium(III) compounds are highlighted.

Keywords: [18F]fluorine, aryliodonium compound, fluoroarene, late-stage fluorination, PET imaging, radiosynthesis.

Graphical Abstract
[1]
(a) L.W.; Sinusas, A.J. PET and SPECT in cardiovascular molecular imaging. Nat. Rev. Cardiol., 2010, 7(1), 38-47.
[http://dx.doi.org/10.1038/nrcardio.2009.201] [PMID: 19935740]
(b) Hicks, R.J.; Hofman, M.S. Is there still a role for SPECT-CT in oncology in the PET-CT era? Nat. Rev. Clin. Oncol., 2012, 9(12), 712-720.
[http://dx.doi.org/10.1038/nrclinonc.2012.188] [PMID: 23149896]
(c) Dierckx, R.A.J.O.; Otte, A.; de Vries, E.F.J.; van Waarde, A.; Leenders, K.L. PET and SPECT in Neurology; Springer: New York, 2014.
[http://dx.doi.org/10.1007/978-3-642-54307-4]
(d) Piel, M.; Vernaleken, I.; Rösch, F. Positron emission tomography in CNS drug discovery and drug monitoring. J. Med. Chem., 2014, 57, 9232.
[http://dx.doi.org/10.1021/jm5001858]
(e) Coenen, H.H.; Elsinga, P.H.; Iwata, R.; Kilbourn, M.R.; Pillai, M.R.A.; Rajan, M.G.R.; Wagner, H.N., Jr; Zaknun, J.J. Fluorine-18 radio-pharmaceuticals beyond [18F]FDG for use in oncology and neurosciences. Nucl. Med. Biol., 2010, 37(7), 727-740.
[http://dx.doi.org/10.1016/j.nucmedbio.2010.04.185] [PMID: 20870148]
[2]
(a) Wang, J.; Maurer, L. Positron emission tomography: Applications in drug discovery and drug de-velopment. Curr. Top. Med. Chem., 2005, 5(11), 1053-1075.
[http://dx.doi.org/10.2174/156802605774297056] [PMID: 16181131]
(b) Aboagye, E.O.; Price, P.M.; Jones, T. In vivo pharmacokinetics and pharmacodynamics in drug development using positron-emission tomography. Drug Discov. Today, 2001, 6(6), 293-302.
[http://dx.doi.org/10.1016/S1359-6446(01)01684-1] [PMID: 11257581]
(c) Gee, A.D. Neuropharmacology and drug development. Br. Med. Bull., 2003, 65, 169-177.
[http://dx.doi.org/10.1093/bmb/65.1.169] [PMID: 12697624]
(d) Lever, J.R. PET and SPECT imaging of the opioid system: Receptors, radioligands and avenues for drug discovery and development. Curr. Pharm. Des., 2007, 13(1), 33-49.
[http://dx.doi.org/10.2174/138161207779313821] [PMID: 17266587]
(e) Matthews, P.M.; Rabiner, E.A.; Passchier, J.; Gunn, R.N. Positron emission tomography molecular imaging for drug develop-ment. Br. J. Clin. Pharmacol., 2012, 73(2), 175-186.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04085.x] [PMID: 21838787]
[3]
(a) Fowler, J.S.; Wolf, A.P. Working against time: Rapid radiotracer synthesis and imaging the human brain. Acc. Chem. Res., 1997, 30, 181-188.
[http://dx.doi.org/10.1021/ar960068c]
(b) Phelps, M.E. Pos-itron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. USA, 2000, 97(16), 9226-9233.
[http://dx.doi.org/10.1073/pnas.97.16.9226] [PMID: 10922074]
(c) Paans, A.M.J.; van Waarde, A.; Elsinga, P.H.; Willemsen, A.T.M.; Vaalburg, W. Positron emission tomography: The conceptual idea using a multidisciplinary approach. Methods, 2002, 27(3), 195-207.
[http://dx.doi.org/10.1016/S1046-2023(02)00075-0] [PMID: 12183107]
(d) Willmann, J.K.; van Bruggen, N.; Dinkelborg, L.M.; Gambhir, S.S. Molecular imaging in drug development. Nat. Rev. Drug Discov., 2008, 7(7), 591-607.
[http://dx.doi.org/10.1038/nrd2290] [PMID: 18591980]
(e) Ametamey, S.M.; Honer, M.; Schubiger, P.A. Molecular imaging with PET. Chem. Rev., 2008, 108(5), 1501-1516.
[http://dx.doi.org/10.1021/cr0782426] [PMID: 18426240]
(f) Miller, P.W.; Long, N.J.; Vilar, R.; Gee, A.D. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission to-mography. Angew. Chem. Int. Ed., 2008, 47, 8998-9093.
[http://dx.doi.org/10.1002/anie.200800222]
(g) Deng, X.; Rong, J.; Wang, L.; Vasdev, N.; Zhang, L.; Josephson, L.; Liang, S.H. Chemistry for positron emission tomography: recent advances in 11C-, 18F-, 13N-, and 15O-labeling reactions. Angew. Chem. Int. Ed., 2019, 58, 2580-2605.
[http://dx.doi.org/10.1002/anie.201805501]
[4]
(a) Ido, T.; Wan, C-N.; Casella, V.; Fowler, J.S.; Wolf, A.P.; Reivich, M.; Kuhl, D.E. Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J. Labelled Comp. Radiopharm., 1978, 14, 175-183.
[http://dx.doi.org/10.1002/jlcr.2580140204]
(b) Fowler, J.S.; Ido, T. Handbook of Radiopharma-ceuticals, Radiochemistry and Applications; Welch, M.J; Redvanly, C.S., Ed.; Wiley: Chichester, 2003, p. 307.
[5]
(a) Bishop, A.; Satyamurthy, N.; Bida, G.; Phelps, M.; Barrio, J.R. Identification and quantitation of gaseous compounds of fluorine generated in [18F]F2 target systems. Nucl. Med. Biol., 1996, 23(4), 391-405.
[http://dx.doi.org/10.1016/0969-8051(95)02043-8] [PMID: 8832693]
(b) Bergman, J.; Solin, O. Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl. Med. Biol., 1997, 24(7), 677-683.
[http://dx.doi.org/10.1016/S0969-8051(97)00078-4] [PMID: 9352540]
[6]
Füchtner, F.; Preusche, S.; Mäding, P.; Zessin, J.; Steinbach, J. Aspects of 6-[18F]fluoro-L-DOPA preparation. Nucl. Med. (Stuttg.), 2008, 47, 116.
[http://dx.doi.org/10.3413/nukmed-0112]
[7]
Coenen, H.H.; Klatte, B.; Knochel, A.; Schuller, M.; Stocklin, G. Preparation of N.C.A. [17-18F]-fluoroheptadecanoic acid in high yields via aminopolyether supported, nucleophilic fluorination. J. Labelled Comp. Radiopharm., 1986, 23, 455-466.
[http://dx.doi.org/10.1002/jlcr.2580230502]
[8]
Gately, S.J.; Shaughnessy, W.J. Production of 18F-labeled compounds with 18F− produced with a 1-MW Research reactor. Int. J. Appl. Radiat. Isot., 1982, 33, 1325-1330.
[http://dx.doi.org/10.1016/0020-708X(82)90162-4]
[9]
Umemoto, T.; Kawada, K.; Tomita, K. N-fluoropyridinium triflate and its derivatives: Useful fluorinat-ing agents. Tetrahedron Lett., 1989, 27, 4465-4468.
[http://dx.doi.org/10.1016/S0040-4039(00)84980-1]
[10]
Singh, S.; DesMarteau, D.D.; Zuberi, S.S.; Witz, M.; Huang, H.N. N-Fluoroperfluoroalkylsulfonimides. Remarkable new fluorination reagents. J. Am. Chem. Soc., 1987, 109, 7194-7196.
[http://dx.doi.org/10.1021/ja00257a051]
[11]
Banks, R.E.; Mohialdin-Khaffaf, S.N.; Lal, G.S.; Sharif, I.; Syvret, R.G. 1-Alkyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane salts: A novel family of electrophilic fluorinating agents. J. Chem. Soc. Chem. Commun., 1992, 595-596.
[http://dx.doi.org/10.1039/c39920000595]
[12]
(a) Carpenter, W. Aryliodosodifluorides. J. Org. Chem., 1966, 31, 2688-2689.
[http://dx.doi.org/10.1021/jo01346a512]
(b) Kohlhepp, S.V.; Gulder, T. Hypervalent iodine(iii) fluorinations of alkenes and diazo compounds: New opportunities in fluorination chemistry. Chem. Soc. Rev., 2016, 45(22), 6270-6288.
[http://dx.doi.org/10.1039/C6CS00361C] [PMID: 27417189]
[13]
Oberdorfer, F.; Hofmann, E.; Maier-Borst, W. Preparation of 18F-labelled 5-fluorouracil of very high purity. J. Labelled Comp. Radiopharm., 1989, 27(2), 137-145.
[14]
(a) Teare, H.; Robins, E.G.; Årstad, E.; Luthra, S.K.; Gouverneur, V.; Gouverneur, V. Synthesis and reactivity of [18F]-N-fluorobenzenesulfonimide. Chem. Commun. (Camb.), 2007, (23), 2330-2332.
[http://dx.doi.org/10.1039/B701177F ] [PMID: 17844736]
(b) Satyamurthy, N.; Bida, G.T.; Phelps, M.E.; Barrio, J.R.N. -[18F]fluoro-N-alkylsulfonamides: Novel reagents for mild and regiose-lective radiofluorination. Int. J. Rad. Appl. Instrum. [A], 1990, 41(8), 733-738.
[http://dx.doi.org/10.1016/0883-2889(90)90020-H] [PMID: 2172185]
[15]
Teare, 18F: H.; Robins, E.G.; Kirjavainen, A.; Forsback, S.; Sandford, G.; Solin, O.; Luthra, S.K.; Gouverneur, V. Radiosynthesis and evaluation of [18F]selectfluor bis(triflate). Angew. Chem. Int. Ed., 2010, 49, 6821-6824.
[http://dx.doi.org/10.1002/anie.201002310]
[16]
Hamacher, K.; Coenen, H.H.; Stöcklin, G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J. Nucl. Med., 1986, 27(2), 235-238.
[PMID: 3712040]
[17]
Nozaki, T.; Tanaka, Y. The preparation of F18-labelled aryl fluoridesLa preparation des fluorures ar-yliques marques de F18. Int. J. Appl. Radiat. Isot., 1967, 18, 111-119.
[http://dx.doi.org/10.1016/0020-708X(67)90040-3]
[18]
Tewson, T.J.; Welch, M.J. Preparation of fluorine-18 aryl fluorides: Piperidyl triazenes as a source of diazonium salts. J. Chem. Soc. Chem. Commun., 1979, 1149-1150
[http://dx.doi.org/10.1039/c39790001149]
[19]
Coenen, Review: H.H.; Ermert, J. Direct nucleophilic 18F-fluorination of electron rich arenes: Present limits of no-carrier-added reactions. Curr. Radiopharm., 2010, 3, 163-173.
[http://dx.doi.org/10.2174/1874471011003030163]
[20]
Lee, E.; Kamlet, A.S.; Powers, D.C.; Neumann, C.N.; Boursalian, G.B.; Furuya, T.; Choi, D.C.; Hooker, J.M.; Ritter, T. A fluoride-derived electrophilic late-stage fluorination reagent for PET imag-ing. Science, 2011, 334(6056), 639-642.
[http://dx.doi.org/10.1126/science.1212625] [PMID: 22053044]
[21]
González, M.A.C.; Nordeman, P.; Gómez, A.B.; Meyer, D.N.; Antoni, G.; Schouc, M.; Szabó, K.J. [18F]fluoro-benziodoxole: A no-carrier-added electrophilic fluorinating reagent. Rapid, simple radiosynthesis, purification and application for fluorine-18 labelling. Chem. Commun. (Camb.), 2018, 54, 4286-4289.
[http://dx.doi.org/10.1039/C8CC00526E] [PMID: 29632936]
[22]
Nielsen, M.K.; Ugaz, C.R.; Li, W.; Doyle, A.G. PyFluor: A low-cost, stable, and selective deox-yfluorination reagent. J. Am. Chem. Soc., 2015, 137(30), 9571-9574.
[http://dx.doi.org/10.1021/jacs.5b06307] [PMID: 26177230]
[23]
(a) Pike, V.W.; Aighirhio, F.I. Reactions of cyclotron-produced [18F]fluoride with diaryliodonium salts-a novel single-step route to no-carrier-added [18]fluoroarenes. J. Chem. Soc. Chem. Commun., 1995, 2215-2216.
[http://dx.doi.org/10.1039/C39950002215]
(b) Shah, A.; Pike, V.W.; Widdowson, D.A. The synthesis of [18F]fluoroarenes from the reaction of cyclotron-produced [18F]fluoride ion with diaryliodonium salts. J. Chem. Soc., Perkin Trans. 1, 1998, 2043-2046.
[http://dx.doi.org/10.1039/a802349b]
(c) Ross, T.L.; Ermert, J.; Hocke, C.; Coenen, H.H. Nucle-ophilic 18F-fluorination of heteroaromatic iodonium salts with no-carrier-added [18F]fluoride. J. Am. Chem. Soc., 2007, 129(25), 8018-8025.
[http://dx.doi.org/10.1021/ja066850h] [PMID: 17536798]
(d) Kwon, Y-D.; Son, J.; Chun, J-H. Chemoselective radiosyntheses of electron-rich [18F]Fluoroarenes from aryl(2,4,6-trimethoxy-phenyl)iodonium tosylates. J. Org. Chem., 2019, 84(6), 3678-3686.
[http://dx.doi.org/10.1021/acs.joc.9b00019] [PMID: 30777757]
[24]
(a) Satyamurthy, N.; Barrio, J. R. NO-carrier- added nucleophilic [F- 18] fluorination of aromatic compounds. WO2010/117435 A2, 2010.
(b) Rotstein, B.H.; Stephenson, N.A.; Vasdev, N.; Liang, S.H. Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered ar-omatics. Nat. Commun., 2014, 5, 4365.
[http://dx.doi.org/10.1038/ncomms5365] [PMID: 25007318]
[25]
González, M.A.C.; Jiang, X.; Nordeman, P.; Antoni, G.; Szabó, K.J. Rhodium-mediated 18F-oxyfluorination of diazoketones using a fluorine-18-containing hypervalent iodine reagent. Chem. Commun. (Camb.), 2019, 55, 13358-13361.
[http://dx.doi.org/10.1039/C9CC06905D] [PMID: 31625541]
[26]
(a) Cai, L.; Lu, S.; Pike, V.W. Chemistry with [18F]fluoride ion. Eur. J. Org. Chem., 2008, 2853-2873.
[http://dx.doi.org/10.1002/ejoc.200800114]
(b) Yusubov, M.S.; Svitich, D.Y.; Larkina, M.S.; Zhdankin, V.V. Applications of iodonium salts and iodonium ylides as precursors for nucleophilic fluorination in positron emission tomography. ARKIVOC, 2013, 364-395.
(c) Preshlock, S.; Tredwell, M.; Gouverneur, V. (18)F-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem. Rev., 2016, 116(2), 719-766.
[http://dx.doi.org/10.1021/acs.chemrev.5b00493] [PMID: 26751274]
(d) Buckingham, F.; Gouverneur, V. Asymmetric 18F-fluorination for applications in positron emission tomography. Chem. Sci. (Camb.), 2016, 7, 1645-1652.
[http://dx.doi.org/10.1039/C5SC04229A]
(e) van der Born, D.; Pees, A.; Poot, A.J.; Orru, R.V.A.; Windhorst, A.D.; Vugts, D.J. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem. Soc. Rev., 2017, 46(15), 4709-4773.
[http://dx.doi.org/10.1039/C6CS00492J] [PMID: 28608906]
(f) Pike, V.W. Hypervalent aryliodine compounds as precursors for radiofluorination. J. Labelled Comp. Radiopharm., 2018, 61(3), 196-227.
[http://dx.doi.org/10.1002/jlcr.3570] [PMID: 28981159]
[27]
(a) Beringer, F.M.; Drexler, M.; Gindler, E.M.; Lumpkin, C.C. Diaryliodonium salts. I. Synthesis. J. Am. Chem. Soc., 1953, 75, 2705.
[http://dx.doi.org/10.1021/ja01107a046]
(b) Beringer, F.M.; Brierley, A.; Drexler, M.; Gindler, E.M.; Lumpkin, C.C. Diaryliodonium salts. II. The phenylation of organic and inorganic bases. J. Am. Chem. Soc., 1953, 75, 2708-2712.
[http://dx.doi.org/10.1021/ja01107a047]
[28]
(a) Stang, P.J.; Zhdankin, V.V. Organic polyvalent iodine compounds. Chem. Rev., 1996, 96(3), 1123-1178.
[http://dx.doi.org/10.1021/cr940424+] [PMID: 11848783]
(b) Merritt, E.A.; Olofsson, B. Diaryliodonium salts: A journey from obscurity to fame. Angew. Chem. Int. Ed., 2009, 48, 9052-9072.
[http://dx.doi.org/10.1002/anie.200904689]
(c) Yusubov, M.S.; Maskaev, A.V.; Zhdankin, V.V. Iodonium salts in organic synthesis. ARKIVOC, 2011, 370-409.
(d) Olofsson, B. Arylation with dia-ryliodonium salts. Top. Curr. Chem. (Cham), 2016, 373, 135-16.
(e) Aradi, K.; Toth, B.L.; Tolnai, G.L.; Novak, Z. Diaryliodonium salts in organic syntheses: A useful compound class for novel aryla-tion strategies. Synlett, 2016, 27, 1456-1485.
[http://dx.doi.org/10.1055/s-0035-1561369]
(f) Villo, P.; Olofsson, B. Arylations Promoted by Hypervalent Iodine Reagents.In: Patai's Chemistry of Functional Groups (Hypervalent Halogen Compounds). John Wiley & Sons: Chichester, , 2018.
[http://dx.doi.org/10.1002/9780470682531.pat0950]
[29]
(a) Zefirov, N.S.; Kasumov, T.M.; Koz’min, A.S.; Sorokin, V.D.; Stang, P.J.; Zhdankin, V.V. Iodosyl fluorosulfate - a new efficient reagent for the direct synthesis of diaryliodonium salts. Synthesis, 1993, 1209-1210.
[http://dx.doi.org/10.1055/s-1993-26024]
(b) Kasumov, T.M.; Brel, V.K.; Koz’min, A.S.; Zefirov, N.S. Phenyliodine(III) sulfate as a new reagent for synthesis of diaryliodonium salts. Synthesis, 1995, 775-776.
[http://dx.doi.org/10.1055/s-1995-4005]
[30]
(a) Kitamura, T.; Matsuyuki, J.; Nagata, K.; Furuki, R.; Taniguchi, H. A convenient preparation of di-aryliodonium triflates. Synthesis, 1992, 945-946.
[http://dx.doi.org/10.1055/s-1992-26272]
(b) Shah, A.; Pike, V.W.; Widdowson, D.A. Synthesis of functionalised unsymmetrical diaryliodonium salts. J. Chem. Soc., Perkin Trans. 1, 1997, 2463-2466.
[http://dx.doi.org/10.1039/a704062h]
(c) Kitamura, T.; Inoue, D.; Wakimoto, I.; Nakamura, T.; Katsuno, R.; Fujiwara, Y. Reaction of] (diacetoxy-iodo)benzene with excess of trifluoromethanesulfonic acid. A convenient route to para-phenylene type hypervalent iodine oligomers. Tetrahedron, 2004, 60, 8855-8860.
[http://dx.doi.org/10.1016/j.tet.2004.07.026]
(d) Dohi, T.; Hayashi, T.; Ueda, S.; Shoji, T.; Ko-miyama, K.; Takeuchi, H.; Kita, Y. Recyclable synthesis of mesityl iodonium(III) salts. Tetrahedron, 2019, 75, 3617-3627.
[http://dx.doi.org/10.1016/j.tet.2019.05.033]
[31]
(a) Koser, G.F.; Wettach, R.H. Hydroxy(tosyloxy)iodo]benzene, a versatile reagent for the mild oxi-dation of aryl iodides at the iodine atom by ligand transfer. J. Org. Chem., 1980, 45, 1542-1543.
[http://dx.doi.org/10.1021/jo01296a049]
(b) Margida, A.J.; Koser, G.F. Direct condensation of [hydroxy(tosyloxy)iodo]arenes with thiophenes. A convenient, mild synthesis of aryl(2-thienyl)iodonium tosylates. J. Org. Chem., 1984, 49, 3643-3646.
[http://dx.doi.org/10.1021/jo00193a039]
(c) Dohi, T.; Ito, M.; Morimoto, K.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. Versatile direct dehydrative approach for diaryliodonium(III) salts in fluoroalcohol media. Chem. Commun. (Camb.), 2007, (40), 4152-4154.
[http://dx.doi.org/10.1039/b708802g] [PMID: 17925959]
(d) Dohi, T.; Yamaoka, N.; Kita, Y. Fluoroalcohols: Versatile solvents in hyperva-lent iodine chemistry and syntheses of diaryliodonium(III) salts. Tetrahedron, 2010, 66, 5775-5785.
[http://dx.doi.org/10.1016/j.tet.2010.04.116]
(e) Ito, M.; Ogawa, C.; Yamaoka, N.; Fujioka, H.; Dohi, T.; Kita, Y. Enhanced reactivity of [hydroxy(tosyloxy)iodo]benzene in fluoroalcohol media. Ef-ficient direct synthesis of thienyl(aryl) iodonium salts. Molecules, 2010, 15(3), 1918-1931.
[http://dx.doi.org/10.3390/molecules15031918] [PMID: 20336022]
[32]
(a) Yamamoto, Y.; Togo, H. Facile one-pot prepration of [hydroxyl(sulfonyloxy)iodo]arenes from io-doearenes with MCPBA in the presence of sulfonic acids. Synlett, 2005, 2486-2488.
(b) Merritt, E.A.; Carneiro, V.M.T.; Silva, L.F., Jr; Olofsson, B. Facile synthesis of Koser’s reagent and derivatives from iodine or aryl iodides. J. Org. Chem., 2010, 75(21), 7416-7419.
[http://dx.doi.org/10.1021/jo101227j] [PMID: 20925420]
[33]
(a) Beringer, With Si: F.M.; Dehn, J.W., Jr; Winicov, M. Diaryliodonium Salts. XIV. Reactions of or-ganometallic compounds with iodosobenzene dichlorides and with iodonium salts. J. Am. Chem. Soc., 1960, 82, 2948-2952.
[http://dx.doi.org/10.1021/ja01496a066]
(b) Koser, G.F.; Wettach, R.H.; Smith, C.S. New methodology in iodonium salt synthesis. Reactions of [hydroxy(to-syl-oxy)iodo]arenes with aryltrimethylsilanes. J. Org. Chem., 1980, 45, 1543-1544.
[http://dx.doi.org/10.1021/jo01296a050]
(c) Radhakrishnan, U.; Stang, P.J. Synthesis and charac-terization of cationic iodonium macrocycles. J. Org. Chem., 2003, 68(24), 9209-9213.
[http://dx.doi.org/10.1021/jo030246x] [PMID: 14629137]
(d) Stang, With Sn: P.J.; Zhdankin, V.V. Preparation and characterization of a macrocyclic tetraaryltetraiodonium compound, cy-clo(Ar4I4)4+.cntdot.4X-. A unique, charged, cationic molecular box. J. Am. Chem. Soc., 1993, 115, 9808-9809.
[http://dx.doi.org/10.1021/ja00074a061]
(e) Pike, V.W.; Butt, F.; Shah, A.; Widdowson, D.A. Facile synthesis of substituted diaryliodonium tosylates by treatment of aryl-tributylstannanes with Koser’s reagent. J. Chem. Soc., Perkin Trans. 1, 1999, 3, 245-248.
[http://dx.doi.org/10.1039/a809349k]
(f) Ochiai, M.; Kitagawa, Y.; Takayama, N.; Takaoka, Y.; Shiro, M. Synthesis of chiral diaryliodonium salts, 1,1‘-binaphthyl-2-yl(phenyl)iodonium tetrafluorob-orates: Asymmetric α-phenylation of β-keto ester enolates. J. Am. Chem. Soc., 1999, 121, 9233-9234.
[http://dx.doi.org/10.1021/ja992236c]
(g) Bykowski, D.; McDonald, R.; Hinkle, R.J.; Tykwinski, R.R. Structural and electronic characteristics of thienyl(aryl)iodonium triflates. J. Org. Chem., 2002, 67, 2798-2804.
(h) Chen, D-W.; Ochiai, M. Chromium(II)-mediated reactions of iodonium tetra-fluoroborates with aldehydes: Umpolung of reactivity of diaryl-, alkenyl(aryl)-, and al-kynyl(aryl)iodonium tetrafluoroborates. J. Org. Chem., 1999, 64(18), 6804-6814.
[http://dx.doi.org/10.1021/jo990809y] [PMID: 11674690]
(i) Carroll, M.A.; Pike, V.W.; Widdowson, D.A. New synthesis of diaryliodonium sulfonates from arylboronic acids. Tetrahedron Lett., 2000, 41, 5393-5396.
(j) Ochiai, M.; Toyonari, M.; Sueda, T.; Kitagawa, Y. Boron-iodine(III) exchange reaction: Direct synthesis of diaryliodonium tetraarylborates from] (diacetoxyiodo)arenes by the reaction with alkali metal tetraaryl-borates in acetic acid. Tetrahedron Lett., 1996, 37, 8421-8422.
[http://dx.doi.org/10.1016/0040-4039(96)01926-0]
[34]
(a) Beringer, F.M.; Nathan, R.A. Iron-iodine(III) exchange reaction: Direct synthesis of diaryliodoni-um tetraarylborates from] (diacetoxyiodo)arenes by the reaction with alkali metal tetraarylborates in acetic acid. J. Org. Chem., 1969, 34, 685-689.
[http://dx.doi.org/10.1021/jo01255a044]
(b) Stang, P.J.; Zhdankin, V.V.; Tykwinski, R.; Zefirov, N.S. Iodosyl trifluoromethanesulfonate - an efficient reagent for the single step preparation of diaryl iodonium triflate salts. Tetrahedron Lett., 1991, 32, 7497-7498.
[http://dx.doi.org/10.1016/0040-4039(91)80516-9]
(c) Stang, P.J.; Zhdankin, V.V.; Tykwinski, R.; Zefirov, N.S. (Dicyano)iodonium triflate- novel iodonium species and a versatile reagent for the preparation of iodonium salts via an iodonium transfer reaction with organostannanes. Tetrahedron Lett., 1992, 33, 1419-1422.
[http://dx.doi.org/10.1016/S0040-4039(00)91636-8]
[35]
(a) Kaźmierczak, P.; Skulski, L. A Short-cut synthesis of diaryliodonium bromides followed by oxidative anion metatheses. Synthesis, 1995, 8, 1027-1032.
[http://dx.doi.org/10.1055/s-1995-4045]
(b) Hossain, M.D.; Kitamura, T. Reaction of iodoarenes with potassium peroxodisulfate/trifluoroacetic acid in the presence of aromatics. Direct preparation of diaryliodonium triflates from iodoarenes. Tetrahedron, 2006, 62, 6955-6960.
[http://dx.doi.org/10.1016/j.tet.2006.04.073]
(c) Bielawski, M.; Ol-ofsson, B. High-yielding one-pot synthesis of diaryliodonium triflates from arenes and iodine or aryl iodides. Chem. Commun. (Camb.), 2007, (24), 2521-2523.
[http://dx.doi.org/10.1039/b701864a] [PMID: 17563816]
(d) Bielawski, M.; Zhu, M.; Olofsson, B. Efficient and general one-pot synthesis of diaryliodonium triflates. Adv. Synth. Catal., 2007, 349, 2610-2618.
[http://dx.doi.org/10.1002/adsc.200700373]
(e) Zhu, M.; Jalalian, N.; Olofsson, B. One-pot syn-thesis of diaryliodonium salts using toluenesulfonic acid: A fast entry to electron-rich diaryliodonium tosylates and triflates. Synlett, 2008, 592-596.
(f) Merritt, E.A.; Malmgren, J.; Klinke, F.J.; Olofsson, B. Synthesis of diaryliodonium triflates using environmentally benign oxidizing agents. Synlett, 2009, 2277-2280.
(g) Dohi, T.; Yamaoka, N.; Itani, I.; Kita, Y. One-pot syntheses of diaryliodonium salts from aryl iodides using peracetic acid as green oxidant. Aust. J. Chem., 2011, 64, 529-535.
[http://dx.doi.org/10.1071/CH11057]
[36]
(a) Hossain, M.D.; Ikegami, Y.; Kitamura, T. Reaction of arenes with iodine in the presence of potas-sium peroxodisulfate in trifluoroacetic acid. Direct and simple synthesis of diaryliodonium triflates. J. Org. Chem., 2006, 71, 9903-9905.
[37]
Gudriniece, E.; Neiland, O.; Vanags, G. Iodonium derivatives of ß-diketones. I. Reactions of dime-don with iodosobenzene. Zh. Obsch. Khim., 1957, 27, 2737-2740.
[38]
(a) Hadjiarapoglou, L.; Spyroudis, S.; Varvoglis, A. Phenyliodonium bis(phenylsulfonyl)methylide, a new hypervalent iodonium ylide. J. Am. Chem. Soc., 1985, 107, 7178-7179.
[http://dx.doi.org/10.1021/ja00310a072]
(b) Zhu, S.; Chen, Q. Phenyliodonium bis(perfluoroalkane sulphonyl) methide; synthesis and reactions as a precursor of bis(perfluoroalkanesulphonyl) carbine. J. Chem. Soc. Chem. Commun., 1990, 1459-1460.
[http://dx.doi.org/10.1039/c39900001459]
(c) Goudreau, S.R.; Marcoux, D.; Charette, A.B. Gen-eral method for the synthesis of phenyliodonium ylides from malonate esters: Easy access to 1,1-cyclopropane diesters. J. Org. Chem., 2009, 74(1), 470-473.
[http://dx.doi.org/10.1021/jo802208q] [PMID: 19032040]
(d) Yu, J.; Liu, S-S.; Cui, J.; Hou, X-S.; Zhang, C. A mild and efficient direct α-amination of β-dicarbonyl compounds using iodosobenzene and p-toluenesulfonamide catalyzed by perchlorate zinc hexahydrate. Org. Lett., 2012, 14(3), 832-835.
[http://dx.doi.org/10.1021/ol203358f] [PMID: 22260345]
[39]
Cardinale, J.; Ermert, J. Simplified synthesis of aryliodonium ylides by a one-pot procedure. Tetrahedron Lett., 2013, 54, 2067-2069.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.018]
[40]
Stuart, D.R. Aryl Transfer selectivity in metal-free reactions of unsymmetrical diaryliodonium salts. Chem. Eur. J., 2017, 23(63), 15852-15863.
[http://dx.doi.org/10.1002/chem.201702732] [PMID: 28793179]
[41]
Ochiai, M.; Takaoka, Y.; Masaki, Y.; Nagao, Y.; Shiro, M. Synthesis of chiral hypervalent organoio-dinanes, iodo(III)binaphthyls, and evidence for pseudorotation on iodine. J. Am. Chem. Soc., 1990, 112, 5677-5678.
[http://dx.doi.org/10.1021/ja00170a063]
[42]
(a) Ochiai, M.; Kitagawa, Y.; Toyonari, M. On the mechanism of α-phenylation of β-keto esters with diaryl-λ3-iodanes: evidence for a non-radical pathway. ARKIVOC, 2003, 43-48.
(b) Ochiai, M. Reac-tivities, properties and structures. Top. Curr. Chem., 2003, 224, 5-68.
[http://dx.doi.org/10.1007/3-540-46114-0_2]
[43]
(a) Yamada, Y.; Okawara, M. Steric effect in the nucleophilic attack of bromide anion on diaryl- and aryl-2-thienyliodonium ions. Bull. Chem. Soc. Jpn., 1972, 45, 1860-1863.
[http://dx.doi.org/10.1246/bcsj.45.1860]
(b) Lancer, K.M.; Wiegand, G.H. The ortho effect in the pyrolysis of iodonium halides. A case for a sterically controlled nucleophilic aromatic (SN) substitution reaction. J. Org. Chem., 1976, 41, 3360-3364.
[http://dx.doi.org/10.1021/jo00883a004]
(c) Grushin, V.V.; Demkina, I.I.; Tolstaya, T. Unified mechanistic analysis of polar reactions of diaryliodonium salts. J. Chem. Soc., Perkin Trans. 2, 1992, 505.
[http://dx.doi.org/10.1039/p29920000505]
[44]
(a) Malmgren, J.; Santoro, S.; Jalalian, N.; Himo, F.; Olofsson, B. Arylation with unsymmetrical dia-ryliodonium salts: A chemoselectivity study. Chem. Eur. J., 2013, 19(31), 10334-10342.
[http://dx.doi.org/10.1002/chem.201300860] [PMID: 23788251]
(b) Seidl, T.L.; Sundalam, S.K.; McCullough, B.; Stuart, D.R. Unsymmetrical Aryl(2,4,6-trimethoxyphenyl)iodonium salts: One-pot synthesis, scope, stability, and synthetic studies. J. Org. Chem., 2016, 81(5), 1998-2009.
[http://dx.doi.org/10.1021/acs.joc.5b02833] [PMID: 26828570]
(c) Dohi, T.; Ueda, S.; Hirai, A.; Kojima, Y.; Morimoto, K.; Kita, Y. Selective aryl radical transfers into N-heteroaromatics from dia-ryliodonoium salts with trimethoxybenzene auxiliary. Heterocycles, 2017, 95, 1272-1284.
[http://dx.doi.org/10.3987/COM-16-S(S)90]
(d) Carreras, V.; Sandtorv, A.H.; Stuart, D.R. Syn-thesis of aryl(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate salts. J. Org. Chem., 2017, 82(2), 1279-1284.
[http://dx.doi.org/10.1021/acs.joc.6b02811] [PMID: 28001410]
(e) Dohi, T.; Koseki, D.; Sumida, K.; Okada, K.; Mizuno, S.; Kato, A.; Morimoto, K.; Kita, Y. Metal-free O-arylation of car-boxylic acid by active diaryliodonium(III) intermediates generated in situ from iodosoarenes. Adv. Synth. Catal., 2017, 359, 3503-3508.
[http://dx.doi.org/10.1002/adsc.201700843]
(f) Koseki, D.; Aoto, E.; Shoji, T.; Watanabe, K. In, Y.; Kita, Y.; Dohi, T. Efficient N-arylation of azole compounds utiliz-ing selective aryl-transfer TMP-iodonium(III) reagents. Tetrahedron Lett., 2019, 60, 1281-1286.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.012]
[45]
(a) Phipps, R.J.; Grimster, N.P.; Gaunt, M.J. Cu(II)-catalyzed direct and site-selective arylation of in-doles under mild conditions. J. Am. Chem. Soc., 2008, 130(26), 8172-8174.
[http://dx.doi.org/10.1021/ja801767s] [PMID: 18543910]
(b) Phipps, R.J.; Gaunt, M.J. A meta-selective copper-catalyzed CH bond arylation. Science, 2009, 323(5921), 1593-1597.
[http://dx.doi.org/10.1126/science.1169975] [PMID: 19299616]
(c) Sokolovs, I.; Lubriks, D.; Suna, E. Copper-catalyzed intermolecular C–H amination of] (hetero)arenes via transient unsymmet-rical λ3-iodanes. J. Am. Chem. Soc., 2014, 136, 6920-6928.
(d) Bigot, A.E. Williamson, M.J. Enantioselective α-arylation of Nacyloxazolidinones with copper(II)-bisoxazoline catalysts and diaryliodonium salts. J. Am. Chem. Soc., 2011, 133, 13778.
(e) Tang, D-T.D.; Collins, K.D.; Ernst, J.B.; Glorius, F. Pd/C as a catalyst for completely regioselective C−H functionalization of thiophenes under mild conditions. Angew. Chem. Int. Ed., 2014, 53, 1809-1813.
(f) Saravanan, P.; Anbarasan, P. Copper-catalyzed trifluoromethylthiolation of di(hetero)aryl-λ3-iodanes: Mechanistic insight and application to synthesis of] (hetero)aryl trifluoromethyl sulfides. Adv. Synth. Catal., 2015, 357, 3521-3528.
(g) N., Ichiishi; A.J., Canty; B.F., Yates; M.S., Sanford Mechanistic investigations of Cu-catalyzed fluorination of diaryliodonium salts: Elaborating the CuI/CuIII manifold in copper catalysis. Organometallics, 2014, 33, 5525-5534.
[46]
Chun, J-H.; Lu, S.; Lee, Y-S.; Pike, V.W. Fast and high-yield microreactor syntheses of ortho-substituted [18F]fluoroarenes from reactions of [18F]fluoride ion with diaryliodonium salts. J. Org. Chem., 2010, 75(10), 3332-3338.
[http://dx.doi.org/10.1021/jo100361d] [PMID: 20361793]
[47]
Lee, Y-S.; Chun, J-H.; Hodošček, M.; Pike, V.W. Crystal structures of diaryliodonium fluorides and their implications for fluorination mechanisms. Chem. Eur. J., 2017, 23(18), 4353-4363.
[http://dx.doi.org/10.1002/chem.201604803] [PMID: 28145069]
[48]
Carrol, M.A.; Jones, C.; Tang, S-L. Fluoridation of 2-thienylio-donium salts. J. Labelled Comp. Radiopharm., 2007, 50, 450-451.
[http://dx.doi.org/10.1002/jlcr.1189]
[49]
(a) Gondo, K.; Kitamura, T. Reaction of iodonium ylides of 1,3-dicarbonyl compounds with HF rea-gents. Molecules, 2012, 17(6), 6625-6632.
[http://dx.doi.org/10.3390/molecules17066625] [PMID: 22728358]
(b) Pongratz, E.; Kappe, T. Ylides of heterocycles, VIII. Reactions of iodonium-ylides with acids. Monatsh. Chem., 1984, 115, 231-242.
[http://dx.doi.org/10.1007/BF00798414]
[50]
(a) Minn, H.; Kauhanen, S.; Seppänen, M.; Nuutila, P. 18F-FDOPA: A multiple-target molecule. J. Nucl. Med., 2009, 50(12), 1915-1918.
[http://dx.doi.org/10.2967/jnumed.109.065664] [PMID: 19910423]
(b) Morrish, P.K.; Sawle, G.V.; Brooks, D.J. Regional changes in [18F]dopa metabolism in the striatum in Parkinson’s disease. Brain, 1996, 119, 2097-2103.
[http://dx.doi.org/10.1093/brain/119.6.2097] [PMID: 9010013]
[51]
(a) Namavari, M.; Bishop, A.; Satyamurthy, N.; Bida, G.; Barrio, J.R. Regioselective radio-fluorodestannylation with [18F]F2 and [18F]CH3COOF: A high yield synthesis of 6-[18F]fluoro-L-dopa. Int. J. Rad. Appl. Instrum. [A], 1992, 43(8), 989-996.
[http://dx.doi.org/10.1016/0883-2889(92)90217-3] [PMID: 1330984]
(b) de Vries, E.F.J.; Luurtsema, G.; Brüssermann, M.; Elsinga, P.H.; Vaalburg, W. Fully automated synthesis module for the high yield one-pot preparation of 6-[18F]fluoro-l-DOPA. Appl. Radiat. Isot., 1999, 51, 389-394.
[http://dx.doi.org/10.1016/S0969-8043(99)00057-3]
[52]
(a) Lemaire, C.; Guillaume, M.; Cantineau, R.; Plenevaux, A.; Christiaens, L. An approach to the asymmetric synthesis of l-6-[18F]fluorodopa via NCA nucleophilic fluorination. Int. J. Rad. Appl. Instrum. [A], 1991, 42, 629-635.
[http://dx.doi.org/10.1016/0883-2889(91)90033-W]
(b) Lemaire, C.; Gillet, S.; Guillouet, S.; Plenevaux, A.; Aerts, J.; Luxen, A. Eur. J. Org. Chem., 2004, 2899-2904.
[http://dx.doi.org/10.1002/ejoc.200400059]
(c) Libert, L.C.; Franci, X.; Plenevaux, A.R.; Ooi, T.; Maruoka, K.; Luxen, A.J.; Lemaire, C.F. Production at the Curie level of no-carrier-added 6-18F-fluoro-L-dopa. J. Nucl. Med., 2013, 54(7), 1154-1161.
[http://dx.doi.org/10.2967/jnumed.112.112284] [PMID: 23658219]
(d) Lemaire, C.; Libert, L.; Franci, X.; Genon, J-L.; Kuci, S.; Giacomelli, F.; Lux-en, A. Automated production at the curie level of no-carrier-added 6-[18F]fluoro-L-dopa and 2-[18F]fluoro-L-tyrosine on a FASTlab synthesizer. J. Labelled Comp. Radiopharm., 2015, 58(7), 281-290.
[http://dx.doi.org/10.1002/jlcr.3291] [PMID: 26011311]
[53]
Wagner, F.M.; Ermert, J.; Coenen, H.H. Three-step, “one-pot” radiosynthesis of 6-fluoro-3,4-dihydroxy-L-phenylalanine by isotopic exchange. J. Nucl. Med., 2009, 50(10), 1724-1729.
[http://dx.doi.org/10.2967/jnumed.109.063297] [PMID: 19759110]
[54]
(a) Luxen, A.; Satyamurthy, N.; Bida, G.T.; Barrio, J.R. Stereospecific approach to the synthesis of [18F]2-deoxy-2-fluoro-D-mannose. Int. J. Rad. Appl. Instrum. A, 1986, 37(5), 409-413.
(b) Adam, M.J.; Jivan, S. Synthesis and purification of l-6[18F]fluorodopa. Appl. Radiat. Isot., 1988, 39, 1203.
(c) Luxen, A.; Perlmutter, M.; Bida, G.T.; Van Moffaert, G.; Cook, J.S.; Satyamurthy, N.; Phelps, M.E.; Barrio, J.R. Remote, semiautomated production of 6-[18F]fluoro-l-dopa for human studies with PET. Appl. Radiat. Isot., 1990, 41, 275-281.
(d) Stenhagen, I.S.R.; Kirjavainen, A.K.; Forsback, S.J.; Jørgensen, C.G.; Robins, E.G.; Luthra, S.K.; Solin, O.; Gouverneur, V. [18F]fluorination of an arylboronic ester using [18F]selectfluor bis(triflate): Application to 6-[18F]fluoro-L-DOPA. Chem. Commun. (Camb.), 2013, 49(14), 1386-1388.
[http://dx.doi.org/10.1039/c2cc38646a] [PMID: 23321570]
[55]
(a) Lee, E.; Hooker, J.M.; Ritter, T. Nickel-mediated oxidative fluorination for PET with aqueous [18F] fluoride. J. Am. Chem. Soc., 2012, 134(42), 17456-17458.
[http://dx.doi.org/10.1021/ja3084797] [PMID: 23061667]
(b) Tredwell, M.; Preshlock, S.M.; Taylor, N.J.; Gruber, S.; Huiban, M.; Passchier, J.; Mercier, J.; Génicot, C.; Gouverneur, V. A general copper-mediated nucleophilic 18F fluorination of arenes. Angew. Chem. Int. Ed., 2014, 53, 7751-7755.
[http://dx.doi.org/10.1002/anie.201404436]
[56]
Ichiishi, N.; Brooks, A.F.; Topczewski, J.J.; Rodnick, M.E.; Sanford, M.S.; Scott, P.J.H. Copper-catalyzed [18F]fluorination of (mesityl)(aryl)iodonium salts. Org. Lett., 2014, 16(12), 3224-3227.
[http://dx.doi.org/10.1021/ol501243g] [PMID: 24890658]
[57]
(a) Edwards, R.; Westwell, A.D.; Daniels, S.; Wirth, T. Convenient synthesis of diaryliodonium salts for the production of [18F]F-DOPA. Eur. J. Org. Chem., 2015, 625-630.
[http://dx.doi.org/10.1002/ejoc.201403378]
(b) Kuik, W-J.; Kema, I.P.; Brouwers, A.H.; Zijlma, R.; Neumann, K.D.; Dierckx, R.A.J.O.; DiMagno, S.G.; Elsinga, P.H. In vivo biodistribution of no-carrier-added 6-18F-fluoro-3,4-dihydroxy-L-phenylalanine (18F-DOPA), produced by a new nucleo-philic substitution approach, compared with carrier-added 18F-DOPA, prepared by conventional elec-trophilic substitution. J. Nucl. Med., 2015, 56(1), 106-112.
[http://dx.doi.org/10.2967/jnumed.114.145730] [PMID: 25500826]
[58]
Zhang, M-R.; Kumata, K.; Suzuki, K. A practical route for synthesizing a PET ligand containing [18F]fluorobenzene using reaction of diphenyliodonium salt with [18F]F−. Tetrahedron Lett., 2007, 48, 8632-8635.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.025]
[59]
Lee, B.C.; Dence, C.S.; Zhou, H.; Parent, E.E.; Welch, M.J.; Katzenellenbogen, J.A. Fluorine-18 la-beling and biodistribution studies on peroxisome proliferator-activated receptor-gamma ligands: Po-tential positron emission tomography imaging agents. Nucl. Med. Biol., 2009, 36(2), 147-153.
[http://dx.doi.org/10.1016/j.nucmedbio.2008.11.002] [PMID: 19217526]
[60]
Lee, B.C.; Kim, J.S.; Kim, B.S.; Son, J.Y.; Hong, S.K.; Park, H.S.; Moon, B.S.; Jung, J.H.; Jeong, J.M.; Kim, S.E. Aromatic radiofluorination and biological evaluation of 2-aryl-6-[18F]fluoro-benzothiazoles as a potential positron emission tomography imaging probe for β-amyloid plaques. Bioorg. Med. Chem., 2011, 19, 2980-2990.
[http://dx.doi.org/10.1016/j.bmc.2011.03.029] [PMID: 21478020]
[61]
Telu, S.; Chun, J-H.; Siméon, F.G.; Lu, S.; Pike, V.W. Syntheses of mGluR5 PET radioligands through the radiofluorination of diaryliodonium tosylates. Org. Biomol. Chem., 2011, 9(19), 6629-6638.
[http://dx.doi.org/10.1039/c1ob05555k] [PMID: 21845279]
[62]
Moon, B.S.; Kil, H.S.; Park, J.H.; Kim, J.S.; Park, J.; Chi, D.Y.; Lee, B.C.; Kim, S.E. Facile aromatic radiofluorination of [18F]flumazenil from diaryliodonium salts with evaluation of their stability and selectivity. Org. Biomol. Chem., 2011, 9(24), 8346-8355.
[http://dx.doi.org/10.1039/c1ob06277h] [PMID: 22057475]
[63]
Xu, R.; Zanotti-Fregonara, P.; Zoghbi, S.S.; Gladding, R.L.; Woock, A.E.; Innis, R.B.; Pike, V.W. Synthesis and evaluation in monkey of [18F]4-fluoro-N-methyl-N-(4-(6-(methylamino)pyri-midin-4-yl)thiazol-2-yl)benzamide ([18F]FIMX): A promising radioligand for PET imaging of brain metabo-tropic glutamate receptor 1 (mGluR1). J. Med. Chem., 2013, 56(22), 9146-9155.
[http://dx.doi.org/10.1021/jm4012017] [PMID: 24147864]
[64]
Cardinale, J.; Ermert, J.; Humpert, S.; Coenen, H.H. Iodonium ylides for one-step, no-carrier-added radiofluorination of electron rich arenes, exemplified with 4-(([18F]fluorophenoxy)-phenyl-methyl)piperidine NET and SERT ligands. RSC Adv., 2014, 4, 17293-17299.
[http://dx.doi.org/10.1039/C4RA00674G]
[65]
(a) Stephenson, N.A.; Holland, J.P.; Kassenbrock, A.; Yokell, D.L.; Livni, E.; Liang, S.H.; Vasdev, N. Iodonium ylide-mediated radiofluorination of 18F-FPEB and validation for human use. J. Nucl. Med., 2015, 56(3), 489-492.
[http://dx.doi.org/10.2967/jnumed.114.151332] [PMID: 25655630]
(b) Calderwood, S.; Collier, T.L.; Gouverneur, V.; Liang, S.H.; Vasdev, N. Synthesis of 18F-arenes from spirocyclic iodonium(III) ylides via continuous-flow microfluidics. J. Fluorine Chem., 2015, 178, 249-253.
[http://dx.doi.org/10.1016/j.jfluchem.2015.08.006] [PMID: 27512233]
[66]
Linstad, E.J.; Vāvere, A.L.; Hu, B.; Kempinger, J.J.; Snyder, S.E.; DiMagno, S.G. Thermolysis and radiofluorination of diaryliodonium salts derived from anilines. Org. Biomol. Chem., 2017, 15, 2246-2252.
[http://dx.doi.org/10.1039/C7OB00253J]
[67]
Yuan, Z.; Cheng, R.; Chen, P.; Liu, G.; Liang, S.H. Efficient pathway for the preparation of ar-yl(isoquinoline)iodonium(III) salts and synthesis of radiofluorinated isoquinolines. Angew. Chem. Int. Ed., 2016, 55, 11882-11886.
[http://dx.doi.org/10.1002/anie.201606381]
[68]
Way, J.; Bouvet, V.; Wuest, F. Synthesis of 4-[18F]fluorohalo-benzenes and Palladium-mediated cross-coupling reactions for the synthesis of 18F-labeled radiotracers. Curr. Org. Chem., 2013, 17, 2138-2152.
[http://dx.doi.org/10.2174/13852728113179990106]
[69]
Mu, L.; Fischer, C.R.; Holland, J.P.; Becaud, J.; Schubiger, P.A.; Schibli, R.; Ametamey, S.M.; Gra-ham, K.; Stellfeld, T.; Dinkelborg, L.M.; Lehmann, L. 18F-radiolabeling of aromatic compounds using triarylsulfonium salts. Eur. J. Org. Chem., 2012, 889-892.
[http://dx.doi.org/10.1002/ejoc.201101730]
[70]
Kügler, F.; Ermert, J.; Kaufholz, P.; Coenen, H.H. 4-[18F]fluoro-phenylpiperazines by improved Hartwig-Buchwald N-arylation of 4-[18F]fluoroiodobenzene, formed via hypervalent λ3-iodane pre-cursors: Application to build-up of the dopamine D4 ligand [18F]FAUC 316. Molecules, 2014, 20(1), 470-486.
[http://dx.doi.org/10.3390/molecules20010470] [PMID: 25558857]
[71]
Way, J.D.; Wang, M.; Hamann, I.; Wuest, M.; Wuest, F. Synthesis and evaluation of 2-amino-5-(4-[18F]fluorophenyl)pent-4-ynoic acid ([18F]FPhPA): A novel 18F-labeled amino acid for oncologic PET imaging. Nucl. Med. Biol., 2014, 41(8), 660-669.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.05.140] [PMID: 24993371]
[72]
Yagi, Y.; Kimura, H.; Arimitsu, K.; Ono, M.; Maeda, K.; Kusuhara, H.; Kajimoto, T.; Sugiyama, Y.; Saji, H. The synthesis of [18F]pitavastatin as a tracer for hOATP using the Suzuki coupling. Org. Biomol. Chem., 2015, 13(4), 1113-1121.
[http://dx.doi.org/10.1039/C4OB01953A] [PMID: 25420542]
[73]
Yuan, G.; Jones, G.B.; Vasdev, N.; Liang, S.H. Radiosynthesis and preliminary PET evaluation of [18F]-labeled 2-(1-(3-fluorophenyl)-2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl)benzonitrile for imaging AMPA receptors. Bioorg. Med. Chem. Lett., 2016, 26(19), 4857-4860.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.078] [PMID: 27546294]
[74]
Lemaire, C.; Libert, L.; Plenevaux, A.; Aerts, J.; Franci, X.; Luxen, A. Fast and reliable method for the preparation of ortho- and para-[18F]fluorobenzyl halide derivatives: Key intermediates for the preparation of no-carrier-added PET aromatic radiopharmaceuticals. J. Fluorine Chem., 2012, 138, 48-55.
[http://dx.doi.org/10.1016/j.jfluchem.2012.03.015]
[75]
Basuli, F.; Wu, H.; Griffiths, G.L. Syntheses of meta-[18F]fluorobenzaldehyde and meta-[18F]fluorobenzylbromide from phenyl(3-formylphenyl) iodonium salt precursors. J. Labelled Comp. Radiopharm., 2011, 54(4), 224-228.
[http://dx.doi.org/10.1002/jlcr.1853] [PMID: 21532942]
[76]
Chun, J-H.; Pike, V.W. Single-step syntheses of no-carrier-added functionalized [18F]fluoroarenes as labeling synthons from diaryliodonium salts. Org. Biomol. Chem., 2013, 11(37), 6300-6306.
[http://dx.doi.org/10.1039/c3ob41353e] [PMID: 23942997]
[77]
Basuli, F.; Wu, H.; Li, C.; Shi, Z-D.; Sulima, A.; Griffiths, G.L. A first synthesis of 18F-radiolabeled lapatinib: a potential tracer for positron emission tomographic imaging of ErbB1/ErbB2 tyrosine ki-nase activity. J. Labelled Comp. Radiopharm., 2011, 54, 633.
[http://dx.doi.org/10.1002/jlcr.1898]
[78]
Jang, K.S.; Jung, Y-W.; Sherman, P.S.; Quesada, C.A.; Gu, G.; Raffel, D.M. Synthesis and bioevaluation of [18F]4-fluoro-mhydroxyphenethylguanidine ([18F]4F-MHPG): a novel radiotracer for quantitative PET studies of cardiac sympathetic innervation. Bioorg. Med. Chem. Lett., 2013, 23(6), 1612-1616.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.106] [PMID: 23416009]
[79]
Jang, K.S.; Jung, Y-W.; Gu, G.; Koeppe, R.A.; Sherman, P.S.; Quesada, C.A.; Raffel, D.M. 4-[18F]fluoro-m-hydroxyphene-thylguanidine: A radiopharmaceutical for quantifying regional cardiac sympathetic nerve density with positron emission tomography. J. Med. Chem., 2013, 56(18), 7312-7323.
[http://dx.doi.org/10.1021/jm400770g] [PMID: 23965035]
[80]
Drerup, C.; Ermert, J.; Coenen, H.H. Synthesis of a potent aminopyridine-based nNOS-inhibitor by two recent no-carrier-added 18F-labelling methods. Molecules, 2016, 21, 1160.
[http://dx.doi.org/10.3390/molecules21091160]
[81]
Chun, J-H.; Pike, V.W. Single-step radiosynthesis of “18F-labeled click synthons” from azide-functionalized diaryliodonium salts. Eur. J. Org. Chem., 2012, 4541-4547.
[http://dx.doi.org/10.1002/ejoc.201200695]
[82]
Wang, L.; Jacobson, O.; Avdic, D.; Rotstein, B.H.; Weiss, I.D.; Collier, L.; Chen, X.; Vasdev, N.; Liang, S.H. Ortho-stabilized 18F-azido click agents and their application in PET IMAging with sin-gle-stranded DNA aptamers. Angew. Chem. Int. Ed., 2015, 54, 12777-12781.
[http://dx.doi.org/10.1002/anie.201505927]
[83]
Stoll, T.; Ermert, J.; Oya, S.; Kung, H.F.; Coenen, H.H. Application of n.c.a. 4-[18F]fluorophenol in diaryl ether syntheses of 2-(4-[18F]fluorophenoxy)-benzylamines. J. Labelled Comp. Radiopharm., 2004, 47, 443-455.
[http://dx.doi.org/10.1002/jlcr.828]
[84]
Mühlhausen, U.; Ermert, J.; Coenen, H.H. Synthesis, labelling and first evaluation of [18F]R91150 as a serotonin 5-HT2A receptor antagonist for PET. J. Labelled Comp. Radiopharm., 2009, 52, 13-22.
[http://dx.doi.org/10.1002/jlcr.1565]
[85]
(a) Ekaeva, I.; Barre, L.; Lasne, M-C.; Gourand, F. 2- and 4-[18F]fluorophenols from Baeyer-Villiger oxidation of [18F]fluorophenylketones and [18F]fluorobenzaldehydes. Appl. Radiat. Isot., 1995, 46, 777-782.
[http://dx.doi.org/10.1016/0969-8043(95)00022-6]
(b) Ludwig, T.; Ermert, J.; Coenen, H.H. 4-[18F]fluoroarylalkylethers via an improved synthesis of N.C.A. 4-[18F]fluorophenol. Nucl. Med. Biol., 2002, 29(2), 255-262.
[http://dx.doi.org/10.1016/S0969-8051(01)00302-X] [PMID: 11823131]
[86]
Ross, T.L.; Ermert, J.; Coenen, H.H. Synthesis of no-carrier-added 4-[18F]fluorophenol from 4-benzyloxyphenyl-(2-thienyl)iodonium bromide. Molecules, 2011, 16(9), 7621-7626.
[http://dx.doi.org/10.3390/molecules16097621] [PMID: 21900864]
[87]
Helfer, A.; Castillo Meleán, J.; Ermert, J.; Infantino, A.; Coenen, H.H. Bis(4-benzyloxyphenyl)iodonium salts as effective precursors for the no-carrier-added radiosynthesis of 4-[18F]fluorophenol. Appl. Radiat. Isot., 2013, 82, 264-267.
[http://dx.doi.org/10.1016/j.apradiso.2013.08.011] [PMID: 24100001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy