Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Application of Readily Available Metals for C-H Activation

Author(s): Mohammad Dodangeh, Ali Ramazani*, Malek-Taher Maghsoodlou, Armin Zarei and Sobhan Rezayati

Volume 24, Issue 14, 2020

Page: [1582 - 1609] Pages: 28

DOI: 10.2174/1385272824999200616114037

Price: $65

Abstract

Catalytic C-H activation is a powerful method for organic synthesis. In recent years, scientists have made great progress by developing transitional metals for catalyzing CH functionalization reaction. In this review, we summarized and highlighted recent progress in C-H activation with copper, cobalt, iron, manganese, and nickel as catalysts.

Keywords: C-H activation, multicomponent reactions, synthesis, catalyst, copper, cobalt, nickel, iron, manganese.

Graphical Abstract
[1]
Copéret, C. C-H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces. Chem. Rev., 2010, 110(2), 656-680.
[http://dx.doi.org/10.1021/cr900122p] [PMID: 19821608]
[2]
Lyons, T.W.; Sanford, M.S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev., 2010, 110(2), 1147-1169.
[http://dx.doi.org/10.1021/cr900184e] [PMID: 20078038]
[3]
Colby, D.A.; Bergman, R.G.; Ellman, J.A. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem. Rev., 2010, 110(2), 624-655.
[http://dx.doi.org/10.1021/cr900005n] [PMID: 19438203]
[4]
Yang, L.; Huang, H. Transition-metal-catalyzed direct addition of unactivated C-H bonds to polar unsaturated bonds. Chem. Rev., 2015, 115(9), 3468-3517.
[http://dx.doi.org/10.1021/cr500610p] [PMID: 25749375]
[5]
Roudesly, F.; Oble, J.; Poli, G. Metal-catalyzed C-H activation/functionalization: the fundamentals. J. Mol. Catal. Chem., 2017, 426, 275-296.
[http://dx.doi.org/10.1016/j.molcata.2016.06.020]
[6]
Ryabov, A.D. Mechanisms of intramolecular activation of carbon-hydrogen bonds in transition-metal complexes. Chem. Rev., 1990, 90(2), 403-424.
[http://dx.doi.org/10.1021/cr00100a004]
[7]
Ueda, S.; Nagasawa, H. Copper-catalyzed synthesis of benzoxazoles via a regioselective C-H functionalization/C-O bond formation under an air atmosphere. J. Org. Chem., 2009, 74(11), 4272-4277.
[http://dx.doi.org/10.1021/jo900513z] [PMID: 19382756]
[8]
Yamamoto, C.; Takamatsu, K.; Hirano, K.; Miura, M. Copper-catalyzed intermolecular benzylic C–H amination for the synthesis of isoindolinones. J. Org. Chem., 2016, 81(17), 7675-7684.
[http://dx.doi.org/10.1021/acs.joc.6b01393] [PMID: 27504671]
[9]
Zhang, M. Construction of heterocycle scaffolds via transition metal-catalyzed sp2 C-H functionalization. Adv. Synth. Catal., 2009, 351, 2243-2270.
[http://dx.doi.org/10.1002/adsc.200900426]
[10]
Brasche, G.; Buchwald, S.L. C-H functionalization/C-N bond formation: copper-catalyzed synthesis of benzimidazoles from amidines. Angew. Chem. Int. Ed. Engl., 2008, 47(10), 1932-1934.
[http://dx.doi.org/10.1002/anie.200705420] [PMID: 18228236]
[11]
Zhang, M.; Wang, Q.; Peng, Y.; Chen, Z.; Wan, C.; Chen, J.; Zhao, Y.; Zhang, R.; Zhang, A.Q. Transition metal-catalyzed sp3 C-H activation and intramolecular C-N coupling to construct nitrogen heterocyclic scaffolds. Chem. Commun. (Camb.), 2019, 55(87), 13048-13065.
[http://dx.doi.org/10.1039/C9CC06609H] [PMID: 31621700]
[12]
Engle, K.M.; Yu, J.Q. Developing ligands for palladium(II)-catalyzed C-H functionalization: intimate dialogue between ligand and substrate. J. Org. Chem., 2013, 78(18), 8927-8955.
[http://dx.doi.org/10.1021/jo400159y] [PMID: 23565982]
[13]
Collins, K.D.; Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nat. Chem., 2013, 5(7), 597-601.
[http://dx.doi.org/10.1038/nchem.1669] [PMID: 23787750]
[14]
Herrerías, C.I.; Yao, X.; Li, Z.; Li, C.J. Reactions of C-H bonds in water. Chem. Rev., 2007, 107(6), 2546-2562.
[http://dx.doi.org/10.1021/cr050980b] [PMID: 17439184]
[15]
Rouquet, G.; Chatani, N. Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups. Angew. Chem. Int. Ed. Engl., 2013, 52(45), 11726-11743.
[http://dx.doi.org/10.1002/anie.201301451] [PMID: 24105797]
[16]
Murahashi, S. Synthesis of Phthalimidines from schiff bases and carbon monoxide. J. Am. Chem. Soc., 1955, 77(23), 6403-6404.
[http://dx.doi.org/10.1021/ja01628a120]
[17]
Sherry, B.D.; Fürstner, A. The promise and challenge of iron-catalyzed cross coupling. Acc. Chem. Res., 2008, 41(11), 1500-1511.
[http://dx.doi.org/10.1021/ar800039x] [PMID: 18588321]
[18]
Enthaler, S.; Junge, K.; Beller, M. Sustainable metal catalysis with iron: from rust to a rising star? Angew. Chem. Int. Ed. Engl., 2008, 47(18), 3317-3321.
[http://dx.doi.org/10.1002/anie.200800012] [PMID: 18412184]
[19]
Lin, C.; Li, D.; Wang, B.; Yao, J.; Zhang, Y. Direct ortho-thiolation of arenes and alkenes by nickel catalysis. Org. Lett., 2015, 17(5), 1328-1331.
[http://dx.doi.org/10.1021/acs.orglett.5b00337] [PMID: 25714854]
[20]
Yu, D.G.; Gensch, T.; de Azambuja, F.; Céspedes, S.V.; Glorius, F. Co(III)-catalyzed C-H activation/formal SN-type reactions: selective and efficient cyanation, halogenation, and allylation. J. Am. Chem. Soc., 2014, 136(51), 17722-17725.
[http://dx.doi.org/10.1021/ja511011m] [PMID: 25472496]
[21]
Diesel, J.; Cramer, N. Generation of heteroatom stereocenters by enantioselective C–H Functionalization. ACS Catal., 2019, 9(10), 9164-9177.
[http://dx.doi.org/10.1021/acscatal.9b03194]
[22]
Rocaboy, R.; Baudoin, O. 1,4-Palladium shift/C(sp3)-H activation strategy for the remote construction of five-membered rings. Org. Lett., 2019, 21(5), 1434-1437.
[http://dx.doi.org/10.1021/acs.orglett.9b00187] [PMID: 30735399]
[23]
Capdevila, L.; Meyer, T.H.; Gómez, S.R.; Luis, J.M.; Ackermann, L.; Ribas, X. Chemodivergent nickel(0)-catalyzed arene C–F activation with alkynes: unprecedented C–F/C–H double insertion. ACS Catal., 2019, 11074-11081.
[http://dx.doi.org/10.1021/acscatal.9b03620]
[24]
Grigorjeva, L.; Daugulis, O. Cobalt-catalyzed, aminoquinoline-directed C(sp2)H bond alkenylation by alkynes. Angew. Chem., 2014, 126(38), 10373-10376.
[http://dx.doi.org/10.1002/ange.201404579]
[25]
Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. Pyrroloindolone synthesis via a Cp*Co(III)-catalyzed redox-neutral directed C-H alkenylation/annulation sequence. J. Am. Chem. Soc., 2014, 136(14), 5424-5431.
[http://dx.doi.org/10.1021/ja5008432] [PMID: 24650237]
[26]
Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Air-stable carbonyl(pentamethylcyclopentadienyl)cobalt diiodide complex as a precursor for cationic (pentamethylcyclopentadienyl)cobalt(III) catalysis: application for directed C-2 selective C-H amidation of indoles. Adv. Synth. Catal., 2014, 356(7), 1491-1495.
[http://dx.doi.org/10.1002/adsc.201301110]
[27]
Wu, B.; Santra, M.; Yoshikai, N. A highly modular one-pot multicomponent approach to functionalized benzo[b]phosphole derivatives. Angew. Chem. Int. Ed. Engl., 2014, 53(29), 7543-7546.
[http://dx.doi.org/10.1002/anie.201404019] [PMID: 24889319]
[28]
Ackermann, L. Cobalt-catalyzed C-H arylations, benzylations, and alkylations with organic electrophiles and beyond. J. Org. Chem., 2014, 79(19), 8948-8954.
[http://dx.doi.org/10.1021/jo501361k] [PMID: 25102352]
[29]
Dolaine, R.; Gleason, J.L. Diastereoselective formation of 5-vinylcyclopentenes from 1, 6-enynes: cobalt-mediated C-H allylic activation and formal 5-endo-Dig cyclization. Org. Lett., 2000, 2(12), 1753-1756.
[http://dx.doi.org/10.1021/ol005928a] [PMID: 10880218]
[30]
Ma, W.; Ackermann, L. Cobalt(II)-catalyzed oxidative C–H alkenylations: regio- and site-selective access to isoindolin-1-one. ACS Catal., 2015, 5(5), 2822-2825.
[http://dx.doi.org/10.1021/acscatal.5b00322]
[31]
Yang, J.; Seto, Y.W.; Yoshikai, N. Cobalt-catalyzed intermolecular hydroacylation of olefins through chelation-assisted imidoyl C–H Activation. ACS Catal., 2015, 5(5), 3054-3057.
[http://dx.doi.org/10.1021/acscatal.5b00581]
[32]
Wu, C.J.; Zhong, J.J.; Meng, Q.Y.; Lei, T.; Gao, X.W.; Tung, C.H.; Wu, L.Z. Cobalt-catalyzed cross-dehydrogenative coupling reaction in water by visible light. Org. Lett., 2015, 17(4), 884-887.
[http://dx.doi.org/10.1021/ol503744a] [PMID: 25671773]
[33]
Bakkestuen, A.K.; Gundersen, L.L.; Utenova, B.T. Synthesis, biological activity, and SAR of antimycobacterial 9-aryl-, 9-arylsulfonyl-, and 9-benzyl-6-(2-furyl)purines. J. Med. Chem., 2005, 48(7), 2710-2723.
[http://dx.doi.org/10.1021/jm0408924] [PMID: 15801862]
[34]
Hocek, M.; Naus, P.; Pohl, R.; Votruba, I.; Furman, P.A.; Tharnish, P.M.; Otto, M.J. Cytostatic 6-arylpurine nucleosides. 6. SAR in anti-HCV and cytostatic activity of extended series of 6-hetarylpurine ribonucleosides. J. Med. Chem., 2005, 48(18), 5869-5873.
[http://dx.doi.org/10.1021/jm050335x] [PMID: 16134952]
[35]
Pawar, A.B.; Chang, S. Cobalt-catalyzed C-H cyanation of (hetero)arenes and 6-arylpurines with N-cyanosuccinimide as a new cyanating agent. Org. Lett., 2015, 17(3), 660-663.
[http://dx.doi.org/10.1021/ol503680d] [PMID: 25602639]
[36]
Fallon, B.J.; Derat, E.; Amatore, M.; Aubert, C.; Chemla, F.; Ferreira, F.; Luna, A.P.; Petit, M. C-H activation/functionalization catalyzed by simple, well-defined low-valent cobalt complexes. J. Am. Chem. Soc., 2015, 137(7), 2448-2451.
[http://dx.doi.org/10.1021/ja512728f] [PMID: 25625542]
[37]
Hummel, J.R.; Ellman, J.A. Cobalt(III)-catalyzed C-H bond amidation with isocyanates. Org. Lett., 2015, 17(10), 2400-2403.
[http://dx.doi.org/10.1021/acs.orglett.5b00910] [PMID: 25945401]
[38]
Patel, P.; Chang, S. Cobalt(III)-catalyzed C–H amidation of arenes using acetoxycarbamates as convenient amino sources under mild conditions. ACS Catal., 2015, 5(2), 853-858.
[http://dx.doi.org/10.1021/cs501860b]
[39]
Hao, X.Q.; Du, C.; Zhu, X.; Li, P.X.; Zhang, J.H.; Niu, J.L.; Song, M.P. Cobalt(II)-catalyzed decarboxylative C-H activation/annulation cascades: regioselective access to isoquinolones and isoindolinones. Org. Lett., 2016, 18(15), 3610-3613.
[http://dx.doi.org/10.1021/acs.orglett.6b01632] [PMID: 27435354]
[40]
Nakanowatari, S.; Mei, R.; Feldt, M.; Ackermann, L. Cobalt(III)-catalyzed hydroarylation of allenes via C–H activation. ACS Catal., 2017, 7(4), 2511-2515.
[http://dx.doi.org/10.1021/acscatal.7b00207]
[41]
Xu, M.; Yuan, Y.; Wang, Y.; Tao, Q.; Wang, C.; Li, Y. Controllable α- or β-functionalization of α-diazoketones with aromatic amides via cobalt catalyzed C-H activation: a regioselective approach to isoindolinones. Org. Lett., 2019, 21(16), 6264-6269.
[http://dx.doi.org/10.1021/acs.orglett.9b02145] [PMID: 31343889]
[42]
Yu, Y.; Wu, Q.; Liu, D.; Hu, L.; Yu, L.; Tan, Z.; Zhu, G. Synthesis of benzofulvenes via Cp*Co(III)-catalyzed C-H activation and carbocyclization of aromatic ketones with internal alkynes. J. Org. Chem., 2019, 84(11), 7449-7458.
[http://dx.doi.org/10.1021/acs.joc.9b00595] [PMID: 31083904]
[43]
Nett, A.J.; Zhao, W.; Zimmerman, P.M.; Montgomery, J. Highly active nickel catalysts for c-h functionalization identified through analysis of off cycle intermediates. J. Am. Chem. Soc., 2015, 137(24), 7636-7639.
[http://dx.doi.org/10.1021/jacs.5b04548] [PMID: 26057139]
[44]
Schramm, Y.; Takeuchi, M.; Semba, K.; Nakao, Y.; Hartwig, J.F. Anti-Markovnikov hydroheteroarylation of unactivated alkenes with indoles, pyrroles, benzofurans, and furans catalyzed by a nickel-N-heterocyclic carbene system. J. Am. Chem. Soc., 2015, 137(38), 12215-12218.
[http://dx.doi.org/10.1021/jacs.5b08039] [PMID: 26334367]
[45]
Xiao, J.; Chen, T.; Han, L-B. Nickel-catalyzed direct C-H/C-O cross couplings generating fluorobenzenes and heteroarenes. Org. Lett., 2015, 17(4), 812-815.
[http://dx.doi.org/10.1021/ol503607h] [PMID: 25668487]
[46]
Yuan, M.; Song, Z.; Badir, S.O.; Molander, G.A.; Gutierrez, O. On the nature of C(sp3)-C(sp2) bond formation in nickel-catalyzed tertiary radical cross-couplings: a case study of Ni/photoredox catalytic cross-coupling of alkyl radicals and aryl halides. J. Am. Chem. Soc., 2020, 142(15), 7225-7234.
[http://dx.doi.org/10.1021/jacs.0c02355] [PMID: 32195579]
[47]
Landge, V.G.; Shewale, C.H.; Jaiswal, G.; Sahoo, M.K.; Midya, S.P.; Balaraman, E. Nickel-catalyzed direct alkynylation of C(sp2)–H bonds of amides: an “inverse Sonogashira strategy” to ortho-alkynylbenzoic acids. Catal. Sci. Technol., 2016, 6(6), 1946-1951.
[http://dx.doi.org/10.1039/C5CY01299F]
[48]
Liu, W.; Ackermann, L. Manganese-catalyzed C–H Activation. ACS Catal., 2016, 6(6), 3743-3752.
[http://dx.doi.org/10.1021/acscatal.6b00993]
[49]
Guihaumé, J.; Halbert, S.; Eisenstein, O.; Perutz, R.N. Hydrofluoroarylation of alkynes with Ni catalysts. C–H activation via ligand-to-ligand hydrogen transfer, an alternative to oxidative addition. Organometallics, 2012, 31(4), 1300-1314.
[http://dx.doi.org/10.1021/om2005673]
[50]
Yan, Q.; Chen, Z.; Yu, W.; Yin, H.; Liu, Z.; Zhang, Y. Nickel-catalyzed direct amination of arenes with alkylamines. Org. Lett., 2015, 17(10), 2482-2485.
[http://dx.doi.org/10.1021/acs.orglett.5b00990] [PMID: 25942045]
[51]
Li, M.; Yang, Y.; Zhou, D.; Wan, D.; You, J. Nickel-catalyzed addition-type alkenylation of unactivated, aliphatic c-h bonds with alkynes: a concise route to polysubstituted γ-butyrolactones. Org. Lett., 2015, 17(10), 2546-2549.
[http://dx.doi.org/10.1021/acs.orglett.5b01128] [PMID: 25928271]
[52]
Jin, L.K.; Wan, L.; Feng, J.; Cai, C. Nickel-catalyzed regioselective cross dehydrogenative coupling of inactive C(sp3)-H bonds with indole derivatives. Org. Lett., 2015, 17(19), 4726-4729.
[http://dx.doi.org/10.1021/acs.orglett.5b02217] [PMID: 26366464]
[53]
Liu, C.; Liu, D.; Zhang, W.; Zhou, L.; Lei, A. Nickel-catalyzed aromatic C-H alkylation with secondary or tertiary alkyl-bromine bonds for the construction of indolones. Org. Lett., 2013, 15(24), 6166-6169.
[http://dx.doi.org/10.1021/ol403021p] [PMID: 24224695]
[54]
Yu, M.S.; Lee, W.C.; Chen, C.H.; Tsai, F.Y.; Ong, T.G. Controlled regiodivergent C-H bond activation of imidazo[1,5-a]pyridine via synergistic cooperation between aluminum and nickel. Org. Lett., 2014, 16(18), 4826-4829.
[http://dx.doi.org/10.1021/ol502314p] [PMID: 25202856]
[55]
Wu, X.; Zhao, Y.; Ge, H. Direct aerobic carbonylation of C(sp2)-H and C(sp3)-H bonds through Ni/Cu synergistic catalysis with DMF as the carbonyl source. J. Am. Chem. Soc., 2015, 137(15), 4924-4927.
[http://dx.doi.org/10.1021/jacs.5b01671] [PMID: 25815529]
[56]
Song, W.; Lackner, S.; Ackermann, L. Nickel-catalyzed C-H alkylations: direct secondary alkylations and trifluoroethylations of arenes. Angew. Chem. Int. Ed. Engl., 2014, 53(9), 2477-2480.
[http://dx.doi.org/10.1002/anie.201309584] [PMID: 24482119]
[57]
Ruan, Z.; Lackner, S.; Ackermann, L. Nickel-catalyzed C–H alkynylation of anilines: expedient access to functionalized indoles and purine nucleobases. ACS Catal., 2016, 6(7), 4690-4693.
[http://dx.doi.org/10.1021/acscatal.6b01120]
[58]
Li, Z.L.; Sun, K.K.; Cai, C. Nickel-catalyzed cross-dehydrogenative coupling of α-C(sp3)-H bonds in N-methylamides with C(sp3)-H bonds in cyclic alkanes. Org. Lett., 2018, 20(20), 6420-6424.
[http://dx.doi.org/10.1021/acs.orglett.8b02736] [PMID: 30272983]
[59]
Wei, W.T.; Zhou, M.B.; Fan, J.H.; Liu, W.; Song, R.J.; Liu, Y.; Hu, M.; Xie, P.; Li, J.H. Synthesis of oxindoles by iron-catalyzed oxidative 1,2-alkylarylation of activated alkenes with an aryl C(sp2)-H bond and a C(sp3)-H bond adjacent to a heteroatom. Angew. Chem. Int. Ed. Engl., 2013, 52(13), 3638-3641.
[http://dx.doi.org/10.1002/anie.201210029] [PMID: 23417843]
[60]
Cong, X.; Zeng, X. Iron-catalyzed, chelation-induced remote C-H allylation of quinolines via 8-amido assistance. Org. Lett., 2014, 16(14), 3716-3719.
[http://dx.doi.org/10.1021/ol501534z] [PMID: 24983740]
[61]
Ma, Y.; Zhang, D.; Yan, Z.; Wang, M.; Bian, C.; Gao, X.; Bunel, E.E.; Lei, A. Iron-catalyzed oxidative C-H/C-H cross-coupling between electron-rich arenes and alkenes. Org. Lett., 2015, 17(9), 2174-2177.
[http://dx.doi.org/10.1021/acs.orglett.5b00775] [PMID: 25860622]
[62]
Monks, B.M.; Fruchey, E.R.; Cook, S.P. Iron-catalyzed C(sp2)-H alkylation of carboxamides with primary electrophiles. Angew. Chem. Int. Ed. Engl., 2014, 53(41), 11065-11069.
[http://dx.doi.org/10.1002/anie.201406594] [PMID: 25088928]
[63]
Sun, Y.; Tang, H.; Chen, K.; Hu, L.; Yao, J.; Shaik, S.; Chen, H. Two-state reactivity in low-valent iron-mediated C-H activation and the implications for other first-row transition metals. J. Am. Chem. Soc., 2016, 138(11), 3715-3730.
[http://dx.doi.org/10.1021/jacs.5b12150] [PMID: 26907535]
[64]
Cera, G.; Haven, T.; Ackermann, L. Expedient iron-catalyzed C-H allylation/alkylation by triazole assistance with ample scope. Angew. Chem. Int. Ed. Engl., 2016, 55(4), 1484-1488.
[http://dx.doi.org/10.1002/anie.201509603] [PMID: 26663680]
[65]
Adams, C.J.; Bedford, R.B.; Carter, E.; Gower, N.J.; Haddow, M.F.; Harvey, J.N.; Huwe, M.; Cartes, M.Á.; Mansell, S.M.; Mendoza, C.; Murphy, D.M.; Neeve, E.C.; Nunn, J. Iron(I) in Negishi cross-coupling reactions. J. Am. Chem. Soc., 2012, 134(25), 10333-10336.
[http://dx.doi.org/10.1021/ja303250t] [PMID: 22694754]
[66]
Cheung, C.W.; Zhurkin, F.E.; Hu, X. Z-selective olefin synthesis via iron-catalyzed reductive coupling of alkyl halides with terminal arylalkynes. J. Am. Chem. Soc., 2015, 137(15), 4932-4935.
[http://dx.doi.org/10.1021/jacs.5b01784] [PMID: 25831473]
[67]
Shang, R.; Ilies, L.; Nakamura, E. Iron-catalyzed directed C(sp2)-H and C(sp3)-H functionalization with trimethylaluminum. J. Am. Chem. Soc., 2015, 137(24), 7660-7663.
[http://dx.doi.org/10.1021/jacs.5b04818] [PMID: 26061014]
[68]
Asako, S.; Ilies, L.; Nakamura, E. Iron-catalyzed ortho-allylation of aromatic carboxamides with allyl ethers. J. Am. Chem. Soc., 2013, 135(47), 17755-17757.
[http://dx.doi.org/10.1021/ja4106368] [PMID: 24215539]
[69]
Graczyk, K.; Haven, T.; Ackermann, L. Iron-catalyzed C(sp2)-H and C(sp3)-H methylations of amides and anilides. Chemistry, 2015, 21(24), 8812-8815.
[http://dx.doi.org/10.1002/chem.201501134] [PMID: 25950870]
[70]
Ilies, L.; Matsubara, T.; Ichikawa, S.; Asako, S.; Nakamura, E. Iron-catalyzed directed alkylation of aromatic and olefinic carboxamides with primary and secondary alkyl tosylates, mesylates, and halides. J. Am. Chem. Soc., 2014, 136(38), 13126-13129.
[http://dx.doi.org/10.1021/ja5066015] [PMID: 25032786]
[71]
Dyker, G. Transition metal catalyzed coupling reactions under C-H activation. Angew. Chem. Int. Ed. Engl., 1999, 38(12), 1698-1712.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1698:AID-ANIE1698>3.0.CO;2-6] [PMID: 29711186]
[72]
Barve, B.D.; Wu, Y.C.; El-Shazly, M.; Korinek, M.; Cheng, Y.B.; Wang, J.J.; Chang, F.R. Iron-catalyzed oxidative direct α-C-H bond functionalization of cyclic ethers: selective C-O bond formation in the presence of a labile aldehyde group. Org. Lett., 2014, 16(7), 1912-1915.
[http://dx.doi.org/10.1021/ol5004115] [PMID: 24635116]
[73]
Gu, Q.; Al Mamari, H.H.; Graczyk, K.; Diers, E.; Ackermann, L.; Iron-catalyzed, C. Iron-catalyzed C(sp2)-H and C(sp3)-H arylation by triazole assistance. Angew. Chem. Int. Ed. Engl., 2014, 53(15), 3868-3871.
[http://dx.doi.org/10.1002/anie.201311024] [PMID: 24596034]
[74]
Li, Z.L.; Sun, K.K.; Wu, P.Y.; Cai, C. Iron-catalyzed regioselective α-C-H alkylation of N-methylanilines: cross-dehydrogenative coupling between unactivated C(sp3)-H and C(sp3)-H bonds via a radical process. J. Org. Chem., 2019, 84(11), 6830-6839.
[http://dx.doi.org/10.1021/acs.joc.9b00625] [PMID: 31117558]
[75]
Allen, S.E.; Walvoord, R.R.; Salinas, R.P.; Kozlowski, M.C. Aerobic copper-catalyzed organic reactions. Chem. Rev., 2013, 113(8), 6234-6458.
[http://dx.doi.org/10.1021/cr300527g] [PMID: 23786461]
[76]
Shang, M.; Sun, S.Z.; Wang, H.L.; Laforteza, B.N.; Dai, H.X.; Yu, J.Q. Exceedingly fast copper(II)-promoted ortho C-H trifluoromethylation of arenes using TMSCF. Angew. Chem. Int. Ed. Engl., 2014, 53(39), 10439-10442.
[http://dx.doi.org/10.1002/anie.201404822] [PMID: 25100616]
[77]
Shen, Y.; Chen, J.; Liu, M.; Ding, J.; Gao, W.; Huang, X.; Wu, H. Copper-catalyzed direct C-H arylation of pyridine N-oxides with arylboronic esters: one-pot synthesis of 2-arylpyridines. Chem. Commun. (Camb.), 2014, 50(33), 4292-4295.
[http://dx.doi.org/10.1039/C3CC48767A] [PMID: 24448428]
[78]
Zhang, J.; Chen, H.; Wang, B.; Liu, Z.; Zhang, Y. Copper-mediated aryloxylation and vinyloxylation of β-C(sp3)-H bond of propionamides with organosilanes. Org. Lett., 2015, 17(11), 2768-2771.
[http://dx.doi.org/10.1021/acs.orglett.5b01192] [PMID: 25992950]
[79]
Sun, S.Z.; Shang, M.; Wang, H.L.; Lin, H.X.; Dai, H.X.; Yu, J.Q. Cu(II)-mediated C(sp2)-H hydroxylation. J. Org. Chem., 2015, 80(17), 8843-8848.
[http://dx.doi.org/10.1021/acs.joc.5b01351] [PMID: 26259687]
[80]
Gryaznova, T.V.; Kholin, K.V.; Nikanshina, E.O.; Khrizanforova, V.V.; Strekalova, S.O.; Fayzullin, R.R.; Budnikova, Y.H. Copper or silver-mediated oxidative C(sp2)–H/N–H cross-coupling of phthalimide and heterocyclic arenes: access to N-arylphthalimides. Organometallics, 2019, 38(19), 3617-3628.
[http://dx.doi.org/10.1021/acs.organomet.9b00443]
[81]
Chen, X.; Hao, X.S.; Goodhue, C.E.; Yu, J.Q. Cu(II)-catalyzed functionalizations of aryl C-H bonds using O2 as an oxidant. J. Am. Chem. Soc., 2006, 128(21), 6790-6791.
[http://dx.doi.org/10.1021/ja061715q] [PMID: 16719450]
[82]
Smalley, A.P.; Gaunt, M.J. Mechanistic insights into the palladium-catalyzed aziridination of aliphatic amines by C-H activation. J. Am. Chem. Soc., 2015, 137(33), 10632-10641.
[http://dx.doi.org/10.1021/jacs.5b05529] [PMID: 26247373]
[83]
Wang, Z.; Kuninobu, Y.; Kanai, M. Palladium-catalyzed oxirane-opening reaction with arenes via C-H bond activation. J. Am. Chem. Soc., 2015, 137(19), 6140-6143.
[http://dx.doi.org/10.1021/jacs.5b02435] [PMID: 25924012]
[84]
Zhang, Y.H.; Shi, B.F.; Yu, J.Q. Palladium(II)-catalyzed ortho alkylation of benzoic acids with alkyl halides. Angew. Chem. Int. Ed. Engl., 2009, 48(33), 6097-6100.
[http://dx.doi.org/10.1002/anie.200902262] [PMID: 19591182]
[85]
Qin, G.; Chen, X.; Yang, L.; Huang, H. Copper-catalyzed α-benzylation of enones via radical-triggered oxidative coupling of two C–H bonds. ACS Catal., 2015, 5(5), 2882-2885.
[http://dx.doi.org/10.1021/acscatal.5b00310]
[86]
Wang, C.; Yang, Y.; Qin, D.; He, Z.; You, J. Copper-catalyzed intramolecular dehydrogenative amidation of unactivated C(sp3)-H bonds using O2 as the sole oxidant. J. Org. Chem., 2015, 80(16), 8424-8429.
[http://dx.doi.org/10.1021/acs.joc.5b01302] [PMID: 26247345]
[87]
Miura, W.; Hirano, K.; Miura, M. Copper-mediated oxidative coupling of benzamides with maleimides via directed C-H cleavage. Org. Lett., 2015, 17(16), 4034-4037.
[http://dx.doi.org/10.1021/acs.orglett.5b01940] [PMID: 26226391]
[88]
Wang, H.L.; Shang, M.; Sun, S.Z.; Zhou, Z.L.; Laforteza, B.N.; Dai, H.X.; Yu, J.Q. Cu(II)-catalyzed coupling of aromatic C-H bonds with malonates. Org. Lett., 2015, 17(5), 1228-1231.
[http://dx.doi.org/10.1021/acs.orglett.5b00193] [PMID: 25695876]
[89]
Jie, X.; Shang, Y.; Zhang, X.; Su, W. Cu-catalyzed sequential dehydrogenation-conjugate addition for β-functionalization of saturated ketones: scope and mechanism. J. Am. Chem. Soc., 2016, 138(17), 5623-5633.
[http://dx.doi.org/10.1021/jacs.6b01337] [PMID: 27064340]
[90]
Ueda, S.; Nagasawa, H. Facile synthesis of 1,2,4-triazoles via a copper-catalyzed tandem addition-oxidative cyclization. J. Am. Chem. Soc., 2009, 131(42), 15080-15081.
[http://dx.doi.org/10.1021/ja905056z] [PMID: 19799379]
[91]
Das, R.K.; Saha, B.; Rahaman, S.M.; Bera, J.K. Bimetallic catalysis involving dipalladium(I) and diruthenium(I) complexes. Chemistry, 2010, 16(48), 14459-14468.
[http://dx.doi.org/10.1002/chem.201001960] [PMID: 20981670]
[92]
Kausar, N.; Das, A.R. CuI–Zn(OAc)2 catalyzed C(sp2)–H activation for the synthesis of pyridocoumarins through an uncommon Cu I –Cu III switching mechanism: a fast, solvent-free, combo-catalytic, ball milling approach. Tetrahedron Lett., 2017, 58(26), 2602-2607.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.074]
[93]
Wang, X.; Yi, X.; Xu, H.; Dai, H.X. Cu-mediated C-H thioetherification of arenes at room temperature. Org. Lett., 2019, 21(15), 5981-5985.
[http://dx.doi.org/10.1021/acs.orglett.9b02120] [PMID: 31310137]
[94]
Wang, C. Manganese-mediated C-C bond formation via C-H activation: from stoichiometry to catalysis. Synlett, 2013, 24(13), 1606-1613.
[http://dx.doi.org/10.1055/s-0033-1339299]
[95]
Gunay, A.; Theopold, K.H. C-H bond activations by metal oxo compounds. Chem. Rev., 2010, 110(2), 1060-1081.
[http://dx.doi.org/10.1021/cr900269x] [PMID: 20143877]
[96]
Kuninobu, Y.; Nishina, Y.; Takeuchi, T.; Takai, K. Manganese-catalyzed insertion of aldehydes into a C-H bond. Angew. Chem. Int. Ed. Engl., 2007, 46(34), 6518-6520.
[http://dx.doi.org/10.1002/anie.200702256] [PMID: 17654472]
[97]
Kuninobu, Y.; Kawata, A.; Nishi, M.; Takata, H.; Takai, K. Rhenium- and manganese-catalyzed insertion of acetylenes into beta-keto esters: synthesis of 2-pyranones. Chem. Commun. (Camb.), 2008, (47), 6360-6362.
[http://dx.doi.org/10.1039/b814694b] [PMID: 19048155]
[98]
Kuninobu, Y.; Nishi, M.; Kawata, A.; Takata, H.; Hanatani, Y.; Yudha, S.S.; Iwai, A.; Takai, K. Rhenium- and manganese-catalyzed synthesis of aromatic compounds from 1,3-dicarbonyl compounds and alkynes. J. Org. Chem., 2010, 75(2), 334-341.
[http://dx.doi.org/10.1021/jo902072q] [PMID: 20000351]
[99]
Bruce, M.I.; Goodall, B.L.; Iqbal, M.Z.; Stone, F.G.A.; Doedens, R.J.; Little, R.G. ortho-Metallation of benzylideneaniline: structure of C6H5N:CH•C6H4 Mn(CO)4. J. Chem. Soc. D, 1971, (24), 1595-1596.
[http://dx.doi.org/10.1039/C29710001595]
[100]
Hammarback, L.A.; Robinson, A.; Lynam, J.M.; Fairlamb, I.J.S. Mechanistic insight into catalytic redox-neutral C-H bond activation involving manganese(I) carbonyls: catalyst activation, turnover, and deactivation pathways reveal an intricate network of steps. J. Am. Chem. Soc., 2019, 141(6), 2316-2328.
[http://dx.doi.org/10.1021/jacs.8b09095] [PMID: 30698423]
[101]
Zhou, B.; Chen, H.; Wang, C. Mn-catalyzed aromatic C-H alkenylation with terminal alkynes. J. Am. Chem. Soc., 2013, 135(4), 1264-1267.
[http://dx.doi.org/10.1021/ja311689k] [PMID: 23286776]
[102]
Sueki, S.; Wang, Z.; Kuninobu, Y. Manganese- and borane-mediated synthesis of isobenzofuranones from aromatic esters and oxiranes via C-H bond activation. Org. Lett., 2016, 18(2), 304-307.
[http://dx.doi.org/10.1021/acs.orglett.5b03474] [PMID: 26741796]
[103]
Bume, D.D.; Pitts, C.R.; Lectka, T. Tandem C-C Bond cleavage of cyclopropanols and oxidative aromatization by manganese(IV) oxide in a direct C-H to C-C functionalization of heteroaromatics. Eur. J. Org. Chem., 2016, 2016(1), 26-30.
[http://dx.doi.org/10.1002/ejoc.201501405]
[104]
Ali, S.; Huo, J.; Wang, C. Manganese-catalyzed aromatic C-H allylation of ketones. Org. Lett., 2019, 21(17), 6961-6965.
[http://dx.doi.org/10.1021/acs.orglett.9b02554] [PMID: 31437000]
[105]
Shen, Z.; Huang, H.; Zhu, C.; Warratz, S.; Ackermann, L. MnCl2-catalyzed C-H alkylation on azine heterocycles. Org. Lett., 2019, 21(2), 571-574.
[http://dx.doi.org/10.1021/acs.orglett.8b03924] [PMID: 30604972]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy