Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

The Research Progress of Taxol in Taxus

Author(s): Fenjuan Shao, Iain W. Wilson and Deyou Qiu*

Volume 22, Issue 3, 2021

Published on: 21 June, 2020

Page: [360 - 366] Pages: 7

DOI: 10.2174/1389201021666200621163333

Price: $65

Abstract

Background: Taxus is a valuable woody species with important medicinal value. The bark of Taxus can produce taxol, a natural antineoplastic drug that is widely used in the treatment of breast, ovarian and lung cancers. However, the low content of taxol in the bark of Taxus can not meet the growing clinical demands, so the current research aims at finding ways to increase taxol production.

Objective: In this review, the research progress of taxol including the factors affecting the taxol content, biosynthesis pathway of taxol, production of taxol in vitro and the application of multi-omics approaches in Taxus as well as future research prospects will be discussed.

Results: The taxol content is not only dependent on the species, age and tissues but is also affected by light, moisture levels, temperature, soil fertility and microbes. Most of the enzymes in the taxol biosynthesis pathway have been identified and characterized. Total chemical synthesis, semi-synthesis, plant cell culture and biosynthesis in endophytic fungi have been explored to product taxol. Multi-omics have been used to study Taxus and taxol.

Conclusion: Further efforts in the identification of unknown enzymes in the taxol biosynthesis pathway, establishment of the genetic transformation system in Taxus and the regulatory mechanism of taxol biosynthesis and Taxus cell growth will play a significant role in improving the yield of taxol in Taxus cells and plants.

Keywords: Taxus, taxol content, biosynthesis, production, endophytic fungi, multi-omics.

Graphical Abstract
[1]
Cragg, G.M. Paclitaxel (Taxol): A success story with valuable lessons for natural product drug discovery and development. Med. Res. Rev., 1998, 18(5), 315-331.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199809)18:5<315::AID-MED3>3.0.CO;2-W] [PMID: 9735872]
[2]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc., 1971, 93(9), 2325-2327.
[http://dx.doi.org/10.1021/ja00738a045] [PMID: 5553076]
[3]
Wildung, M.R.; Croteau, R. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J. Biol. Chem., 1996, 271(16), 9201-9204.
[http://dx.doi.org/10.1074/jbc.271.16.9201] [PMID: 8621577]
[4]
Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5698), 665-667.
[http://dx.doi.org/10.1038/277665a0] [PMID: 423966]
[5]
Cragg, G.M.; Schepartz, S.A.; Suffness, M.; Grever, M.R. The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J. Nat. Prod., 1993, 56(10), 1657-1668.
[http://dx.doi.org/10.1021/np50100a001] [PMID: 7903979]
[6]
Goldspiel, B.R. Clinical overview of the taxanes. Pharmacotherapy, 1997, 17(5 Pt 2), 110S-125S.
[PMID: 9322878]
[7]
Lasala, J.M.; Stone, G.W.; Dawkins, K.D.; Serruys, P.W.; Colombo, A.; Grube, E.; Koglin, J.; Ellis, S. An overview of the Taxus Express, paclitaxel-eluting stent clinical trial program. J. Interv. Cardiol., 2006, 19(5), 422-431.
[http://dx.doi.org/10.1111/j.1540-8183.2006.00183.x] [PMID: 17020567]
[8]
Htay, T.; Liu, M.W. Drug-eluting stent: A review and update. Vasc. Health Risk Manag., 2005, 1(4), 263-276.
[http://dx.doi.org/10.2147/vhrm.2005.1.4.263] [PMID: 17315599]
[9]
Horwitz, S.B. How to make taxol from scratch. Nature, 1994, 367(6464), 593-594.
[http://dx.doi.org/10.1038/367593a0] [PMID: 7906393]
[10]
Danishefsky, S.J.; Masters, J.J. Total synthesis of baccatin III and taxol. J. Am. Chem. Soc., 1996, 118, 2843-2859.
[http://dx.doi.org/10.1021/ja952692a]
[11]
Holten, R.A.; Samoza, C.; Kim, H.B.; Somoza, C.; Liang, F.; Biediger, R.J.; Boatman, P.D.; Shindo, M.; Smith, C.C.; Kim, S. First total synthesis of taxol. J. Am. Chem. Soc., 1994, 116, 1587-1600.
[12]
Nicolaou, K.C.; Yang, Z.; Liu, J.J.; Ueno, H.; Nantermet, P.G.; Guy, R.K.; Claiborne, C.F.; Renaud, J.; Couladouros, E.A.; Paulvannan, K. Total synthesis of taxol. Nature, 1994, 367(6464), 630-634.
[http://dx.doi.org/10.1038/367630a0] [PMID: 7906395]
[13]
Gibson, D.M.; Ketchum, R.E.; Vance, N.C.; Christen, A.A. Initiation and growth of cell lines of Taxus brevifolia (Pacific yew). Plant Cell Rep., 1993, 12(9), 479-482.
[http://dx.doi.org/10.1007/BF00236091] [PMID: 24196105]
[14]
Srinivasan, V.; Pestchanker, L.; Moser, S.; Hirasuna, T.J.; Taticek, R.A.; Shuler, M.L. Taxol production in bioreactors: Kinetics of biomass accumulation, nutrient uptake, and taxol production by cell suspensions of Taxus baccata. Biotechnol. Bioeng., 1995, 47(6), 666-676.
[http://dx.doi.org/10.1002/bit.260470607] [PMID: 18623447]
[15]
Ketchum, R.E.; Gibson, D.M.; Croteau, R.B.; Shuler, M.L. The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol. Bioeng., 1999, 62(1), 97-105.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19990105)62:1<97::AID-BIT11>3.0.CO;2-C] [PMID: 10099517]
[16]
Deus-Neumann, B.; Zenk, M.H. Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Med., 1984, 50(5), 427-431.
[http://dx.doi.org/10.1055/s-2007-969755] [PMID: 17340345]
[17]
Parr, A.J.; Payne, J.; Eagles, J.; Chapman, B.T.; Robins, R.J.; Rhodes, M.J.C. Variation in tropane alkaloid accumulation within the Solanaceae and strategies for its exploitation. Phytochemistry, 1990, 29, 2545-2550.
[http://dx.doi.org/10.1016/0031-9422(90)85185-I]
[18]
Schripsema, J.; Verpoorte, R. Search for factors related to the indole alkaloid production in cell suspension cultures of Tabernaemontana divaricata. Planta Med., 1992, 58(3), 245-249.
[http://dx.doi.org/10.1055/s-2006-961445] [PMID: 17226465]
[19]
Zhu, X.X.; Liu, G.M.; Fu, M.Z. The relationship of taxol content and ecological environment in Taxus spp. Chin. Tradit. Herbal Drugs, 1998, 28, 7-20.
[20]
Strobel, G.A.; Stierle, A.; Kuijk, F. Factors influencing the in vitro production of radiolabeled taxol by Pacific yew, Taxus brevifolia. Plant Sci., 1992, 84, 65-74.
[http://dx.doi.org/10.1016/0168-9452(92)90209-5]
[21]
Wang, Y.F.; Shi, Q.W.; Dong, M.; Kiyota, H.; Gu, Y.C.; Cong, B. Natural taxanes: Developments since 1828. Chem. Rev., 2011, 111(12), 7652-7709.
[http://dx.doi.org/10.1021/cr100147u] [PMID: 21970550]
[22]
Kusari, S.; Singh, S.; Jayabaskaran, C. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol., 2014, 32(6), 304-311.
[http://dx.doi.org/10.1016/j.tibtech.2014.03.011] [PMID: 24810040]
[23]
van Rozendaal, E.L.; Lelyveld, G.P.; van Beek, T.A. Screening of the needles of different yew species and cultivars for paclitaxel and related taxoids. Phytochemistry, 2000, 53(3), 383-389.
[http://dx.doi.org/10.1016/S0031-9422(99)00094-1] [PMID: 10703062]
[24]
Németh-Kiss, V.; Forgács, E.; Cserháti, T.; Schmidt, G. Taxol content of various Taxus species in Hungary. J. Pharm. Biomed. Anal., 1996, 14(8-10), 997-1001.
[http://dx.doi.org/10.1016/0731-7085(95)01682-1] [PMID: 8818006]
[25]
Zhou, T.; Luo, X.; Yu, C.; Zhang, C.; Zhang, L.; Song, Y.B.; Dong, M.; Shen, C. Transcriptome analyses provide insights into the expression pattern and sequence similarity of several taxol biosynthesis-related genes in three Taxus species. BMC Plant Biol., 2019, 19(1), 33.
[http://dx.doi.org/10.1186/s12870-019-1645-x] [PMID: 30665359]
[26]
Qin, H.; Fan, H.; Li, S.; Zhang, S.; Xiong, Y.; Zhang, C. Effects of light intensity on taxol content and expression of related enzymes in Taxus chinensis var. Mairei. J. Zhejiang Chinese Medical Uni., 2017, 41, 556-561.
[27]
Hefner, J.; Ketchum, R.E.; Croteau, R. Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production. Arch. Biochem. Biophys., 1998, 360(1), 62-74.
[http://dx.doi.org/10.1006/abbi.1998.0926] [PMID: 9826430]
[28]
Koepp, A.E.; Hezari, M.; Zajicek, J.; Vogel, B.S.; LaFever, R.E.; Lewis, N.G.; Croteau, R. Cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene is the committed step of taxol biosynthesis in Pacific yew. J. Biol. Chem., 1995, 270(15), 8686-8690.
[http://dx.doi.org/10.1074/jbc.270.15.8686] [PMID: 7721772]
[29]
Hezari, M.; Lewis, N.G.; Croteau, R. Purification and characterization of taxa-4(5),11(12)-diene synthase from Pacific yew (Taxus brevifolia) that catalyzes the first committed step of taxol biosynthesis. Arch. Biochem. Biophys., 1995, 322(2), 437-444.
[http://dx.doi.org/10.1006/abbi.1995.1486] [PMID: 7574719]
[30]
Jennewein, S.; Long, R.M.; Williams, R.M.; Croteau, R. Cytochrome p450 taxadiene 5alpha-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of taxol biosynthesis. Chem. Biol., 2004, 11(3), 379-387.
[http://dx.doi.org/10.1016/j.chembiol.2004.02.022] [PMID: 15123267]
[31]
Eisenreich, W.; Schwarz, M.; Cartayrade, A.; Arigoni, D.; Zenk, M.H.; Bacher, A. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem. Biol., 1998, 5(9), R221-R233.
[http://dx.doi.org/10.1016/S1074-5521(98)90002-3] [PMID: 9751645]
[32]
Chau, M.; Croteau, R. Molecular cloning and characterization of a cytochrome P450 taxoid 2alpha-hydroxylase involved in Taxol biosynthesis. Arch. Biochem. Biophys., 2004, 427(1), 48-57.
[http://dx.doi.org/10.1016/j.abb.2004.04.016] [PMID: 15178487]
[33]
Chau, M.; Jennewein, S.; Walker, K.; Croteau, R. Taxol biosynthesis: Molecular cloning and characterization of a cytochrome P450 taxoid 7 β-hydroxylase. Chem. Biol., 2004, 11(5), 663-672.
[PMID: 15157877]
[34]
Schoendorf, A.; Rithner, C.D.; Williams, R.M.; Croteau, R.B. Molecular cloning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from Taxus and functional expression in yeast. Proc. Natl. Acad. Sci. USA, 2001, 98(4), 1501-1506.
[http://dx.doi.org/10.1073/pnas.98.4.1501] [PMID: 11171980]
[35]
Jennewein, S.; Wildung, M.R.; Chau, M.; Walker, K.; Croteau, R. Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc. Natl. Acad. Sci. USA, 2004, 101(24), 9149-9154.
[http://dx.doi.org/10.1073/pnas.0403009101] [PMID: 15178753]
[36]
Jennewein, S.; Rithner, C.D.; Williams, R.M.; Croteau, R.B. Taxol biosynthesis: Taxane 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13595-13600.
[http://dx.doi.org/10.1073/pnas.251539398] [PMID: 11707604]
[37]
Jennewein, S.; Rithner, C.D.; Williams, R.M.; Croteau, R. Taxoid metabolism: Taxoid 14beta-hydroxylase is a cytochrome P450-dependent monooxygenase. Arch. Biochem. Biophys., 2003, 413(2), 262-270.
[http://dx.doi.org/10.1016/S0003-9861(03)00090-0] [PMID: 12729625]
[38]
Walker, K.; Fujisaki, S.; Long, R.; Croteau, R. Molecular cloning and heterologous expression of the C-13 phenylpropanoid side chain-CoA acyltransferase that functions in Taxol biosynthesis. Proc. Natl. Acad. Sci. USA, 2002, 99(20), 12715-12720.
[http://dx.doi.org/10.1073/pnas.192463699] [PMID: 12232048]
[39]
Walker, K.; Schoendorf, A.; Croteau, R. Molecular cloning of a taxa-4(20),11(12)-dien-5α-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Arch. Biochem. Biophys., 2000, 374(2), 371-380.
[http://dx.doi.org/10.1006/abbi.1999.1609] [PMID: 10666320]
[40]
Walker, K.; Croteau, R. Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Proc. Natl. Acad. Sci. USA, 2000, 97(2), 583-587.
[http://dx.doi.org/10.1073/pnas.97.2.583] [PMID: 10639122]
[41]
Walker, K.; Croteau, R. Taxol biosynthesis: Molecular cloning of a benzoyl-CoA:taxane 2α-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli. Proc. Natl. Acad. Sci. USA, 2000, 97(25), 13591-13596.
[http://dx.doi.org/10.1073/pnas.250491997] [PMID: 11095755]
[42]
Walker, K.; Long, R.; Croteau, R. The final acylation step in taxol biosynthesis: Cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus. Proc. Natl. Acad. Sci. USA, 2002, 99(14), 9166-9171.
[http://dx.doi.org/10.1073/pnas.082115799] [PMID: 12089320]
[43]
Ramírez-Estrada, K.; Altabella, T.; Onrubia, M.; Moyano, E.; Notredame, C.; Osuna, L.; Vanden Bossche, R.; Goossens, A.; Cusido, R.M.; Palazon, J. Transcript profiling of jasmonate-elicited Taxus cells reveals a β-phenylalanine-CoA ligase. Plant Biotechnol. J., 2016, 14(1), 85-96.
[http://dx.doi.org/10.1111/pbi.12359] [PMID: 25899320]
[44]
Hampel, D.; Mau, C.J.; Croteau, R.B. Taxol biosynthesis: Identification and characterization of two acetyl CoA:taxoid-O-acetyl transferases that divert pathway flux away from Taxol production. Arch. Biochem. Biophys., 2009, 487(2), 91-97.
[http://dx.doi.org/10.1016/j.abb.2009.05.018] [PMID: 19501040]
[45]
Hirai, S.; Utsugi, M.; Iwamoto, M.; Nakada, M. Formal total synthesis of (-)-taxol through Pd-catalyzed eight-membered carbocyclic ring formation. Chemistry, 2015, 21(1), 355-359.
[http://dx.doi.org/10.1002/chem.201404295] [PMID: 25346263]
[46]
Hoffman, A.; Khan, W.; Worapong, J.; Strobel, G.; Griffin, D.; Arbogast, B.; Barofsky, D.; Boone, R.B.; Ning, L.; Zheng, P.; Daley, L. Bioprospecting for taxol in angiosperm plant extracts. Spectroscopy (Springf.), 1998, 13, 22-32.
[47]
Fu, Y.; Zu, Y.; Li, S.; Sun, R.; Efferth, T.; Liu, W.; Jiang, S.; Luo, H.; Wang, Y. Separation of 7-xylosyl-10-deacetyl paclitaxel and 10-deacetylbaccatin III from the remainder extracts free of paclitaxel using macroporous resins. J. Chromatogr. A, 2008, 1177(1), 77-86.
[http://dx.doi.org/10.1016/j.chroma.2007.11.020] [PMID: 18054030]
[48]
Ge, G.B.; Liang, S.C.; Hu, Y.; Liu, X.B.; Mao, Y.X.; Zhang, Y.Y.; Luan, H.W.; Qiu, M.H.; Yang, L. Rapid qualitative and quantitative determination of seven valuable taxanes from various Taxus species by UFLC-ESI-MS and UFLC-DAD. Planta Med., 2010, 76(15), 1773-1777.
[http://dx.doi.org/10.1055/s-0030-1249959] [PMID: 20506080]
[49]
Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 1993, 260(5105), 214-216.
[http://dx.doi.org/10.1126/science.8097061] [PMID: 8097061]
[50]
Strobel, G.A.; Hess, W.M.; Ford, E.; Sidhu, R.S.; Yang, X. Taxol from fungal endophytes and the issue of biodiversity. J. Ind. Microbiol. Biotechnol., 1996, 17, 417-423.
[http://dx.doi.org/10.1007/BF01574772]
[51]
Gangadevi, V.; Muthumary, J. A novel endophytic Taxol-producing fungus Chaetomella raphigera isolated from a medicinal plant, Terminalia arjuna. Appl. Biochem. Biotechnol., 2009, 158(3), 675-684.
[http://dx.doi.org/10.1007/s12010-009-8532-0] [PMID: 19234679]
[52]
Salehi, M.; Moieni, A.; Safaie, N.; Farhadi, S. New synergistic co-culture of Corylus avellana cells and Epicoccum nigrum for paclitaxel production. J. Ind. Microbiol. Biotechnol., 2019, 46(5), 613-623.
[http://dx.doi.org/10.1007/s10295-019-02148-8] [PMID: 30783891]
[53]
Sun, B.; Straubinger, R.M.; Lovell, J.F. Current taxane formulations and emerging cabazitaxel delivery systems. Nano Res., 2018, 11, 5193-5218.
[http://dx.doi.org/10.1007/s12274-018-2171-0]
[54]
Shang, Y.; Huang, S. Multi-omics data-driven investigations of metabolic diversity of plant triterpenoids. Plant J., 2019, 97(1), 101-111.
[http://dx.doi.org/10.1111/tpj.14132] [PMID: 30341835]
[55]
McLoughlin, F.; Augustine, R.C.; Marshall, R.S.; Li, F.; Kirkpatrick, L.D.; Otegui, M.S.; Vierstra, R.D. Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover. Nat. Plants, 2018, 4(12), 1056-1070.
[http://dx.doi.org/10.1038/s41477-018-0299-2] [PMID: 30478358]
[56]
Su, J.; Yan, Y.; Song, J.; Li, J.; Mao, J.; Wang, N.; Wang, W.; Du, F.K. Recent fragmentation may not alter genetic patterns in endangered long-lived species: Evidence from Taxus cuspidata. Front. Plant Sci., 2018, 9, 1571.
[http://dx.doi.org/10.3389/fpls.2018.01571] [PMID: 30429863]
[57]
Liu, J.; Milne, R.I.; Möller, M.; Zhu, G.F.; Ye, L.J.; Luo, Y.H.; Yang, J.B.; Wambulwa, M.C.; Wang, C.N.; Li, D.Z.; Gao, L.M. Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification. Mol. Ecol. Resour., 2018, 18, 1115-1131.
[http://dx.doi.org/10.1111/1755-0998.12903] [PMID: 29786943]
[58]
Liu, L.; Wang, Z.; Huang, L.; Wang, T.; Su, Y. Chloroplast population genetics reveals low levels of genetic variation and conformation to the central-marginal hypothesis in Taxus wallichiana var. mairei, an endangered conifer endemic to China. Ecol. Evol., 2019, 9(20), 11944-11956.
[http://dx.doi.org/10.1002/ece3.5703] [PMID: 31695899]
[59]
Zhang, M.; Chen, Y.; Nie, L.; Jin, X.; Liao, W.; Zhao, S.; Fu, C.; Yu, L. Transcriptome-wide identification and screening of WRKY factors involved in the regulation of taxol biosynthesis in Taxus chinensis. Sci. Rep., 2018, 8(1), 5197.
[http://dx.doi.org/10.1038/s41598-018-23558-1] [PMID: 29581461]
[60]
Sun, G.; Yang, Y.; Xie, F.; Wen, J.F.; Wu, J.; Wilson, I.W.; Tang, Q.; Liu, H.; Qiu, D. Deep sequencing reveals transcriptome re-programming of Taxus × media cells to the elicitation with methyl jasmonate. PLoS One, 2013, 8(4)e62865
[http://dx.doi.org/10.1371/journal.pone.0062865] [PMID: 23646152]
[61]
Qiu, D.; Pan, X.; Wilson, I.W.; Li, F.; Liu, M.; Teng, W.; Zhang, B. High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene, 2009, 436(1-2), 37-44.
[http://dx.doi.org/10.1016/j.gene.2009.01.006] [PMID: 19393185]
[62]
He, C.T.; Li, Z.L.; Zhou, Q.; Shen, C.; Huang, Y.Y.; Mubeen, S.; Yang, J.Z.; Yuan, J.G.; Yang, Z.Y. Transcriptome profiling reveals specific patterns of paclitaxel synthesis in a new Taxus yunnanensis cultivar. Plant Physiol. Biochem., 2018, 122, 10-18.
[http://dx.doi.org/10.1016/j.plaphy.2017.10.028] [PMID: 29169081]
[63]
Yu, C.; Guo, H.; Zhang, Y.; Song, Y.; Pi, E.; Yu, C.; Zhang, L.; Dong, M.; Zheng, B.; Wang, H.; Shen, C. Identification of potential genes that contributed to the variation in the taxoid contents between two Taxus species (Taxus media and Taxus mairei). Tree Physiol., 2017, 37(12), 1659-1671.
[http://dx.doi.org/10.1093/treephys/tpx091] [PMID: 28985439]
[64]
Kuang, X.; Sun, S.; Wei, J.; Li, Y.; Sun, C. Iso-Seq analysis of the Taxus cuspidata transcriptome reveals the complexity of Taxol biosynthesis. BMC Plant Biol., 2019, 19(1), 210.
[http://dx.doi.org/10.1186/s12870-019-1809-8] [PMID: 31113367]
[65]
Zheng, W.; Komatsu, S.; Zhu, W.; Zhang, L.; Li, X.; Cui, L.; Tian, J. Response and defense mechanisms of Taxus chinensis leaves under UV-A radiation are revealed using comparative proteomics and metabolomics analyses. Plant Cell Physiol., 2016, 57(9), 1839-1853.
[http://dx.doi.org/10.1093/pcp/pcw106] [PMID: 27318281]
[66]
Hao, J.; Guo, H.; Shi, X.; Wang, Y.; Wan, Q.; Song, Y.B.; Zhang, L.; Dong, M.; Shen, C. Comparative proteomic analyses of two Taxus species (Taxus × media and Taxus mairei) reveals variations in the metabolisms associated with paclitaxel and other metabolites. Plant Cell Physiol., 2017, 58(11), 1878-1890.
[http://dx.doi.org/10.1093/pcp/pcx128] [PMID: 29016978]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy