Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Spotlight on Circadian Genes and Colorectal Cancer Crosstalk

Author(s): Senthilkumar Rajendran*, Silvia Barbon and Salvatore Pucciarelli

Volume 21, Issue 1, 2021

Published on: 24 June, 2020

Page: [4 - 11] Pages: 8

DOI: 10.2174/1871530320666200624192517

Price: $65

Abstract

Mammalian physiology is regulated by circadian clock through oscillating feedback loops controlling cellular processes and behaviors. Recent findings have led to an interesting connection between circadian disruption and colorectal cancer progression and incidence through controlling the hallmarks of cancer, namely cell cycle, cell metabolism and cell death. Deeper understanding of the circadian mechanisms that define the colorectal cancer pathophysiology is the need of the hour to define a chronotherapy for improving colorectal cancer patient survival. This review identifies the key areas in which circadian genes interact with cellular pathways to modify the outcome with respect to colorectal cancer incidence and progression.

Keywords: Circadian pathway, colorectal cancer, chronotherapy, cell death, cell cycle, cancer cell metabolism.

Graphical Abstract
[1]
Innominato, P.F.; Lévi, F.A.; Bjarnason, G.A. Chronotherapy and the molecular clock: Clinical implications in oncology. Adv. Drug Deliv. Rev., 2010, 62(9-10), 979-1001.
[http://dx.doi.org//10.1016/j.addr.2010.06.002] [PMID: 20600409]
[2]
Filipski, E.; Innominato, P.F.; Wu, M.; Li, X.M.; Iacobelli, S.; Xian, L.J.; Lévi, F. Effects of light and food schedules on liver and tumor molecular clocks in mice. J. Natl. Cancer Inst., 2005, 97(7), 507-517.
[http://dx.doi.org//10.1093/jnci/dji083] [PMID: 15812076]
[3]
Keesler, G.A.; Camacho, F.; Guo, Y.; Virshup, D.; Mondadori, C.; Yao, Z. Phosphorylation and destabilization of human period I clock protein by human casein kinase I epsilon. Neuroreport, 2000, 11(5), 951-955.
[http://dx.doi.org//10.1097/00001756-200004070-00011] [PMID: 10790862]
[4]
Lowrey, P.L.; Shimomura, K.; Antoch, M.P.; Yamazaki, S.; Zemenides, P.D.; Ralph, M.R.; Menaker, M.; Takahashi, J.S. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science, 2000, 288(5465), 483-492.
[http://dx.doi.org//10.1126/science.288.5465.483] [PMID: 10775102]
[5]
Kume, K.; Zylka, M.J.; Sriram, S.; Shearman, L.P.; Weaver, D.R.; Jin, X.; Maywood, E.S.; Hastings, M.H.; Reppert, S.M. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell, 1999, 98(2), 193-205.
[http://dx.doi.org//10.1016/S0092-8674(00)81014-4] [PMID: 10428031]
[6]
Griffin, E.A., Jr; Staknis, D.; Weitz, C.J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science, 1999, 286(5440), 768-771.
[http://dx.doi.org//10.1126/science.286.5440.768] [PMID: 10531061]
[7]
Brown, S.A.; Kowalska, E.; Dallmann, R. (Re)inventing the circadian feedback loop. Dev. Cell, 2012, 22(3), 477-487.
[http://dx.doi.org//10.1016/j.devcel.2012.02.007] [PMID: 22421040]
[8]
Becker-Weimann, S.; Wolf, J.; Herzel, H.; Kramer, A. Modeling feedback loops of the Mammalian circadian oscillator. Biophys. J., 2004, 87(5), 3023-3034.
[http://dx.doi.org//10.1529/biophysj.104.040824] [PMID: 15347590]
[9]
Zhu, Y.; Stevens, R.G.; Hoffman, A.E.; Fitzgerald, L.M.; Kwon, E.M.; Ostrander, E.A.; Davis, S.; Zheng, T.; Stanford, J.L. Testing the circadian gene hypothesis in prostate cancer: A population-based case-control study. Cancer Res., 2009, 69(24), 9315-9322.
[http://dx.doi.org//10.1158/0008-5472.CAN-09-0648] [PMID: 19934327]
[10]
Relles, D.; Sendecki, J.; Chipitsyna, G.; Hyslop, T.; Yeo, C.J.; Arafat, H.A. Circadian gene expression and clinicopathologic correlates in pancreatic cancer. J. Gastrointest. Surg., 2013, 17(3), 443-450.
[http://dx.doi.org//10.1007/s11605-012-2112-2] [PMID: 23254314]
[11]
Tokunaga, H.; Takebayashi, Y.; Utsunomiya, H.; Akahira, J.; Higashimoto, M.; Mashiko, M.; Ito, K.; Niikura, H.; Takenoshita, S.; Yaegashi, N. Clinicopathological significance of circadian rhythm-related gene expression levels in patients with epithelial ovarian cancer. Acta Obstet. Gynecol. Scand., 2008, 87(10), 1060-1070.
[http://dx.doi.org//10.1080/00016340802348286] [PMID: 18720043]
[12]
Taniguchi, H.; Fernández, A.F.; Setién, F.; Ropero, S.; Ballestar, E.; Villanueva, A.; Yamamoto, H.; Imai, K.; Shinomura, Y.; Esteller, M. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res., 2009, 69(21), 8447-8454.
[http://dx.doi.org//10.1158/0008-5472.CAN-09-0551] [PMID: 19861541]
[13]
Gu, F.; Zhang, H.; Hyland, P.L.; Berndt, S.; Gapstur, S.M.; Wheeler, W.; Ellipse , Consortium T.; Amos, C.I.; Bezieau, S.; Bickeböller, H.; Brenner, H.; Brennan, P.; Chang-Claude, J.; Conti, D.V.; Doherty, J.A.; Gruber, S.B.; Harrison, T.A.; Hayes, R.B.; Hoffmeister, M.; Houlston, R.S.; Hung, R.J.; Jenkins, M.A.; Kraft, P.; Lawrenson, K.; McKay, J.; Markt, S.; Mucci, L.; Phelan, C.M.; Qu, C.; Risch, A.; Rossing, M.A.; Wichmann, H.E.; Shi, J.; Schernhammer, E.; Yu, K.; Landi, M.T.; Caporaso, N.E.Ellipse Consortium Inherited variation in circadian rhythm genes and risks of prostate cancer and three other cancer sites in combined cancer consortia. Int. J. Cancer, 2017, 141(9), 1794-1802.
[http://dx.doi.org//10.1002/ijc.30883] [PMID: 28699174]
[14]
Ramsey, K.M.; Yoshino, J.; Brace, C.S.; Abrassart, D.; Kobayashi, Y.; Marcheva, B.; Hong, H.K.; Chong, J.L.; Buhr, E.D.; Lee, C.; Takahashi, J.S.; Imai, S.; Bass, J. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science, 2009, 324(5927), 651-654.
[http://dx.doi.org//10.1126/science.1171641] [PMID: 19299583]
[15]
Aguilar-Arnal, L.; Sassone-Corsi, P. Chromatin Dynamics of Circadian Transcription. Curr. Mol. Biol. Rep., 2015, 1(1), 1-9.
[http://dx.doi.org/10.1007/s40610-015-0001-7] [PMID: 27014564]
[16]
Zeng, Z.L.; Wu, M.W.; Sun, J.; Sun, Y.L.; Cai, Y.C.; Huang, Y.J.; Xian, L.J. Effects of the biological clock gene Bmal1 on tumour growth and anti-cancer drug activity. J. Biochem., 2010, 148(3), 319-326.
[http://dx.doi.org//10.1093/jb/mvq069] [PMID: 20576619]
[17]
Jung, C.H.; Kim, E.M.; Park, J.K.; Hwang, S.G.; Moon, S.K.; Kim, W.J.; Um, H.D. Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway. Oncol. Rep., 2013, 29(6), 2109-2113.
[http://dx.doi.org//10.3892/or.2013.2381] [PMID: 23563360]
[18]
Bu, Y.; Yoshida, A.; Chitnis, N.; Altman, B.J.; Tameire, F.; Oran, A.; Gennaro, V.; Armeson, K.E.; McMahon, S.B.; Wertheim, G.B.; Dang, C.V.; Ruggero, D.; Koumenis, C.; Fuchs, S.Y.; Diehl, J.A.A.A. PERK-miR-211 axis suppresses circadian regulators and protein synthesis to promote cancer cell survival. Nat. Cell Biol., 2018, 20(1), 104-115.
[http://dx.doi.org//10.1038/s41556-017-0006-y] [PMID: 29230015]
[19]
Karantanos, T.; Theodoropoulos, G.; Pektasides, D.; Gazouli, M. Clock genes: their role in colorectal cancer. World J. Gastroenterol., 2014, 20(8), 1986-1992.
[http://dx.doi.org//10.3748/wjg.v20.i8.1986] [PMID: 24587674]
[20]
Wang, Y.; Qian, R.; Sun, N.; Lu, C.; Chen, Z.; Hua, L. Circadian gene hClock enhances proliferation and inhibits apoptosis of human colorectal carcinoma cells in vitro and in vivo. Mol. Med. Rep., 2015, 11(6), 4204-4210.
[http://dx.doi.org//10.3892/mmr.2015.3247] [PMID: 25625359]
[21]
Puram, R.V.; Kowalczyk, M.S.; de Boer, C.G.; Schneider, R.K.; Miller, P.G.; McConkey, M.; Tothova, Z.; Tejero, H.; Heckl, D.; Järås, M.; Chen, M.C.; Li, H.; Tamayo, A.; Cowley, G.S.; Rozenblatt-Rosen, O.; Al-Shahrour, F.; Regev, A.; Ebert, B.L. Core circadian clock genes regulate leukemia stem cells in AML. Cell, 2016, 165(2), 303-316.
[http://dx.doi.org//10.1016/j.cell.2016.03.015] [PMID: 27058663]
[22]
Lee, S.; Donehower, L.A.; Herron, A.J.; Moore, D.D.; Fu, L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One, 2010, 5(6)e10995
[http://dx.doi.org//10.1371/journal.pone.0010995] [PMID: 20539819]
[23]
Matsuo, T.; Yamaguchi, S.; Mitsui, S.; Emi, A.; Shimoda, F.; Okamura, H. Control mechanism of the circadian clock for timing of cell division in vivo. Science, 2003, 302(5643), 255-259.
[http://dx.doi.org//10.1126/science.1086271] [PMID: 12934012]
[24]
Fu, L.; Pelicano, H.; Liu, J.; Huang, P.; Lee, C. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell, 2002, 111(1), 41-50.
[http://dx.doi.org//10.1016/S0092-8674(02)00961-3] [PMID: 12372299]
[25]
Gery, S.; Komatsu, N.; Baldjyan, L.; Yu, A.; Koo, D.; Koeffler, H.P. The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol. Cell, 2006, 22(3), 375-382.
[http://dx.doi.org//10.1016/j.molcel.2006.03.038] [PMID: 16678109]
[26]
Filipski, E.; Subramanian, P.; Carrière, J.; Guettier, C.; Barbason, H.; Lévi, F. Circadian disruption accelerates liver carcinogenesis in mice. Mutat. Res., 2009, 680(1-2), 95-105.
[http://dx.doi.org/org/10.1016/j.mrgentox.2009.10.002] [PMID: 19833225]
[27]
Hoffman, A.E.; Zheng, T.; Ba, Y.; Stevens, R.G.; Yi, C.H.; Leaderer, D.; Zhu, Y. Phenotypic effects of the circadian gene Cryptochrome 2 on cancer-related pathways. BMC Cancer, 2010, 10, 110.
[http://dx.doi.org//10.1186/1471-2407-10-110] [PMID: 20334671]
[28]
Ozturk, N.; Lee, J.H.; Gaddameedhi, S.; Sancar, A. Loss of cryptochrome reduces cancer risk in p53 mutant mice. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2841-2846.
[http://dx.doi.org//10.1073/pnas.0813028106] [PMID: 19188586]
[29]
Matsunaga, N.; Kohno, Y.; Kakimoto, K.; Hayashi, A.; Koyanagi, S.; Ohdo, S. Influence of CLOCK on cytotoxicity induced by diethylnitrosamine in mouse primary hepatocytes. Toxicology, 2011, 280(3), 144-151.
[http://dx.doi.org//10.1016/j.tox.2010.12.005] [PMID: 21167249]
[30]
Wu, Y.; Sato, F.; Bhawal, U.K.; Kawamoto, T.; Fujimoto, K.; Noshiro, M.; Seino, H.; Morohashi, S.; Kato, Y.; Kijima, H. BHLH transcription factor DEC2 regulates pro-apoptotic factor Bim in human oral cancer HSC-3 cells. Biomed. Res., 2012, 33(2), 75-82.
[http://dx.doi.org//10.2220/biomedres.33.75] [PMID: 22572381]
[31]
Wu, Y.; Sato, F.; Bhawal, U.K.; Kawamoto, T.; Fujimoto, K.; Noshiro, M.; Morohashi, S.; Kato, Y.; Kijima, H. Basic helix-loop-helix transcription factors DEC1 and DEC2 regulate the paclitaxel-induced apoptotic pathway of MCF-7 human breast cancer cells. Int. J. Mol. Med., 2011, 27(4), 491-495.
[PMID: 21327324]
[32]
Liu, Y.; Sato, F.; Kawamoto, T.; Fujimoto, K.; Morohashi, S.; Akasaka, H.; Kondo, J.; Wu, Y.; Noshiro, M.; Kato, Y.; Kijima, H. Anti-apoptotic effect of the basic helix-loop-helix (bHLH) transcription factor DEC2 in human breast cancer cells. Genes Cells, 2010, 15(4), 315-325.
[http://dx.doi.org//10.1111/j.1365-2443.2010.01381.x] [PMID: 20236182]
[33]
Eckel-Mahan, K.; Sassone-Corsi, P. Metabolism control by the circadian clock and vice versa. Nat. Struct. Mol. Biol., 2009, 16(5), 462-467.
[http://dx.doi.org//10.1038/nsmb.1595] [PMID: 19421159]
[34]
Damiola, F.; Le Minh, N.; Preitner, N.; Kornmann, B.; Fleury-Olela, F.; Schibler, U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev., 2000, 14(23), 2950-2961.
[http://dx.doi.org//10.1101/gad.183500] [PMID: 11114885]
[35]
Scheer, F.A.; Hilton, M.F.; Mantzoros, C.S.; Shea, S.A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. USA, 2009, 106(11), 4453-4458.
[http://dx.doi.org//10.1073/pnas.0808180106] [PMID: 19255424]
[36]
Green, C.B.; Douris, N.; Kojima, S.; Strayer, C.A.; Fogerty, J.; Lourim, D.; Keller, S.R.; Besharse, J.C. Loss of Nocturnin, a circircadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc. Natl. Acad. Sci. USA, 2007, 104(23), 9888-9893.
[http://dx.doi.org/10.1073/pnas.0702448104] [PMID: 17517647]
[37]
Turek, F.W.; Joshu, C.; Kohsaka, A.; Lin, E.; Ivanova, G.; McDearmon, E.; Laposky, A.; Losee-Olson, S.; Easton, A.; Jensen, D.R.; Eckel, R.H.; Takahashi, J.S.; Bass, J. Obesity and metabolic syndrome in circadian Clock mutant mice. Science, 2005, 308(5724), 1043-1045.
[http://dx.doi.org/10.1126/science.1108750] [PMID: 15845877]
[38]
Yang, X.; Downes, M.; Yu, R.T.; Bookout, A.L.; He, W.; Straume, M.; Mangelsdorf, D.J.; Evans, R.M. Nuclear receptor expression links the circadian clock to metabolism. Cell, 2006, 126(4), 801-810.
[http://dx.doi.org/10.1016/j.cell.2006.06.050] [PMID: 16923398]
[39]
Oishi, K.; Miyazaki, K.; Kadota, K.; Kikuno, R.; Nagase, T.; Atsumi, G.; Ohkura, N.; Azama, T.; Mesaki, M.; Yukimasa, S.; Kobayashi, H.; Iitaka, C.; Umehara, T.; Horikoshi, M.; Kudo, T.; Shimizu, Y.; Yano, M.; Monden, M.; Machida, K.; Matsuda, J.; Horie, S.; Todo, T.; Ishida, N. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J. Biol. Chem., 2003, 278(42), 41519-41527.
[http://dx.doi.org//10.1074/jbc.M304564200] [PMID: 12865428]
[40]
Nakahata, Y.; Kaluzova, M.; Grimaldi, B.; Sahar, S.; Hirayama, J.; Chen, D.; Guarente, L.P.; Sassone-Corsi, P. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell, 2008, 134(2), 329-340.
[http://dx.doi.org//10.1016/j.cell.2008.07.002] [PMID: 18662547]
[41]
Alenghat, T.; Meyers, K.; Mullican, S.E.; Leitner, K.; Adeniji-Adele, A.; Avila, J.; Bućan, M.; Ahima, R.S.; Kaestner, K.H.; Lazar, M.A. Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature, 2008, 456(7224), 997-1000.
[http://dx.doi.org//10.1038/nature07541] [PMID: 19037247]
[42]
Zhu, B.; Dacso, C.C.; O’Malley, B.W. Unveiling “Musica Universalis” of the cell: A brief history of biological 12-hour rhythms. J. Endocr. Soc., 2018, 2(7), 727-752.
[http://dx.doi.org/10.1210/js.2018-00113] [PMID: 29978151]
[43]
Fung-Uceda, J.; Lee, K.; Seo, P.J.; Polyn, S.; De Veylder, L.; Mas, P. The circadian clock sets the time of DNA replication licensing to regulate growth in arabidopsis. Dev. Cell, 2018, 45(1), 101-113.e4.
[http://dx.doi.org/10.1016/j.devcel.2018.02.022] [PMID: 29576425]
[44]
Johnson, C.H. Circadian clocks and cell division: what’s the pacemaker? Cell Cycle, 2010, 9(19), 3864-3873.
[http://dx.doi.org/10.4161/cc.9.19.13205] [PMID: 20890114]
[45]
Chaix, A.; Zarrinpar, A.; Panda, S. The circadian coordination of cell biology. J. Cell Biol., 2016, 215(1), 15-25.
[http://dx.doi.org/10.1083/jcb.201603076] [PMID: 27738003]
[46]
Altinok, A.; Gonze, D.; Lévi, F.; Goldbeter, A. An automaton model for the cell cycle. Interface Focus, 2011, 1(1), 36-47.
[http://dx.doi.org/10.1098/rsfs.2010.0009] [PMID: 22419973]
[47]
Clairambault, J. Physiologically based modelling of circadian control on cell proliferation. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2006, 2006, 173-176.
[http://dx.doi.org/10.1109/IEMBS.2006.260855] [PMID: 17946797]
[48]
Zámborszky, J.; Hong, C.I.; Csikász Nagy, A. Computational analysis of mammalian cell division gated by a circadian clock: quantized cell cycles and cell size control. J. Biol. Rhythms, 2007, 22(6), 542-553.
[http://dx.doi.org/10.1177/0748730407307225] [PMID: 18057329]
[49]
Chauhan, A.; Lorenzen, S.; Herzel, H.; Bernard, S. Regulation of mammalian cell cycle progression in the regenerating liver. J. Theor. Biol., 2011, 283(1), 103-112.
[http://dx.doi.org/10.1016/j.jtbi.2011.05.026] [PMID: 21635899]
[50]
Gérard, C.; Goldbeter, A. Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms. PLOS Comput. Biol., 2012, 8(5)e1002516
[http://dx.doi.org/10.1371/journal.pcbi.1002516] [PMID: 22693436]
[51]
Levens, D. Disentangling the MYC web. Proc. Natl. Acad. Sci. USA, 2002, 99(9), 5757-5759.
[http://dx.doi.org/10.1073/pnas.102173199] [PMID: 11983876]
[52]
Mir, S.E.; De Witt Hamer, P.C.; Krawczyk, P.M.; Balaj, L.; Claes, A.; Niers, J.M.; Van Tilborg, A.A.; Zwinderman, A.H.; Geerts, D.; Kaspers, G.J.; Peter Vandertop, W.; Cloos, J.; Tannous, B.A.; Wesseling, P.; Aten, J.A.; Noske, D.P.; Van Noorden, C.J.; Würdinger, T. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell, 2010, 18(3), 244-257.
[http://dx.doi.org/10.1016/j.ccr.2010.08.011] [PMID: 20832752]
[53]
Bhattacharya, A.; Schmitz, U.; Wolkenhauer, O.; Schönherr, M.; Raatz, Y.; Kunz, M. Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma. Oncogene, 2013, 32(26), 3175-3183.
[http://dx.doi.org/10.1038/onc.2012.324] [PMID: 22847610]
[54]
Choi, Y.J.; Li, X.; Hydbring, P.; Sanda, T.; Stefano, J.; Christie, A.L.; Signoretti, S.; Look, A.T.; Kung, A.L.; von Boehmer, H.; Sicinski, P. The requirement for cyclin D function in tumor maintenance. Cancer Cell, 2012, 22(4), 438-451.
[http://dx.doi.org/10.1016/j.ccr.2012.09.015] [PMID: 23079655]
[55]
Abbas, T.; Dutta, A. p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer, 2009, 9(6), 400-414.
[http://dx.doi.org/10.1038/nrc2657] [PMID: 19440234]
[56]
Kang, T.H.; Leem, S.H. Modulation of ATR-mediated DNA damage checkpoint response by cryptochrome 1. Nucleic Acids Res., 2014, 42(7), 4427-4434.
[http://dx.doi.org/10.1093/nar/gku094] [PMID: 24489120]
[57]
Kondratov, R.V.; Antoch, M.P. Circadian proteins in the regulation of cell cycle and genotoxic stress responses. Trends Cell Biol., 2007, 17(7), 311-317.
[http://dx.doi.org/10.1016/j.tcb.2007.07.001] [PMID: 17644383]
[58]
Massagué, J. G1 cell-cycle control and cancer. Nature, 2004, 432(7015), 298-306.
[http://dx.doi.org/10.1038/nature03094] [PMID: 15549091]
[59]
Kettner, N.M.; Katchy, C.A.; Fu, L. Circadian gene variants in cancer. Ann. Med., 2014, 46(4), 208-220.
[http://dx.doi.org/10.3109/07853890.2014.914808] [PMID: 24901356]
[60]
Mostafaie, N.; Kállay, E.; Sauerzapf, E.; Bonner, E.; Kriwanek, S.; Cross, H.S.; Huber, K.R.; Krugluger, W. Correlated downregulation of estrogen receptor beta and the circadian clock gene Per1 in human colorectal cancer. Mol. Carcinog., 2009, 48(7), 642-647.
[http://dx.doi.org/10.1002/mc.20510] [PMID: 19148895]
[61]
Krugluger, W.; Brandstaetter, A.; Kállay, E.; Schueller, J.; Krexner, E.; Kriwanek, S.; Bonner, E.; Cross, H.S. Regulation of genes of the circadian clock in human colon cancer: reduced period-1 and dihydropyrimidine dehydrogenase transcription correlates in high-grade tumors. Cancer Res., 2007, 67(16), 7917-7922.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0133] [PMID: 17699798]
[62]
Alhopuro, P.; Björklund, M.; Sammalkorpi, H.; Turunen, M.; Tuupanen, S.; Biström, M.; Niittymäki, I.; Lehtonen, H.J.; Kivioja, T.; Launonen, V.; Saharinen, J.; Nousiainen, K.; Hautaniemi, S.; Nuorva, K.; Mecklin, J.P.; Järvinen, H.; Orntoft, T.; Arango, D.; Lehtonen, R.; Karhu, A.; Taipale, J.; Aaltonen, L.A. Mutations in the circadian gene CLOCK in colorectal cancer. Mol. Cancer Res., 2010, 8(7), 952-960.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0086] [PMID: 20551151]
[63]
Wang, Y.; Hua, L.; Lu, C.; Chen, Z. Expression of circadian clock gene human Period2 (hPer2) in human colorectal carcinoma. World J. Surg. Oncol., 2011, 9, 166.
[http://dx.doi.org/10.1186/1477-7819-9-166] [PMID: 22166120]
[64]
Panza, A.; Pazienza, V.; Ripoli, M.; Benegiamo, G.; Gentile, A.; Valvano, M.R.; Augello, B.; Merla, G.; Prattichizzo, C.; Tavano, F.; Ranieri, E.; di Sebastiano, P.; Vinciguerra, M.; Andriulli, A.; Mazzoccoli, G.; Piepoli, A. Interplay between SOX9, β-catenin and PPARγ activation in colorectal cancer. Biochim. Biophys. Acta, 2013, 1833(8), 1853-1865.
[http://dx.doi.org/10.1016/j.bbamcr.2013.04.004] [PMID: 23583560]
[65]
Gao, Z.H.; Seeling, J.M.; Hill, V.; Yochum, A.; Virshup, D.M. Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proc. Natl. Acad. Sci. USA, 2002, 99(3), 1182-1187.
[http://dx.doi.org/10.1073/pnas.032468199] [PMID: 11818547]
[66]
Lee, E.; Salic, A.; Kirschner, M.W. Physiological regulation of [beta]-catenin stability by Tcf3 and CK1epsilon. J. Cell Biol., 2001, 154(5), 983-993.
[http://dx.doi.org/10.1083/jcb.200102074] [PMID: 11524435]
[67]
Schwarz-Romond, T.; Asbrand, C.; Bakkers, J.; Kühl, M.; Schaeffer, H.J.; Huelsken, J.; Behrens, J.; Hammerschmidt, M.; Birchmeier, W. The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. Genes Dev., 2002, 16(16), 2073-2084.
[http://dx.doi.org/10.1101/gad.230402] [PMID: 12183362]
[68]
Pancione, M.; Sabatino, L.; Fucci, A.; Carafa, V.; Nebbioso, A.; Forte, N.; Febbraro, A.; Parente, D.; Ambrosino, C.; Normanno, N.; Altucci, L.; Colantuoni, V. Epigenetic silencing of peroxisome proliferator-activated receptor γ is a biomarker for colorectal cancer progression and adverse patients’ outcome. PLoS One, 2010, 5(12)e14229
[http://dx.doi.org/10.1371/journal.pone.0014229] [PMID: 21151932]
[69]
Dai, Y.; Qiao, L.; Chan, K.W.; Yang, M.; Ye, J.; Ma, J.; Zou, B.; Gu, Q.; Wang, J.; Pang, R.; Lan, H.Y.; Wong, B.C. Peroxisome proliferator-activated receptor-gamma contributes to the inhibitory effects of Embelin on colon carcinogenesis. Cancer Res., 2009, 69(11), 4776-4783.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4754] [PMID: 19458067]
[70]
Pazienza, V.; Vinciguerra, M.; Mazzoccoli, G. PPARs signaling and cancer in the gastrointestinal system. PPAR Res., 2012.2012560846
[http://dx.doi.org//10.1155/2012/560846] [PMID: 23028383]
[71]
Mazzoccoli, G.; Panza, A.; Valvano, M.R.; Palumbo, O.; Carella, M.; Pazienza, V.; Biscaglia, G.; Tavano, F.; Di Sebastiano, P.; Andriulli, A.; Piepoli, A. Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol. Int., 2011, 28(10), 841-851.
[http://dx.doi.org/10.3109/07420528.2011.615182] [PMID: 22080729]
[72]
Mazzoccoli, G.; Pazienza, V.; Panza, A.; Valvano, M.R.; Benegiamo, G.; Vinciguerra, M.; Andriulli, A.; Piepoli, A. ARNTL2 and SERPINE1: potential biomarkers for tumor aggressiveness in colorectal cancer. J. Cancer Res. Clin. Oncol., 2012, 138(3), 501-511.
[http://dx.doi.org/10.1007/s00432-011-1126-6] [PMID: 22198637]
[73]
Oshima, T.; Takenoshita, S.; Akaike, M.; Kunisaki, C.; Fujii, S.; Nozaki, A.; Numata, K.; Shiozawa, M.; Rino, Y.; Tanaka, K.; Masuda, M.; Imada, T. Expression of circadian genes correlates with liver metastasis and outcomes in colorectal cancer. Oncol. Rep., 2011, 25(5), 1439-1446.
[http://dx.doi.org/10.3892/or.2011.1207] [PMID: 21380491]
[74]
Talieri, M.; Papadopoulou, S.; Scorilas, A.; Xynopoulos, D.; Arnogianaki, N.; Plataniotis, G.; Yotis, J.; Agnanti, N. Cathepsin B and cathepsin D expression in the progression of colorectal adenoma to carcinoma. Cancer Lett., 2004, 205(1), 97-106.
[http://dx.doi.org/10.1016/j.canlet.2003.09.033] [PMID: 15036666]
[75]
Sakakibara, T.; Hibi, K.; Koike, M.; Fujiwara, M.; Kodera, Y.; Ito, K.; Nakao, A. Plasminogen activator inhibitor-1 as a potential marker for the malignancy of colorectal cancer. Br. J. Cancer, 2005, 93(7), 799-803.
[http://dx.doi.org/10.1038/sj.bjc.6602743] [PMID: 16091756]
[76]
Oishi, K. Plasminogen activator inhibitor-1 and the circadian clock in metabolic disorders. Clin. Exp. Hypertens., 2009, 31(3), 208-219.
[http://dx.doi.org/10.1080/10641960902822468] [PMID: 19387897]
[77]
Oishi, K.; Miyazaki, K.; Uchida, D.; Ohkura, N.; Wakabayashi, M.; Doi, R.; Matsuda, J.; Ishida, N. PERIOD2 is a circadian negative regulator of PAI-1 gene expression in mice. J. Mol. Cell. Cardiol., 2009, 46(4), 545-552.
[http://dx.doi.org/10.1016/j.yjmcc.2009.01.001] [PMID: 19168071]
[78]
Hrushesky, W.J. Circadian timing of cancer chemotherapy. Science, 1985, 228(4695), 73-75.
[http://dx.doi.org/10.1126/science.3883493] [PMID: 3883493]
[79]
Kobayashi, M.; Wood, P.A.; Hrushesky, W.J. Circadian chemotherapy for gynecological and genitourinary cancers. Chronobiol. Int., 2002, 19(1), 237-251.
[http://dx.doi.org/10.1081/CBI-120002600] [PMID: 11962679]
[80]
Lévi, F. Circadian chronotherapy for human cancers. Lancet Oncol., 2001, 2(5), 307-315.
[http://dx.doi.org/10.1016/S1470-2045(00)00326-0] [PMID: 11905786]
[81]
Levi, F.; Giacchetti, S.; Zidani, R.; Brezault-Bonnet, C.; Tigaud, J.M.; Goldwasser, F.; Misset, J.L. Cronoterapia delle metastasi del cancro del colon-retto. Hepatogastroenterology, 2001, 48, 320-322.
[PMID: 11379299]
[82]
Chan, S.; Rowbottom, L.; McDonald, R.; Bjarnason, G.A.; Tsao, M.; Danjoux, C.; Barnes, E.; Popovic, M.; Lam, H.; DeAngelis, C.; Chow, E. Does the time of radiotherapy affect treatment outcomes? A review of the literature. Clin. Oncol. (R. Coll. Radiol.), 2017, 29(4), 231-238.
[http://dx.doi.org/10.1016/j.clon.2016.12.005] [PMID: 28034487]
[83]
Chan, S.; Zhang, L.; Rowbottom, L.; McDonald, R.; Bjarnason, G.A.; Tsao, M.; Barnes, E.; Danjoux, C.; Popovic, M.; Lam, H.; DeAngelis, C.; Chow, E. Effects of circadian rhythms and treatment times on the response of radiotherapy for painful bone metastases. Ann. Palliat. Med., 2017, 6(1), 14-25.
[http://dx.doi.org/10.21037/apm.2016.09.07] [PMID: 28061531]
[84]
Sulli, G.; Manoogian, E.N.C.; Taub, P.R.; Panda, S. Training the circadian clock, clocking the drugs, and drugging the clock to prevent, manage, and treat chronic diseases. Trends Pharmacol. Sci., 2018, 39(9), 812-827.
[http://dx.doi.org/10.1016/j.tips.2018.07.003] [PMID: 30060890]
[85]
Gorbacheva, V.Y.; Kondratov, R.V.; Zhang, R.; Cherukuri, S.; Gudkov, A.V.; Takahashi, J.S.; Antoch, M.P. Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc. Natl. Acad. Sci. USA, 2005, 102(9), 3407-3412.
[http://dx.doi.org/10.1073/pnas.0409897102] [PMID: 15689397]
[86]
Vitaterna, M.H.; Selby, C.P.; Todo, T.; Niwa, H.; Thompson, C.; Fruechte, E.M.; Hitomi, K.; Thresher, R.J.; Ishikawa, T.; Miyazaki, J.; Takahashi, J.S.; Sancar, A. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl. Acad. Sci. USA, 1999, 96(21), 12114-12119.
[http://dx.doi.org/10.1073/pnas.96.21.12114] [PMID: 10518585]
[87]
Anafi, R.C.; Francey, L.J.; Hogenesch, J.B.; Kim, J. CYCLOPS reveals human transcriptional rhythms in health and disease. Proc. Natl. Acad. Sci. USA, 2017, 114(20), 5312-5317.
[http://dx.doi.org/10.1073/pnas.1619320114] [PMID: 28439010]
[88]
Mure, L.S.; Le, H.D.; Benegiamo, G.; Chang, M.W.; Rios, L.; Jillani, N.; Ngotho, M.; Kariuki, T.; Dkhissi-Benyahya, O.; Cooper, H.M.; Panda, S. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science, 2018, 359(6381), 6381.
[http://dx.doi.org/10.1126/science.aao0318] [PMID: 29439024]
[89]
Gu, D.; Li, S.; Ben, S.; Du, M.; Chu, H.; Zhang, Z.; Wang, M.; Zhang, Z.F.; Chen, J. Circadian clock pathway genes associated with colorectal cancer risk and prognosis. Arch. Toxicol., 2018, 92(8), 2681-2689.
[http://dx.doi.org/10.1007/s00204-018-2251-7] [PMID: 29968159]
[90]
Hasakova, K.; Reis, R.; Vician, M.; Zeman, M.; Herichova, I. Expression of miR-34a-5p is up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression. PLoS One, 2019, 14(10)e0224396
[http://dx.doi.org/10.1371/journal.pone.0224396] [PMID: 31658284]
[91]
Yuan, W.; Liu, L.; Wei, C.; Li, X.; Sun, D.; Dai, C.; Li, S.; Peng, S.; Jiang, L. Identification and meta-analysis of copy number variation-driven circadian clock genes for colorectal cancer. Oncol. Lett., 2019, 18(5), 4816-4824.
[http://dx.doi.org/10.3892/ol.2019.10830] [PMID: 31611992]
[92]
Della-Morte, D. Deregulation of the circadian clock machinery: A novel biomarker for anti-angiogenic drug resistance in colorectal cancer. EBioMedicine, 2019, 46, 17-18.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.003] [PMID: 31395501]
[93]
Orhan, T.; Nielsen, P.B.; Hviid, T.V.F.; Rosen, A.W.; Gögenür, I. Expression of circadian clock genes in human colorectal cancer tissues using droplet digital PCR. Cancer Invest., 2019, 37(2), 90-98.
[http://dx.doi.org/10.1080/07357907.2019.1571079] [PMID: 30732490]
[94]
Bishehsari, F.; Engen, P.A.; Voigt, R.M.; Swanson, G.; Shaikh, M.; Wilber, S.; Naqib, A.; Green, S.J.; Shetuni, B.; Forsyth, C.B.; Saadalla, A.; Osman, A.; Hamaker, B.R.; Keshavarzian, A.; Khazaie, K. Abnormal eating patterns cause circadian disruption and promote alcohol-associated colon carcinogenesis. Cell. Mol. Gastroenterol. Hepatol., 2020, 9(2), 219-237.
[http://dx.doi.org/10.1016/j.jcmgh.2019.10.011] [PMID: 31689559]
[95]
Burgermeister, E.; Battaglin, F.; Eladly, F.; Wu, W.; Herweck, F.; Schulte, N.; Betge, J.; Härtel, N.; Kather, J.N.; Weis, C.A.; Gaiser, T.; Marx, A.; Weiss, C.; Hofheinz, R.; Miller, I.S.; Loupakis, F.; Lenz, H.J.; Byrne, A.T.; Ebert, M.P. Aryl hydrocarbon receptor nuclear translocator-like (ARNTL/BMAL1) is associated with bevacizumab resistance in colorectal cancer via regulation of vascular endothelial growth factor A. EBioMedicine, 2019, 45, 139-154.
[http://dx.doi.org/10.1016/j.ebiom.2019.07.004] [PMID: 31300350]
[96]
Momma, T.; Okayama, H.; Saitou, M.; Sugeno, H.; Yoshimoto, N.; Takebayashi, Y.; Ohki, S.; Takenoshita, S. Expression of circadian clock genes in human colorectal adenoma and carcinoma. Oncol. Lett., 2017, 14(5), 5319-5325.
[http://dx.doi.org/10.3892/ol.2017.6876] [PMID: 29113166]
[97]
Yu, J.Z.; Sun, N.; Bei, Y.B.; Li, X.B.; Lu, C.; Hua, L.C. Circadian gene hCLOCK contributes to progression of colorectal carcinoma and is directly regulated by tumor-suppressive microRNA-124. Mol. Med. Rep, 2017, 16(6), 7923-7930.
[http://dx.doi.org/10.3892/mmr.2017.7596] [PMID: 29048100]
[98]
Wang, Y.; Sun, N.; Lu, C.; Bei, Y.; Qian, R.; Hua, L. Upregulation of circadian gene ‘hClock’ contribution to metastasis of colorectal cancer. Int. J. Oncol., 2017, 50(6), 2191-2199.
[http://dx.doi.org/10.3892/ijo.2017.3987] [PMID: 28498393]
[99]
Zhang, F.; Sun, H.; Zhang, S.; Yang, X.; Zhang, G.; Su, T. Overexpression of PER3 inhibits self-renewal capability and chemoresistance of colorectal cancer stem-like cells via inhibition of notch and β-catenin signaling. Oncol. Res., 2017, 25(5), 709-719.
[http://dx.doi.org/10.3727/096504016X14772331883976] [PMID: 27983919]
[100]
Huisman, S.A.; Ahmadi, A.R.; IJzermans, J.N.; Verhoef, C.; van der Horst, G.T.; de Bruin, R.W. Disruption of clock gene expression in human colorectal liver metastases Tumour Biol, 2016, 37(10), 13973-13981.
[http://dx.doi.org//10.1007/s13277-016-5231-7] [PMID: 27492458]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy