Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

The Comparison of Two Single-cell Sequencing Platforms: BD Rhapsody and 10x Genomics Chromium

Author(s): Caixia Gao, Mingnan Zhang and Lei Chen*

Volume 21 , Issue 8 , 2020

Page: [602 - 609] Pages: 8

DOI: 10.2174/1389202921999200625220812

Price: $65

Abstract

The cell is the unit of life for all organisms, and all cells are certainly not the same. So the technology to generate transcription expression or genomic DNA profiles from single cells is crucial. Since its establishment in 2009, single-cell RNA sequencing (scRNA-seq) has emerged as a major driver of progress in biomedical research. During the last three years, several new single-cell sequencing platforms have emerged. Yet there are only a few systematic comparisons of the advantages and limitations of these commonly used platforms. Here we compare two single-cell sequencing platforms: BD Rhapsody and 10x Genomics Chromium, including their different mechanisms and some scRNA-seq results obtained with them.

Keywords: Single-cell sequencing, DNA, BD rhapsody, 10x genomics chromium, transcriptome sequencing, technology comparison.

Graphical Abstract
[1]
Kolodziejczyk, A.A.; Kim, J.K.; Svensson, V.; Marioni, J.C.; Teichmann, S.A. The technology and biology of single-cell RNA sequencing. Mol. Cell, 2015, 58(4), 610-620.
[http://dx.doi.org/10.1016/j.molcel.2015.04.005] [PMID: 26000846]
[2]
Tabula, M.C. Overall coordination; Logistical coordination; Organ collection and processing; Library preparation and sequencing; Computational data analysis; Cell type annotation; Writing group; Supplemental text writing group; Principal investigators. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature, 2018, 562(7727), 367-372.
[http://dx.doi.org/10.1038/s41586-018-0590-4] [PMID: 30283141]
[3]
Wang, Y.; Navin, N.E. Advances and applications of single-cell sequencing technologies. Mol. Cell, 2015, 58(4), 598-609.
[http://dx.doi.org/10.1016/j.molcel.2015.05.005] [PMID: 26000845]
[4]
Haque, A.; Engel, J.; Teichmann, S.A.; Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med., 2017, 9(1), 75.
[http://dx.doi.org/10.1186/s13073-017-0467-4] [PMID: 28821273]
[5]
Gudapati, H.; Dey, M.; Ozbolat, I. A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials, 2016, 102, 20-42.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.012] [PMID: 27318933]
[6]
Fan, H.C.; Fu, G.K.; Fodor, S.P.A. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science, 2015, 347(6222)1258367
[http://dx.doi.org/10.1126/science.1258367] [PMID: 25657253]
[7]
Zheng, G.X.Y.; Terry, J.M.; Belgrader, P.; Ryvkin, P.; Bent, Z.W.; Wilson, R.; Ziraldo, S.B.; Wheeler, T.D.; McDermott, G.P.; Zhu, J.; Gregory, M.T.; Shuga, J.; Montesclaros, L.; Underwood, J.G.; Masquelier, D.A.; Nishimura, S.Y.; Schnall-Levin, M.; Wyatt, P.W.; Hindson, C.M.; Bharadwaj, R.; Wong, A.; Ness, K.D.; Beppu, L.W.; Deeg, H.J.; McFarland, C.; Loeb, K.R.; Valente, W.J.; Ericson, N.G.; Stevens, E.A.; Radich, J.P.; Mikkelsen, T.S.; Hindson, B.J.; Bielas, J.H. Massively parallel digital transcriptional profiling of single cells. Nat. Commun., 2017, 8(1), 14049.
[http://dx.doi.org/10.1038/ncomms14049] [PMID: 28091601]
[8]
Klein, A.M.; Mazutis, L.; Akartuna, I.; Tallapragada, N.; Veres, A.; Li, V.; Peshkin, L.; Weitz, D.A.; Kirschner, M.W. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell, 2015, 161(5), 1187-1201.
[http://dx.doi.org/10.1016/j.cell.2015.04.044] [PMID: 26000487]
[9]
Kinde, I.; Wu, J.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. USA, 2011, 108(23), 9530-9535.
[http://dx.doi.org/10.1073/pnas.1105422108] [PMID: 21586637]
[10]
Kivioja, T.; Vähärautio, A.; Karlsson, K.; Bonke, M.; Enge, M.; Linnarsson, S.; Taipale, J. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods, 2011, 9(1), 72-74.
[http://dx.doi.org/10.1038/nmeth.1778] [PMID: 22101854]
[11]
Liang, R.H.; Mo, T.; Dong, W.; Lee, G.Q.; Swenson, L.C.; McCloskey, R.M.; Woods, C.K.; Brumme, C.J.; Ho, C.K.Y.; Schinkel, J.; Joy, J.B.; Harrigan, P.R.; Poon, A.F. Theoretical and experimental assessment of degenerate primer tagging in ultra-deep applications of next-generation sequencing. Nucleic Acids Res., 2014, 42(12), e98-e98.
[http://dx.doi.org/10.1093/nar/gku355] [PMID: 24810852]
[12]
Islam, S.; Zeisel, A.; Joost, S.; La Manno, G.; Zajac, P.; Kasper, M.; Lönnerberg, P.; Linnarsson, S. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods, 2014, 11(2), 163-166.
[http://dx.doi.org/10.1038/nmeth.2772] [PMID: 24363023]
[13]
Pontén, F.; Gry, M.; Fagerberg, L.; Lundberg, E.; Asplund, A.; Berglund, L.; Oksvold, P.; Björling, E.; Hober, S.; Kampf, C.; Navani, S.; Nilsson, P.; Ottosson, J.; Persson, A.; Wernérus, H.; Wester, K.; Uhlén, M. A global view of protein expression in human cells, tissues, and organs. Mol. Syst. Biol., 2009, 5, 337.
[http://dx.doi.org/10.1038/msb.2009.93] [PMID: 20029370]
[14]
Stoeckius, M.; Hafemeister, C.; Stephenson, W.; Houck-Loomis, B.; Chattopadhyay, P.K.; Swerdlow, H.; Satija, R.; Smibert, P. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods, 2017, 14(9), 865-868.
[http://dx.doi.org/10.1038/nmeth.4380] [PMID: 28759029]
[15]
Stoeckius, M.; Hafemeister, C.; Stephenson, W.; Houck-Loomis, B.; Chattopadhyay, P.K.; Swerdlow, H.; Satija, R.; Smibert, P. Large-scale simultaneous measurement of epitopes and transcriptomes in single cells. bioRxiv, 2017, •••113068
[16]
Tang, X.; Zhang, S.; Peng, Q.; Ling, L.; Shi, H.; Liu, Y.; Cheng, L.; Xu, L.; Cheng, L.; Chakrabarti, L.A. Sustained IFN-I stimulation impairs MAIT cell responses to bacteria by inducing IL-10 during chronic HIV-1 infection. Sci Adv 2020, 6(8) eaaz0374-eaaz0374
[17]
Mair, F.; Erickson, J.R.; Voillet, V.; Simoni, Y.; Bi, T.; Tyznik, A.J.; Martin, J.; Gottardo, R.; Newell, E.W.; Prlic, M. A targeted multi-omic analysis approach measures protein expression and low-abundance transcripts on the single-cell level. Cell Rep., 2020, 31(1)107499
[http://dx.doi.org/10.1016/j.celrep.2020.03.063] [PMID: 32268080]
[18]
Peterson, V.M.; Zhang, K.X.; Kumar, N.; Wong, J.; Li, L.; Wilson, D.C.; Moore, R.; McClanahan, T.K.; Sadekova, S.; Klappenbach, J.A. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol., 2017, 35(10), 936-939.
[http://dx.doi.org/10.1038/nbt.3973] [PMID: 28854175]
[19]
Granja, J.M.; Klemm, S.; McGinnis, L.M.; Kathiria, A.S.; Mezger, A.; Corces, M.R.; Parks, B.; Gars, E.; Liedtke, M.; Zheng, G.X.Y.; Chang, H.Y.; Majeti, R.; Greenleaf, W.J. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat. Biotechnol., 2019, 37(12), 1458-1465.
[http://dx.doi.org/10.1038/s41587-019-0332-7] [PMID: 31792411]
[20]
Kotliarov, Y.; Sparks, R.; Martins, A.J.; Mulè, M.P.; Lu, Y.; Goswami, M.; Kardava, L.; Banchereau, R.; Pascual, V.; Biancotto, A.; Chen, J.; Schwartzberg, P.L.; Bansal, N.; Liu, C.C.; Cheung, F.; Moir, S.; Tsang, J.S. Broad immune activation underlies shared set point signatures for vaccine responsiveness in healthy individuals and disease activity in patients with lupus. Nat. Med., 2020, 26(4), 618-629.
[http://dx.doi.org/10.1038/s41591-020-0769-8] [PMID: 32094927]
[21]
Perfetto, S.P.; Chattopadhyay, P.K.; Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol., 2004, 4(8), 648-655.
[http://dx.doi.org/10.1038/nri1416] [PMID: 15286731]
[22]
Bendall, S.C.; Simonds, E.F.; Qiu, P.; Amir, A.D.; Krutzik, P.O.; Finck, R.; Bruggner, R.V.; Melamed, R.; Trejo, A.; Ornatsky, O.I.; Balderas, R.S.; Plevritis, S.K.; Sachs, K.; Pe’er, D.; Tanner, S.D.; Nolan, G.P. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science, 2011, 332(6030), 687-696.
[http://dx.doi.org/10.1126/science.1198704] [PMID: 21551058]
[23]
See, P.; Lum, J.; Chen, J.; Ginhoux, F. A single-cell sequencing guide for immunologists. Front. Immunol., 2018, 9, 2425.
[http://dx.doi.org/10.3389/fimmu.2018.02425] [PMID: 30405621]
[24]
Buettner, F.; Natarajan, K.N.; Casale, F.P.; Proserpio, V.; Scialdone, A.; Theis, F.J.; Teichmann, S.A.; Marioni, J.C.; Stegle, O. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol., 2015, 33(2), 155-160.
[http://dx.doi.org/10.1038/nbt.3102] [PMID: 25599176]
[25]
Lin, Y.; Ghazanfar, S.; Wang, K.Y.X.; Gagnon-Bartsch, J.A.; Lo, K.K.; Su, X.; Han, Z-G.; Ormerod, J.T.; Speed, T.P.; Yang, P.; Yang, J.Y.H. scMerge leverages factor analysis, stable expression, and pseudoreplication to merge multiple single-cell RNA-seq datasets. Proc. Natl. Acad. Sci. USA, 2019, 116(20), 9775-9784.
[http://dx.doi.org/10.1073/pnas.1820006116] [PMID: 31028141]
[26]
Ji, Y.; Qi, D.; Li, L.; Su, H.; Li, X.; Luo, Y.; Sun, B.; Zhang, F.; Lin, B.; Liu, T.; Lu, Y. Multiplexed profiling of single-cell extracellular vesicles secretion. Proc. Natl. Acad. Sci. USA, 2019, 116(13), 5979-5984.
[http://dx.doi.org/10.1073/pnas.1814348116] [PMID: 30858327]
[27]
Stoeckius, M.; Zheng, S.; Houck-Loomis, B.; Hao, S.; Yeung, B.Z.; Mauck, W.M., III; Smibert, P.; Satija, R. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol., 2018, 19(1), 224.
[http://dx.doi.org/10.1186/s13059-018-1603-1] [PMID: 30567574]
[28]
Thorsen, T.; Roberts, R.W.; Arnold, F.H.; Quake, S.R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett., 2001, 86(18), 4163-4166.
[http://dx.doi.org/10.1103/PhysRevLett.86.4163] [PMID: 11328121]
[29]
Umbanhowar, P.B.; Prasad, V.; Weitz, D.A. Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir, 2000, 16(2), 347-351.
[http://dx.doi.org/10.1021/la990101e]
[30]
Zheng, G.X.Y.; Terry, J.M.; Belgrader, P.; Ryvkin, P.; Bent, Z.W.; Wilson, R.; Ziraldo, S.B.; Wheeler, T.D.; McDermott, G.P.; Zhu, J. Microwell-seq of single cells. Nat. Commun., 2017, 8(1), 14049.
[http://dx.doi.org/10.1038/ncomms14049] [PMID: 28091601]
[31]
Smriti, M.J.P. Sumeet Dwivedi: Formulation and evaluation of floating microbeads of ciprofloxacin HCl by emulsion gelation method. Int. J. Pharm Life Sci., 2013, 4(8), 2876-2884.
[32]
Xiang, C.C.; Chen, M.; Ma, L.; Phan, Q.N.; Inman, J.M.; Kozhich, O.A.; Brownstein, M.J. A new strategy to amplify degraded RNA from small tissue samples for microarray studies. Nucleic Acids Res., 2003, 31(9), e53-e53.
[http://dx.doi.org/10.1093/nar/gng053] [PMID: 12711698]
[33]
Luo, G.X.; Taylor, J. Template switching by reverse transcriptase during DNA synthesis. J. Virol., 1990, 64(9), 4321-4328.
[http://dx.doi.org/10.1128/JVI.64.9.4321-4328.1990] [PMID: 1696639]
[34]
Zhu, Y.Y.; Machleder, E.M.; Chenchik, A.; Li, R.; Siebert, P.D. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques, 2001, 30(4), 892-897.
[http://dx.doi.org/10.2144/01304pf02] [PMID: 11314272]
[35]
Ramsköld, D.; Luo, S.; Wang, Y-C.; Li, R.; Deng, Q.; Faridani, O.R.; Daniels, G.A.; Khrebtukova, I.; Loring, J.F.; Laurent, L.C.; Schroth, G.P.; Sandberg, R. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol., 2012, 30(8), 777-782.
[http://dx.doi.org/10.1038/nbt.2282] [PMID: 22820318]
[36]
Hashimshony, T.; Senderovich, N.; Avital, G.; Klochendler, A.; de Leeuw, Y.; Anavy, L.; Gennert, D.; Li, S.; Livak, K.J.; Rozenblatt-Rosen, O.; Dor, Y.; Regev, A.; Yanai, I. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol., 2016, 17, 77-77.
[http://dx.doi.org/10.1186/s13059-016-0938-8] [PMID: 27121950]
[37]
McGinnis, C.S.; Patterson, D.M.; Winkler, J.; Conrad, D.N.; Hein, M.Y.; Srivastava, V.; Hu, J.L.; Murrow, L.M.; Weissman, J.S.; Werb, Z.; Chow, E.D.; Gartner, Z.J. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods, 2019, 16(7), 619-626.
[http://dx.doi.org/10.1038/s41592-019-0433-8] [PMID: 31209384]
[38]
Buenrostro, J.D.; Giresi, P.G.; Zaba, L.C.; Chang, H.Y.; Greenleaf, W.J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods, 2013, 10(12), 1213-1218.
[http://dx.doi.org/10.1038/nmeth.2688] [PMID: 24097267]
[39]
Satpathy, A.T.; Granja, J.M.; Yost, K.E.; Qi, Y.; Meschi, F.; McDermott, G.P.; Olsen, B.N.; Mumbach, M.R.; Pierce, S.E.; Corces, M.R.; Shah, P.; Bell, J.C.; Jhutty, D.; Nemec, C.M.; Wang, J.; Wang, L.; Yin, Y.; Giresi, P.G.; Chang, A.L.S.; Zheng, G.X.Y.; Greenleaf, W.J.; Chang, H.Y. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol., 2019, 37(8), 925-936.
[http://dx.doi.org/10.1038/s41587-019-0206-z] [PMID: 31375813]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy