Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Biginelli-type Reactions

Author(s): Majid M. Heravi* and Vahideh Zadsirjan*

Volume 24, Issue 12, 2020

Page: [1331 - 1366] Pages: 36

DOI: 10.2174/1385272824999200616111228

Price: $65

Abstract

The effective and high yielding synthesis of poly-functionalized pyrimidines, using multicomponent reactions (MCRs), is imperative in organic and medicinal chemistry. The classic Biginelli reaction is a typically one-pot three-component cyclocondensation reaction involving an aldehyde, a β-ketoester and urea, resulting in the construction of multi-functionalized 3,4-dihydropyrimidin-2(1H)-ones (DHPMs). In recent years, other active methylene compounds, various derivatives of urea and diversely substituted aldehydes have also been used, resulting in the preparation of a new series of various novel dihydropyrimidinones via the Biginelli-Type Reactions (BTRs) or modified Biginelli reactions (MBRs). In this review, we try to underscore the recent advances in BTRs or MBRs.

Keywords: Biginelli reactions, multicomponent reactions, one-pot reaction, Biginelli-type reactions, modified Biginelli reactions, β- ketoester, urea, dihydropyrimidinones.

Graphical Abstract
[1]
(a)Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. . Chem. Rev, 2012.112(6), 3083-3135..
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
(b)Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multicomponent reactions. Chem. Rev., 2014, 114(16), 8323-8359.
[http://dx.doi.org/10.1021/cr400615v] [PMID: 25032909]
[2]
Strecker, A. Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Justus Liebigs Ann. Chem., 1850, 75(1), 27-45.
[http://dx.doi.org/10.1002/jlac.18500750103]
[3]
Biginelli, P. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Gazz. Chim. Ital. 1893, 23, 360-416.
(a)Kappe, C.O. 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 79(32), 6937-6963.
[http://dx.doi.org/10.1016/S0040-4020(01)87971-0]
(b)Kappe, C.O. 4-Aryldihydropyrimidines via the Biginelli condensation: aza-analogs of nifedipine-type calcium channel modulators. Molecules, 1998, 3(1), 1-9.
[http://dx.doi.org/10.3390/30100001]
(c)Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res. 2000, 33(12), 879-888.
[http://dx.doi.org/10.1021/ar000048h] [PMID: 11123887]
(d)Kappe, C.O. Biologically active dihydropyrimidones of the Biginellitype-- a literature survey. Eur. J. Med. Chem. 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[4]
(a)Kappe, C.O. The generation of dihydropyrimidine libraries utilizing Biginelli multicomponent chemistry. QSAR Comb. Sci, 2003, 22(6), 630-645.
[http://dx.doi.org/10.1002/qsar.200320001]
(b)Kappe, C.O.; Stadler, A. The Biginelli dihydropyrimidine synthesis. Org. React., 2004, 63, 1-116.
[http://dx.doi.org/10.1002/0471264180.or063.01]
(c)Gong, L.Z.; Chen, X.H.; Xu, X.Y. Asymmetric organocatalytic Biginelli reactions: a new approach to quickly access optically active 3,4- dihydropyrimidin-2-(1H)-ones. Chemistry, 2007, 13(32), 8920-8926.
[http://dx.doi.org/10.1002/chem.200700840] [PMID: 17828720]
(d)Panda, S.S.; Khanna, P.; Khanna, L. Biginelli reaction: a green perspective. Curr. Org. Chem., 2012, 16(4), 507-520.
[http://dx.doi.org/10.2174/138527212799499859]
[5]
Herrera, R.P.; Marques-Lopez, E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis; Herrera, R.P.; Lopez, E.M., Eds.; John Wiley & Sons Inc: New Jersey, 2015, pp. 306-330.
[5]
(f)de Fátima, Â.; Braga, T.C.; Neto, L.S.; Terra, B.S.; Oliveira, B.G.; da Silva, D.L.; Modolo, L.V. A mini-review on Biginelli adducts with notable pharmacological properties. J. Adv. Res., 2015, 6(3), 363-373..
[http://dx.doi.org/10.1016/j.jare.2014.10.006] [PMID: 26257934]
(g)Heravi, M.M.; Asadi, S.; Lashkariani, B.M. Recent progress in asymmetric Biginelli reaction. Mol. Divers., 2013, 17(2), 389-407. .
[http://dx.doi.org/10.1007/s11030-013-9439-9] [PMID: 23588897]
[6]
(a)Aron, Z.D.; Overman, L.E. Total synthesis and properties of the crambescidin core zwitterionic acid and crambescidin 359. J. Am. Chem. Soc. 2005, 127(10), 3380.3390
[http://dx.doi.org/10.1021/ja042875+] [PMID: 15755156]
(b)Arnold, M.A.; Day, K.A.; Durón, S.G.; Gin, D.Y. Total synthesis of (+)- batzelladine A and (-)-batzelladine D via [4 + 2]-annulation of vinyl carbodiimides with N-alkyl imines. J. Am. Chem. Soc., 2006, 128(40), 13255.13260
[http://dx.doi.org/10.1021/ja063860+] [PMID: 17017806]
(c)Makarieva, T.N.; Tabakmaher, K.M.; Guzii, A.G.; Denisenko, V.A.; Dmitrenok, P.S.; Shubina, L.K.; Kuzmich, A.S.; Lee, H.S.; Stonik, V.A. Monanchocidins B.E: polycyclic guanidine alkaloids with potent antileukemic activities from the sponge Monanchora pulchra. J. Nat. Prod., 2011, 74(9), 1952-1958.
[http://dx.doi.org/10.1021/np200452m ] [PMID: 21848268]
[7]
(a) Lewis, R.W.; Mabry, J.; Polisar, J.G.; Eagen, K.P.; Ganem, B.; Hess, G.P. Dihydropyrimidinone positive modulation of δ-subunit-containing γ- aminobutyric acid type A receptors, including an epilepsy-linked mutant variant. Biochemistry, 2010, 49(23), 4841-4851..
[http://dx.doi.org/10.1021/bi100119t] [PMID: 20450160]
(b)Zhu, X.; Zhao, G.; Zhou, X.; Xu, X.; Xia, G.; Zheng, Z.; Wang, L.; Yang, X.; Li, S. 2,4-Diaryl-4,6,7,8-tetrahydroquinazolin-5(1H)-one derivatives as anti-HBV agents targeting at capsid assembly. Bioorg. Med. Chem. Lett., 2010, 20(1), 299-301..
[http://dx.doi.org/10.1016/j.bmcl.2009.10.119] [PMID: 19897363]
(c)Dhumaskar, K.L.; Meena, S.N.; Ghadi, S.C.; Tilve, S.G. Graphite catalyzed solvent free synthesis of dihydropyrimidin-2(1H)-ones/thiones and their antidiabetic activity. Bioorg. Med. Chem. Lett., 2014, 24(13), 2897- 2899..
[http://dx.doi.org/10.1016/j.bmcl.2014.04.099] [PMID: 24835627]
(d)Treptow, T.G.M.; Figueiró, F.; Jandrey, E.H.; Battastini, A.M.O.; Salbego, C.G.; Hoppe, J.B.; Taborda, P.S.; Rosa, S.B.; Piovesan, L.A.; D’Oca, C.R.M.; Russowsky, D.; D’Oca, M.G.M. Novel hybrid DHPM-fatty acids: synthesis and activity against glioma cell growth in vitro. Eur. J. Med. Chem., 2015, 95, 552-562.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.062] [PMID: 25863023]
(e)Chikhale, R.; Menghani, S.; Babu, R.; Bansode, R.; Bhargavi, G.; Karodia, N.; Rajasekharan, M.V.; Paradkar, A.; Khedekar, P. Development of selective DprE1 inhibitors: design, synthesis, crystal structure and antitubercular activity of benzothiazolylpyrimidine-5-carboxamides. Eur. J. Med. Chem., 2015, 96, 30-46..
[http://dx.doi.org/10.1016/j.ejmech.2015.04.011] [PMID: 25874329]
(f)Rashid, U.; Sultana, R.; Shaheen, N.; Hassan, S.F.; Yaqoob, F.; Ahmad, M.J.; Iftikhar, F.; Sultana, N.; Asghar, S.; Yasinzai, M.; Ansari, F.L.; Qureshi, N.A. Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents. Eur. J. Med. Chem., 2016, 115, 230-244.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.022 ] [PMID: 27017551]
[8]
Chikhale, R.V.; Bhole, R.P.; Khedekar, P.B.; Bhusari, K.P. Synthesis and pharmacological investigation of 3-(substituted 1-phenylethanone)-4-(substituted phenyl)-1, 2, 3, 4-tetrahydropyrimi dine-5-carboxylates. Eur. J. Med. Chem., 2009, 44(9), 3645-3653.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.021 ] [PMID: 19321237]
[9]
Terracciano, S.; Lauro, G.; Strocchia, M.; Fischer, K.; Werz, O.; Riccio, R.; Bruno, I.; Bifulco, G. Structural insights for the optimization of dihydropyrimidin-2(1H)-one based mPGES-1 inhibitors. ACS Med. Chem. Lett., 2015, 6(2), 187-191.
[http://dx.doi.org/10.1021/ml500433j ] [PMID: 25699159]
[10]
Barrow, J.C.; Nantermet, P.G.; Selnick, H.G.; Glass, K.L.; Rittle, K.E.; Gilbert, K.F.; Steele, T.G.; Homnick, C.F.; Freidinger, R.M.; Ransom, R.W.; Kling, P.; Reiss, D.; Broten, T.P.; Schorn, T.W.; Chang, R.S.L.; O’Malley, S.S.; Olah, T.V.; Ellis, J.D.; Barrish, A.; Kassahun, K.; Leppert, P.; Nagarathnam, D.; Forray, C. In vitro and in vivo evaluation of dihydropyrimidinone C-5 amides as potent and selective α(1A) receptor antagonists for the treatment of benign prostatic hyperplasia. J. Med. Chem., 2000, 43(14), 2703-2718.
[http://dx.doi.org/10.1021/jm990612y ] [PMID: 10893308]
[11]
Crespo, A.; El Maatougui, A.; Biagini, P.; Azuaje, J.; Coelho, A.; Brea, J.; Loza, M.I.; Cadavid, M.I.; Mera, X.G.; Terán, H.G.; Sotelo, E. Discovery of 3,4-dihydropyrimidin-2(1H)-ones as a novel class of potent and selective A2B adenosine receptor antagonists. ACS Med. Chem. Lett., 2013, 4(11), 1031-1036.
[http://dx.doi.org/10.1021/ml400185v ] [PMID: 24900602]
[12]
El Maatougui, A.; Azuaje, J.; Gómez, M.G.; Miguez, G.; Crespo, A.; Carbajales, C.; Escalante, L.; Mera, X.G.; Terán, H.G.; Sotelo, E. Discovery of potent and highly selective A2B adenosine receptor antagonist chemotypes. J. Med. Chem., 2016, 59(5), 1967-1983.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01586 ] [PMID: 26824742]
[13]
Zhu, C.; Yang, B.; Zhao, Y.; Fu, C.; Tao, L.; Wei, Y. A new insight into the Biginelli reaction: the dawn of multicomponent click chemistry? Polym. Chem., 2013, 4(21), 5395-5400.
[http://dx.doi.org/10.1039/c3py00553d]
[14]
Patil, S.R.; Choudhary, A.S.; Patil, V.S.; Sekar, N. Synthesis, optical properties, dyeing study of Dihydropyrimidones (DHPMs) skeleton: green and regioselectivity of novel Biginelli scaffold from lawsone. Fibers Polym., 2015, 16(11), 2349-2358.
[http://dx.doi.org/10.1007/s12221-015-5233-x]
[15]
Boukis, A.C.; Llevot, A.; Meier, M.A. High glass transition temperature renewable polymers via Biginelli multicomponent polymerization. Macromol. Rapid Commun., 2016, 37(7), 643-649.
[http://dx.doi.org/10.1002/marc.201500717 ] [PMID: 26800511]
[16]
Zhao, Y.; Yu, Y.; Zhang, Y.; Wang, X.; Yang, B.; Zhang, Y.; Zhang, Q.; Fu, C.; Wei, Y.; Tao, L. From drug to adhesive: a new application of poly (dihydropyrimidin-2 (1H)-one)s via the Biginelli polycondensation. Polym. Chem., 2015, 6(27), 4940-4945.
[http://dx.doi.org/10.1039/C5PY00684H]
[17]
(a) Simon, C.; Constantieux, T.; Rodriguez, J. Utilisation of 1,3dicarbonyl derivatives in multicomponent reactions. Eur. J. Org. Chem., 2004, 2004(24), 4957-4980. http://dx.doi.org/10.1002/ejoc.200400511 .
(b)Dallinger, D.; Stadler, A.; Kappe, C.O. Solid-and solution-phase synthesis of bioactive dihydropyrimidines. Pure Appl. Chem., 2004, 76(5), 1017- 1024. http://dx.doi.org/10.1351/pac200476051017.
(c)Kolosov, M.A.; Orlov, V.D.; Beloborodov, D.A.; Dotsenko, V.V. A chemical placebo: NaCl as an effective, cheapest, non-acidic and greener catalyst for Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones (-thiones) synthesis. Mol. Divers., 2009, 13(1), 5-25.
[http://dx.doi.org/10.1007/s11030-008-9094-8 ] [PMID: 19082754]
[18]
(a)Dominguez, J.C.R.; Bernardi, D.; Kirsch, G. ZrCl4 or ZrOCl2 under neat conditions: optimized green alternatives for the Biginelli reaction. Tetrahedron Lett., 2007, 48(33), 5777-5780. http://dx.doi.org/10.1016/j.tetlet.2007.06.104.
(b)Su, W.; Li, J.; Zheng, Z.; Shen, Y. One-pot synthesis of dihydropyrimidiones catalyzed by strontium(II)triflate under solvent-free conditions. Tetrahedron Lett., 2005, 46(36), 6037-6040. http://dx.doi.org/10.1016/j.tetlet.2005.07.021.
(c)Ahmed, N.; van Lier, J.E. TaBr5-catalyzed Biginelli reaction: one-pot synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones/thiones under solvent-free conditions. Tetrahedron Lett., 2007, 48(31), 5407-5409 http://dx.doi.org/10.1016/j.tetlet.2007.06.005.
(d)Ma, Y.; Qian, C.; Wang, L.; Yang, M. Lanthanide triflate catalyzed Biginelli reaction. one-pot synthesis of dihydropyrimidinones under solvent-free conditions. J. Org. Chem., 2000, 65(12), 3864-3868. http://dx.doi.org/10.1021/jo9919052 PMID: 10864778.
(e)Ranu, B.C.; Hajra, A.; Jana, U. Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3- dicarbonyl compounds, aldehydes, and urea: an improved procedure for the Biginelli reaction. J. Org. Chem., 2000, 65(19), 6270-6272..
[http://dx.doi.org/10.1021/jo000711f] [PMID: 10987976]
(f) Lu, J.; Bai, Y.; Wang, Z.; Yang, B.; Ma, H. One-pot synthesis of 3, 4- dihydropyrimidin-2(1H)-ones using lanthanum chloride as a catalyst. Tetrahedron Lett., 2000, 41(47), 9075-9078..
[http://dx.doi.org/10.1016/S0040-4039(00)01645-2]
(g)Dondoni, A.; Massi, A. Parallel synthesis of dihydropyrimidinones using Yb(III)-resin and polymer-supported scavengers under solvent-free conditions. A green chemistry approach to the Biginelli reaction. Tetrahedron Lett., 2001, 42(45), 7975-7978.. .
[http://dx.doi.org/10.1016/S0040-4039(01)01728-2]
(h)Tu, S.; Fang, F.; Miao, C.; Jiang, H.; Feng, Y.; Shi, D.; Wang, X. Onepot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones using boric acid as catalyst. Tetrahedron Lett., 2003, 44(32), 6153-6155. .
[http://dx.doi.org/10.1016/S0040-4039(03)01466-7]
(i) Xin, J.; Chang, L.; Hou, Z.; Shang, D.; Liu, X.; Feng, X. An enantioselective biginelli reaction catalyzed by a simple chiral secondary amine and achiral brønsted acid by a dual-activation route. Chemistry, 2008, 14(10), 3177-3181,
[http://dx.doi.org/10.1002/chem.200701581] [PMID: 18246559]
(j)Chen, X.H.; Xu, X.Y.; Liu, H.; Cun, L.F.; Gong, L.Z. Highly enantioselective organocatalytic Biginelli reaction. J. Am. Chem. Soc., 2006, 128(46), 14802-14803..
[http://dx.doi.org/10.1021/ja065267y] [PMID: 17105279]
(k)Ryabukhin, S.V.; Plaskon, A.S.; Ostapchuk, E.N.; Volochnyuk, D.M.; Shishkin, O.V.; Shivanyuk, A.N.; Tolmachev, A.A. A one-step fusion of 1,3- thiazine and pyrimidine cycles Org. Lett., 2007.9(21), 4215-4218..
[http://dx.doi.org/10.1021/ol701782v] [PMID: 17850093]
(l)Kumar, A.; Maurya, R.A. An efficient bakers’ yeast catalyzed synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones. Tetrahedron Lett., 2007.48(26), 4569- 4571..
[http://dx.doi.org/10.1016/j.tetlet.2007.04.130]
(m)Fu, N.Y.; Yuan, Y.F.; Cao, Z.; Wang, S.W.; Wang, J.T.; Peppe, C. Indium (III) bromide-catalyzed preparation of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction. Tetrahedron, 2002.58(24), 4801-4807..
[http://dx.doi.org/10.1016/S0040-4020(02)00455-6]
(n)Cepanec, I.; Litvić, M.; Litvić, M.F.; Grüngold, I. Antimony (III) chloride-catalysed Biginelli reaction: a versatile method for the synthesis of dihydropyrimidinones through a different reaction mechanism Tetrahedron,, 2007.63(48), 11822-11827..
[http://dx.doi.org/10.1016/j.tet.2007.09.045]
(o)Bussolari, J.C.; McDonnell, P.A. A new substrate for the Biginelli cyclocondensation: direct preparation of 5-unsubstituted 3,4-dihydropyrimidin- 2(1H)-ones from a β-keto carboxylic acid. J. Org. Chem., 2000. 65(20), 6777-6779..
[http://dx.doi.org/10.1021/jo005512a] [PMID: 11052136]
(p)Bigi, F.; Carloni, S.; Frullanti, B.; Maggi, R.; Sartori, G. A revision of the Biginelli reaction under solid acid catalysis. Solvent-free synthesis of dihydropyrimidines over montmorillonite KSF. Tetrahedron Lett., 1999.40(17), 3465-3468..
[http://dx.doi.org/10.1016/S0040-4039(99)00424-4]
(q)Mitra, A.K.; Banerjee, K. Clay catalysed synthesis of dihydropyrimidinones under solvent-free conditions. Synlett, , 2003.2003(10), 1509-1511..
[http://dx.doi.org/10.1055/s-2003-40828]
(r)Li, N.; Chen, X.H.; Song, J.; Luo, S.W.; Fan, W.; Gong, L.Z. Highly enantioselective organocatalytic Biginelli and Biginelli-like condensations: reversal of the stereochemistry by tuning the 3,3′-disubstituents of phosphoric acids. J. Am. Chem. Soc., 2009, 131(42), 15301-15310.
[http://dx.doi.org/10.1021/ja905320q] [PMID: 19785440]
[19]
Jauk, B.; Pernat, T.; Kappe, C.O. Design and synthesis of a conformationally rigid mimic of the dihydropyrimidine calcium channel modulator SQ 32,926. Molecules, 2000, 5(3), 227-239.
[http://dx.doi.org/10.3390/50300227]
[20]
Ghorab, M.M.; Gawad, S.M.A.; El-Gaby, M.S.A. Synthesis and evaluation of some new fluorinated hydroquinazoline derivatives as antifungal agents. Farmaco, 2000, 55(4), 249-255.
[http://dx.doi.org/10.1016/S0014-827X(00)00029-X] [PMID: 10966155]
[21]
Abelman, M.M.; Smith, S.C.; James, D.R. Cyclic ketones and substituted α-keto acids as alternative substrates for novel Biginelli-like scaffold syntheses. Tetrahedron Lett., 2003, 44(24), 4559-4562.
[http://dx.doi.org/10.1016/S0040-4039(03)00985-7]
[22]
(a)Wang, Z.T.; Xu, L.W.; Xia, C.G.; Wang, H.Q. Novel Biginelli-like threecomponent cyclocondensation reaction: efficient synthesis of 5-unsubstituted 3, 4-dihydropyrimidin-2 (1H)-ones. Tetrahedron Lett., 2004. 45(42), 7951-7953..
[http://dx.doi.org/10.1016/j.tetlet.2004.08.107]
(b)Sabitha, G.; Reddy, K.B.; Srinivas, R.; Yadav, J.S. Iodotrimethylsilaneaccelerated onepot synthesis of 5unsubstituted 3, 4dihydropyrimidin2(1H)ones: a novel procedure for the Biginellilike cyclocondensation reaction at room temperature. Helv. Chim. Acta, 2005. 88(11), 2996-2999..
[http://dx.doi.org/10.1002/hlca.200590242]
(c)Liang, B.; Wang, X.; Wang, J.X.; Du, Z. New three-component cyclocondensation reaction: microwave-assisted one-pot synthesis of 5-unsubstituted-3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Tetrahedron, 2007, 63(9), 1981-1986.
[http://dx.doi.org/10.1016/j.tet.2006.12.062]
[23]
Zhang, H.; Zhou, Z.; Yao, Z.; Xu, F.; Shen, Q. Efficient synthesis of pyrimidinone derivatives by ytterbium chloride catalyzed Biginelli-type reaction under solvent-free conditions. Tetrahedron Lett., 2009, 50(14), 1622-1624.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.103]
[24]
Bailey, C.D.; Houlden, C.E.; Bar, G.L.; Jones, G.C.L.; Milburn, K.I.B. A chemo- and regio-selective three-component dihydropyrimidinone synthesis. Chem. Commun. (Camb.), 2007, (28), 2932-2934.
[http://dx.doi.org/10.1039/b707361e ] [PMID: 17622435]
[25]
Singh, O.M.; Devi, N.S. Application of β-oxodithioesters in domino and multicomponent reactions: facile route to dihydropyrimidines and coumarins. J. Org. Chem., 2009, 74(8), 3141-3144.
[http://dx.doi.org/10.1021/jo802585b ] [PMID: 19301883]
[26]
Wan, J.P.; Pan, Y.J. Chemo-/regioselective synthesis of 6-unsubstituted dihydropyrimidinones, 1,3-thiazines and chromones via novel variants of Biginelli reaction. Chem. Commun. (Camb.), 2009, (19), 2768-2770.
[http://dx.doi.org/10.1039/b901112a ] [PMID: 19532949]
[27]
Kappe, C.O. A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an N-acyliminium ion intermediate1. J. Org. Chem., 1997, 62(21), 7201-7204.
[http://dx.doi.org/10.1021/jo971010u ] [PMID: 11671828]
[28]
Folkers, K.; Johnson, T.B. Researches on pyrimidines. CXXXVI. The Mechanism of formation of tetrahydropyrimidines by the Biginelli reaction1. J. Am. Chem. Soc., 1933, 55(9), 3784-3791.
[http://dx.doi.org/10.1021/ja01336a054]
[29]
Sweet, F.; Fissekis, J.D. Synthesis of 3, 4-dihydro-2(1H)-pyrimidinones and the mechanism of the Biginelli reaction. J. Am. Chem. Soc., 1973, 95(26), 8741-8749.
[http://dx.doi.org/10.1021/ja00807a040]
[30]
De Souza, R.O.; da Penha, E.T.; Milagre, H.M.S.; Garden, S.J.; Esteves, P.M.; Eberlin, M.N.; Antunes, O.A.C. The three-component biginelli reaction: a combined experimental and theoretical mechanistic investigation. Chemistry, 2009, 15(38), 9799-9804.
[http://dx.doi.org/10.1002/chem.200900470 ] [PMID: 19670193]
[31]
Ramos, L.M.; Tobio, A.Y.P.; dos Santos, M.R.; de Oliveira, H.C.; Gomes, A.F.; Gozzo, F.C.; de Oliveira, A.L.; Neto, B.A.D. Mechanistic studies on Lewis acid catalyzed Biginelli reactions in ionic liquids: evidence for the reactive intermediates and the role of the reagents. J. Org. Chem., 2012, 77(22), 10184-10193.
[http://dx.doi.org/10.1021/jo301806n] [PMID: 23101501]
[32]
(a)Dallinger, D.; Kappe, C.O. Creating chemical diversity space by scaffold decoration of dihydropyrimidines. Pure Appl. Chem., 2005.77(1), 155-161..
[http://dx.doi.org/10.1351/pac200577010155]
bKappe, C.O. Multicomponent Reactions; Zhu, J; Bienayme, H., Ed.; Wiley- VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118.ch4]
(c)Saini, A.; Kumar, S.; Sandhu, J.S. Biginelli reaction. J. Indian Chem. Soc., 2007, 84, 959-970.
(d)Phucho, I.T.; Nongpiur, A.; Tumtin, S.; Nongrum, R.; Nongkhlaw, R.L. Recent progress in the chemistry of dihydropyrimidinones. Rasayan J. Chem., 2009, 2(3), 662-676.
(e)Wan, J.P.; Liu, Y. Synthesis of dihydropyrimidinones and thiones by multicomponent reactions: strategies beyond the classical Biginelli reaction. Synthesis,, 2010.(23), 3943-3953..
[http://dx.doi.org/10.1055/s-0030-1258290]
(f)Matache, M.; Dobrota, C.; Bogdan, D.P.; Funeriu, D. Recent developments in the reactivity of the Biginelli compounds. Curr. Org. Chem., 2011, 8(3), 356-373.
[33]
Sandhu, J.S. Past, present and future of the Biginelli reaction: a critical perspective. ARKIVOC, 2012, 2012(1), 66-133.
[http://dx.doi.org/10.3998/ark.5550190.0013.103]
[34]
Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J.N. Biginelli reaction: an overview. Tetrahedron Lett., 2016, 57(47), 5135-5149.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.047]
[35]
Puripat, M.; Ramozzi, R.; Hatanaka, M.; Parasuk, W.; Parasuk, V.; Morokuma, K. The Biginelli reaction is a urea-catalyzed organocatalytic multicomponent reaction. J. Org. Chem., 2015, 80(14), 6959-6967.
[http://dx.doi.org/10.1021/acs.joc.5b00407 ] [PMID: 26066623]
[36]
Bhuyan, P.; Boruah, R.C.; Sandhu, J.S. Studies on uracils. 10. A facile one-pot synthesis of pyrido[2,3-d]-and pyrazolo [3,4-d] pyrimidines. J. Org. Chem., 1990, 55(2), 568-571.
[http://dx.doi.org/10.1021/jo00289a033]
[37]
Bhuyan, P.J.; Sandhu, J.S.; Ghosh, A.C. Tertiary amine effect” strategy in the synthesis of novel uracil analogues. Tetrahedron Lett., 1996, 37(11), 1853-1854.
[http://dx.doi.org/10.1016/0040-4039(96)00134-7]
[38]
Bhuyan, P.J.; Lekhok, K.C.; Sandhu, J.S. Studies on uracils: a simple and efficient method for the synthesis of novel pyrimido[4,5-c] pyridazines. Tetrahedron Lett., 1999, 40(9), 1793-1794.
[http://dx.doi.org/10.1016/S0040-4039(99)00011-8]
[39]
Bhuyan, P.J.; Borah, H.N.; Sandhu, J.S. Studies on uracils: an efficient method for the synthesis of novel 1-allyl-6-(1′,2′,3′-triazolyl) analogues of HEPT. J. Chem. Soc., Perkin Trans. 1, 1999, 1999(21), 3083-3084.
[http://dx.doi.org/10.1039/a906222j]
[40]
Bhuyan, P.J.; Borah, H.N.; Sandhu, J.S. Studies on uracils: a facile one-pot synthesis of pyrazolo[3, 4-d] pyrimidines. Tetrahedron Lett., 2002, 43(5), 895-897.
[http://dx.doi.org/10.1016/S0040-4039(01)02285-7]
[41]
Noguchi, M.; Kajigaeshi, N.S. Studies on pyridopyrimidines. I.: synthesis of pyrazolo-[3′, 4′: 4,5]pyrido[2,3-d] pyrimidine derivatives. Chem. Pharm. Bull. (Tokyo), 1986, 34(10), 3994.
[http://dx.doi.org/10.1248/cpb.34.3994]
[42]
Koroniak, H.; Karwatka, P.; Cytlak, T. Photochemical behaviour of 5-perfluoroalkenyl uracils. Tetrahedron Lett., 2004, 45(29), 5767-5769.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.187]
[43]
Heravi, M.M.; Talaei, B. Diketene as privileged synthon in the syntheses of heterocycles Part 1: four-and five-membered ring heterocycles. Adv. Heterocycl. Chem., 2017, 122, 43-114.
[http://dx.doi.org/10.1016/bs.aihch.2016.10.003]
[44]
Heravi, M.M.; Talaei, B. Ketenes as privileged synthons in the synthesis of heterocyclic compounds part 3: six-membered heterocycles. Adv. Heterocycl. Chem., 2016, 118, 195-291.
[http://dx.doi.org/10.1016/bs.aihch.2015.10.007]
[45]
Heravi, M.M.; Vavsari, V.F. Recent advances in application of amino acids: key building blocks in design and syntheses of heterocyclic compounds. Adv. Heterocycl. Chem., 2015, 114, 77-145.
[http://dx.doi.org/10.1016/bs.aihch.2015.02.002]
[46]
Heravi, M.M.; Talaei, B. Ketenes as privileged synthons in the syntheses of heterocyclic compounds part 2: five-membered heterocycles. Adv. Heterocycl. Chem., 2015, 114, 147-225.
[http://dx.doi.org/10.1016/bs.aihch.2015.02.001]
[47]
Heravi, M.M.; Zadsirjan, V. Recent advances in the synthesis of benzo[b]furans. Adv. Heterocycl. Chem., 2015, 117, 261-376.
[http://dx.doi.org/10.1016/bs.aihch.2015.08.003]
[48]
Heravi, M.M.; Alishiri, T. Dimethyl acetylenedicarboxylate. Adv. Heterocycl. Chem., 2014, 113, 1-66.
[http://dx.doi.org/10.1016/B978-0-12-800170-7.00001-8]
[49]
Heravi, M.M.; Talaei, B. Ketenes as privileged synthons in the synthesis of heterocyclic compounds, part 1: three-and four-membered heterocycles. Adv. Heterocycl. Chem., 2014, 113, 143-244.
[http://dx.doi.org/10.1016/B978-0-12-800170-7.00004-3]
[50]
Heravi, M.M.; Khaghaninejad, S.; Mostofi, M. Pechmann reaction in the synthesis of coumarin derivatives. Adv. Heterocycl. Chem., 2014, 112, 1-50.
[http://dx.doi.org/10.1016/B978-0-12-800171-4.00001-9]
[51]
Heravi, M.M.; Khaghaninejad, S.; Nazari, N. Bischler-Napieralski reaction in the syntheses of isoquinolines. Adv. Heterocycl. Chem., 2014, 112, 183-234.
[http://dx.doi.org/10.1016/B978-0-12-800171-4.00005-6]
[52]
Khaghaninejad, S.; Heravi, M.M. Paal-Knorr reaction in the synthesis of heterocyclic compounds. Adv. Heterocycl. Chem., 2014, 111, 95-146.
[http://dx.doi.org/10.1016/B978-0-12-420160-6.00003-3]
[53]
Heravi, M.M.; Hashemi, E.; Beheshtiha, Y.S.; Ahmadi, S.; Hosseinnejad, T. PdCl2 on modified poly (styrene-co-maleic a nhydride): a highly active and recyclable catalyst for the Suzuki-Miyaura and Sonogashira reactions. J. Mol. Catal. Chem., 2014, 394, 74-82.
[http://dx.doi.org/10.1016/j.molcata.2014.07.001]
[54]
Heravi, M.M.; Hashemi, E. Recent advances in application of intramolecular Suzuki cross-coupling in cyclization and heterocyclization. Monatsh. Chem., 2012, 143(6), 861-880.
[http://dx.doi.org/10.1007/s00706-012-0746-0]
[55]
Heravi, M.M.; Sadjadi, S. Recent advances in the application of the Sonogashira method in the synthesis of heterocyclic compounds. Tetrahedron, 2009, 65(37), 7761-7775.
[http://dx.doi.org/10.1016/j.tet.2009.06.028]
[56]
Heravi, M.M.; Fazeli, A. Recent advances in the application of the Heck reaction in the synthesis of heterocyclic compounds. Heterocycles, 2010, 81(9), 1979-2026.
[http://dx.doi.org/10.3987/REV-10-675]
[57]
Mirsafaei, R.; Heravi, M.M.; Ahmadi, S.; Moslemin, M.H.; Hosseinnejad, T. In situ prepared copper nanoparticles on modified KIT-5 as an efficient recyclable catalyst and its applications in click reactions in water. J. Mol. Catal. Chem., 2015, 402, 100-108.
[http://dx.doi.org/10.1016/j.molcata.2015.03.006]
[58]
Hosseinnejad, T.; Fattahi, B.; Heravi, M.M. Computational studies on the regioselectivity of metal-catalyzed synthesis of 1,2,3 triazoles via Click reaction: a review. J. Mol. Model., 2015, 21(10), 264-301.
[http://dx.doi.org/10.1007/s00894-015-2810-2 ] [PMID: 26385849]
[59]
Heravi, M.M.; Derikvand, F.; Bamoharram, F.F. A catalytic method for synthesis of Biginelli-type 3,4-dihydropyrimidin-2(1H)-one using 12-tungstophosphoric acid. J. Mol. Catal. Chem., 2005, 242(1-2), 173-175.
[http://dx.doi.org/10.1016/j.molcata.2005.08.009]
[60]
Tajbakhsh, M.; Mohajerani, B.; Heravi, M.M.; Ahmadi, A.N. Natural HEU type zeolite catalyzed Biginelli reaction for the synthesis of 3,4-dihydropyrimidin-2(1H) one derivatives. J. Mol. Catal. Chem., 2005, 236(1-2), 216-219.
[http://dx.doi.org/10.1016/j.molcata.2005.04.033]
[61]
Heravi, M.M.; Ghavidel, M.; Heidari, B. Microwave-assisted Biginelli reaction: an old reaction, a new perspective. Curr. Org. Synth., 2016, 13(4), 569-600.
[http://dx.doi.org/10.2174/1570179413666151218202307]
[62]
Heravi, M.M.; Moradi, R.; Mohammadkhani, L.; Moradi, B. Current progress in asymmetric Biginelli reaction: an update. Mol. Divers., 2018, 22(3), 751-767.
[http://dx.doi.org/10.1007/s11030-018-9841-4 ] [PMID: 29936682]
[63]
Safari, J.; Gandomi-Ravandi, S. MnO2-MWCNT nanocomposites as efficient catalyst in the synthesis of Biginelli-type compounds under microwave radiation. J. Mol. Catal. Chem., 2013, 373, 72-77.
[http://dx.doi.org/10.1016/j.molcata.2013.02.021]
[64]
Safari, J.; Gandomi-Ravandi, S. A novel protocol for solvent-free synthesis of 4,6-diaryl-3, 4-dihydropyrimidine-2(1H)-ones catalyzed by metal oxide–MWCNTs nanocomposites. J. Mol. Struct., 2014, 1074, 71-78.
[http://dx.doi.org/10.1016/j.molstruc.2014.05.012]
[65]
Magar, R.L.; Thorat, P.B.; Thorat, P.B.; Thorat, V.V.; Patil, B.R.; Pawar, R.P. Distereoselective one-pot synthesis of pyrimidopyrimidines using sulfated tin oxide as a reusable catalyst: an extension of Biginelli-type reaction. Chin. Chem. Lett., 2013, 24(12), 1070-1074.
[http://dx.doi.org/10.1016/j.cclet.2013.07.012]
[66]
Wang, M.; Song, J.; Lu, Q.; Wang, Q. Green Biginelli‐type reaction: solvent‐free synthesis of 5‐unsubstituted 3,4‐dihydropyrimdin‐2(1H)‐ones. J. Heterocycl. Chem., 2015, 52(6), 1907-1910.
[http://dx.doi.org/10.1002/jhet.2279]
[67]
Saikia, S.; Borah, R. One‐pot sequential synthesis of 2‐amino‐4,6‐diaryl pyrimidines involving SO3H‐functionalized piperazinium‐based dicationic ionic liquids as homogeneous catalysts. ChemistrySelect, 2019, 4(30), 8751-8756.
[http://dx.doi.org/10.1002/slct.201902060]
[68]
Yaziji, V.; Rodríguez, D.; Terán, H.g.; Coelho, A.; Caamaño, O.; Mera, X.G.; Brea, J.; Loza, M.I.; Cadavid, M.I.; Sotelo, E. Pyrimidine derivatives as potent and selective A3 adenosine receptor antagonists. J. Med. Chem., 2011, 54(2), 457-471.
[http://dx.doi.org/10.1021/jm100843z ] [PMID: 21186795]
[69]
Sun, Q.; Wang, Y.Q.; Ge, Z.M.; Cheng, T.M.; Li, R.T. A highly efficient solvent-free synthesis of dihydropyrimidinones catalyzed by zinc chloride. Synthesis, 2004, 2004(07), 1047-1051.
[70]
Zalavadiya, P.D.; Ghetiya, R.M.; Dodiya, B.L.; Vekariya, P.B.; Joshi, H.S. Synthesis of some new dihydropyrimidines by iodine as a catalyst at ambient temperature and evaluation of their biological activity. J. Heterocycl. Chem., 2013, 50(4), 973-978.
[http://dx.doi.org/10.1002/jhet.728]
[71]
Kaminski, J.; Jean, Z.; Glinska, E.; Rusek, D.; Eckstein, Z. Synthesis and properties of 3-benzhydryl-5-methyl-4-idoxazole carboxylic acid derivatives. Pol. J. Chem., 1978, 52(7-8), 1583.
[72]
Ko, S.; Sastry, M.N.V.; Lin, C.; Yao, C.F. Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1, 4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Lett., 2005, 46(34), 5771-5774.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.148]
[73]
Zolfigol, M.A.; Salehi, P.; Zad, A.K.; Shayegh, M. Iodine-catalyzed synthesis of novel Hantzsch N-hydroxyethyl 1,4-dihydropyridines under mild conditions. J. Mol. Catal. Chem., 2007, 261(1), 88-92.
[http://dx.doi.org/10.1016/j.molcata.2006.07.063]
[74]
Kurmach, M.N.; Ryabitskiy, A.B.; Britsun, V.N. 2-Acylthioacetamides in the Biginelli reaction. Chem. Heterocycl. Compd., 2014, 49(12), 1770-1776.
[http://dx.doi.org/10.1007/s10593-014-1429-z]
[75]
Vdovina, S.V.; Mamedov, V.A. New potential of the classical Biginelli reaction. Russ. Chem. Rev., 2008, 77(12), 1017.
[http://dx.doi.org/10.1070/RC2008v077n12ABEH003894]
[76]
Tu, S.; Fang, F.; Miao, C.; Jiang, H.; Feng, Y.; Shi, D.; Wang, X. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using boric acid as catalyst. Tetrahedron Lett., 2003, 44(32), 6153-6155.
[http://dx.doi.org/10.1016/S0040-4039(03)01466-7]
[77]
Gein, V.L.; Zamaraeva, T.M.; Kurbatova, A.A.; Vakhrin, M.I. Three-component synthesis of 6-aryl-4-methyl-2-oxo-1,2,3,6-tetrahydropyrimidine-5-(N-aryl)carboxamides. Chem. Heterocycl. Compd., 2010, 46(7), 856-858.
[http://dx.doi.org/10.1007/s10593-010-0594-y]
[78]
Gein, V.L.; Zamaraeva, T.M.; Fedotov, A.Y.; Balandina, A.V.; Dmitriev, M.V. Synthesis, structure, and antimicrobial activity of N,6-diaryl-4-methyl-2-oxo-1,2,3,6-tetrahydropyrimidine-5-carboxamides. Russ. J. Org. Chem., 2016, 86(11), 2437-2441.
[79]
Jazinizadeh, T.; Abadi, A.Y.; Maghsoodlou, M.T.; Heydari, R. CeCl3-catalyzed a highly efficient and eco-friendly synthesis of new and densely functionalized thiazolo[3,2-a] pyrimidins via Biginelli-type reaction. Polycycl. Aromat. Compd., 2018, 40(3), 1-11.
[http://dx.doi.org/10.1080/10406638.2018.1481111]]
[80]
Khaskel, A.; Barman, P.; Maiti, S.K.; Jana, U. Nebivolol nanoparticles: a first catalytic use in Biginelli and Biginelli-like reactions. Can. J. Chem., 2018, 96(12), 1021-1025.
[http://dx.doi.org/10.1139/cjc-2017-0621]
[81]
Gülten, Ş.; Arslan, E. Acid catalyzed one‐pot three‐component Biginelli‐type synthesis of some new symmetrical bis 3,4‐dihydropyrimidin‐2(1H)‐ones/thiones. J. Heterocycl. Chem., 2018, 55(12), 2936-2945.
[http://dx.doi.org/10.1002/jhet.3367]
[82]
Mashhad, H.A.; Soukhtanloo, M.; Massoudi, A.; Shiri, A.; Bakavoli, M. Synthesis and evaluation of cytotoxicity of 6-amino-4-aryl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitriles. Russ. J. Org. Chem., 2016, 42(3), 316-322.
[83]
Ghodasara, H.B.; Trivedi, A.R.; Kataria, V.B.; Patel, B.G.; Shah, V.H. Synthesis and antimicrobial evaluation of novel substituted pyrimidine scaffold. Med. Chem. Res., 2013, 22(12), 6121-6128.
[http://dx.doi.org/10.1007/s00044-013-0596-2]
[84]
Al-Abdullah, E.S.; Al-Obaid, A.R.M.; Al-Deeb, O.A.; Habib, E.E.; El-Emam, A.A. Synthesis of novel 6-phenyl-2,4-disubstituted pyrimidine-5-carbonitriles as potential antimicrobial agents. Eur. J. Med. Chem., 2011, 46(9), 4642-4647.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.003 ] [PMID: 21849221]
[85]
Stella, A.; Van Belle, K.; De Jonghe, S.; Louat, T.; Herman, J.; Rozenski, J.; Waer, M.; Herdewijn, P. Synthesis of a 2,4,6-trisubstituted 5-cyano-pyrimidine library and evaluation of its immunosuppressive activity in a mixed lymphocyte reaction assay. Bioorg. Med. Chem., 2013, 21(5), 1209-1218.
[http://dx.doi.org/10.1016/j.bmc.2012.12.032 ] [PMID: 23347804]
[86]
Mohan, S.B.; Ravi Kumar, B.V.; Dinda, S.C.; Naik, D.; Seenivasan, S.P.; Kumar, V.; Rana, D.N.; Brahmkshatriya, P.S. Microwave-assisted synthesis, molecular docking and antitubercular activity of 1,2,3,4-tetrahydropyri-midine-5-carbonitrile derivatives. Bioorg. Med. Chem. Lett., 2012, 22(24), 7539-7542.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.032 ] [PMID: 23122523]
[87]
Senthilkumar, N.; Ravichandran, Y.D.; Kumar, K.M.; Ramaiah, S. Synthesis of a new series of pyrimidine derivatives: exploration of anti-proliferative activity on EAT cells and molecular docking. Res. Chem. Intermed., 2016, 42(2), 1295-1313.
[http://dx.doi.org/10.1007/s11164-015-2086-2]
[88]
Alinezhad, H.; Tajbakhsh, M.; Zare, M.; Mousavi, M. Solvent-free synthesis of 6-unsubstituted dihydropyrimidinones using 2-pyrrolidonium bisulphate as efficient catalyst. Chem. Pap., 2016, 70(8), 1126-1130.
[http://dx.doi.org/10.1515/chempap-2016-0048]
[89]
Xu, J.; Hao, G.; Gao, X.; Xu, H.; Rong, L. An efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one and 5, 6-diphenylpyrimidine derivatives under solvent-free and base conditions. Res. Chem. Intermed., 2017, 43(7), 3833-3846.
[http://dx.doi.org/10.1007/s11164-016-2842-y]
[90]
Essid, I.; Lahbib, K.; Kaminsky, W.; Nasr, C.B.; Touil, S. 5-phosphonato-3,4-dihydropyrimidin-2(1H)-ones: Zinc triflate-catalyzed one-pot multi-component synthesis, X-ray crystal structure and anti-inflammatory activity. J. Mol. Struct., 2017, 1142, 130-138.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.054]
[91]
Yu, S.; Wu, J.; Lan, H.; Gao, L.; Qian, H.; Fan, K.; Yin, Z. Palladium and Brønsted acid co-catalyzed Biginelli-like multicomponent reactions via in situ-generated cyclic enol ether: access to spirofuran-hydropyrimidinones. Org. Lett., 2020, 22(1), 102-105.
[http://dx.doi.org/10.1021/acs.orglett.9b04015 ] [PMID: 31849226]
[92]
Safaei, H.; Firoozi, N.; Chaboki, N.; Jehbez, S.A.; Safaei, M. Ammonium chloride as a new reagent for the synthesis of oxazine derivatives via Biginelli-type reaction. Polycycl. Aromat. Compd., 2019, 2019, 1-8.
[http://dx.doi.org/10.1080/10406638.2018.1526810]
[93]
Thummar, B.B.; Tarpada, U.P.; Raval, D.K. Study on one‐pot Biginelli‐like synthesis of pyrazolo[3,4‐d]pyrimidines in Bronsted acidic ionic liquid under sonication and its mechanism. J. Heterocycl. Chem., 2014, 51(6), 1740-1746.
[http://dx.doi.org/10.1002/jhet.1870]
[94]
Hayat, F.; Salahuddin, A.; Azam, A. Synthesis, characterization, antiamoebic activity and cytotoxicity of new pyrazolo[3, 4-d]pyrimidine-6-one derivatives. J. Enzyme Inhib. Med. Chem., 2011, 26(4), 472-479.
[http://dx.doi.org/10.3109/14756366.2010.528414] [PMID: 21054147]
[95]
Shehab, W.S.; Assy, M.G.; Moustafa, H.Y.; Rahman, H.M. Cyclization of pyrazolones: novel synthesis of pyrano, pyrido, pyrimido and spiropyrazole derivatives. J. Iran. Chem. Soc., 2018, 15(10), 2349-2355.
[http://dx.doi.org/10.1007/s13738-018-1423-y]
[96]
Warekar, P.P.; Kolekar, G.B.; Deshmukh, M.B.; Anbhule, P.V. An efficient and modified Biginelli-type synthesis of 3,4-dihydro-1H-indeno[1,2-d]pyrimidine-2,5-dione using phosphorous pentoxide. Synth. Commun., 2014, 44(24), 3594-3601.
[http://dx.doi.org/10.1080/00397911.2014.947652]
[97]
Rahman, M.; Sarkar, A.; Ghosh, M.; Majee, A.; Hajra, A. Catalytic application of task specific ionic liquid on the synthesis of benzoquinazolinone derivatives by a multicomponent reaction. Tetrahedron Lett., 2014, 55(1), 235-239.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.011]
[98]
Janardhan, B.; Rajitha, B.; Crooks, P.A. Poly(4-vinylpyridinium) hydrogen sulfate: an efficient and recyclable Bronsted acid catalyst for the synthesis of fused 3,4-dihydropyrimidin-2(1H)-ones and thiones. J. Saudi Chem. Soc., 2016, 20, S221-S226.
[http://dx.doi.org/10.1016/j.jscs.2012.10.007]
[99]
Mohammadi, M.K. Solvent free one pot synthesis of novel naphtho[1,8-gh]quinazoline-7, 10-dione derivatives with CuCl2. Bull. Chem. Soc. Ethiop., 2018, 32(1), 149-156.
[http://dx.doi.org/10.4314/bcse.v32i1.14]
[100]
Wan, Y.; Yuan, R.; Xu, H.H.; Wang, C.; Qi, J.L.; Wu, H. A regioselective Biginelli‐like reaction controlled by the size of alicyclic mono‐ketones. J. Heterocycl. Chem., 2014, 51(S1), E123-E128.
[http://dx.doi.org/10.1002/jhet.1893]
[101]
Amoozadeh, A.; Azhari, S.; Kolvari, E.; Otokesh, S. Synthesis of pyrimidinone and 5‐unsubstituted 4,6‐diarylpyrimidine‐2(1H)‐ones by using nano magnetic catalyst under solvent free condition. J. Chin. Chem. Soc. (Taipei), 2015, 62(11), 968-973.
[http://dx.doi.org/10.1002/jccs.201500120]
[102]
Hote, B.S.; Mandawad, G.G.; Patil, S.G.; Hallale, S.N. Cyanuric chloride catalyzed three component, one pot synthesis of Biginelli-type pyrimidinone derivatives. Polycycl. Aromat. Compd., 2019, 2019, 1-7.
[http://dx.doi.org/10.1080/10406638.2019.1630653]
[103]
Kiyani, H.; Ghiasi, M. Potassium phthalimide: an efficient and green organocatalyst for the synthesis of 4-aryl-7-(arylmethylene)-3,4,6,7-tetrahydro-1H-cyclopenta[d]pyrimidin-2(5H)-ones/thiones under solvent-free conditions. Chin. Chem. Lett., 2014, 25(2), 313-316.
[http://dx.doi.org/10.1016/j.cclet.2013.11.042]
[104]
Zhou, Z.L.; Wang, P.C.; Lu, M. Bronsted acidic ionic liquid [C3SO3HDoim] HSO4 catalyzed one-pot three-component Biginelli-type reaction: an efficient and solvent-free synthesis of pyrimidinone derivatives and its mechanistic study. Chin. Chem. Lett., 2016, 27(2), 226-230.
[http://dx.doi.org/10.1016/j.cclet.2015.10.010]
[105]
Navarro, C.A.; Sierra, C.A.; Puentes, C.O. Evaluation of sodium acetate trihydrate–urea DES as a benign reaction media for the Biginelli reaction. Unexpected synthesis of methylenebis (3-hydroxy-5,5-dimethylcyclohex-2-enones), hexahydroxanthene-1,8-diones and hexahydroacridine-1,8-diones. RSC Adv., 2016, 6(70), 65355-65365.
[http://dx.doi.org/10.1039/C6RA13848A]
[106]
Moghanian, H.; Fard, M.A.B.; Mobinikhaledi, A.; Ahadi, N. Bis(p-sulfo-anilino) triazine-functionalized silica-coated magnetite nanoparticles as an efficient and magnetically reusable nano-catalyst for Biginelli-type reaction. Res. Chem. Intermed., 2018, 44(7), 4083-4101.
[http://dx.doi.org/10.1007/s11164-018-3357-5]
[107]
Vaghei, R.G.; Maghbooli, Y.; Mahmoodi, J.; Shahriari, A. Poly(N-bromo-N-ethyl-benzene-1, 3-disulfonamide) and N, N, N′, N′-tetrabromobenzene-1,3-disulfonamide as new efficient reagents for one-pot synthesis of furano and pyrano pyrimidinones (thiones). RSC Adv., 2015, 5(91), 74336-74341.
[http://dx.doi.org/10.1039/C5RA16646B]
[108]
Eichman, C.C.; Stambuli, J.P. Transition metal catalyzed synthesis of aryl sulfides. Molecules, 2011, 16(1), 590-608.
[http://dx.doi.org/10.3390/molecules16010590] [PMID: 21242940]
[109]
Roschger, P.; Fiala, W.; Stadlbauer, W. Nucleophilic substitution and ring closure reactions of 4‐chloro‐3‐nitro‐2‐quinolones. J. Heterocycl. Chem., 1992, 29(1), 225-231.
[http://dx.doi.org/10.1002/jhet.5570290141]
[110]
Mourad, A.F.E.; Amer, A.A.; El‐Shaieb, K.M.; Ali, A.M.; Aly, A.A. 4‐Hydroxy‐1‐phenylquinolin‐2(1H)‐one in one‐pot synthesis of pyrimidoquinolines and related compounds under microwave irradiation and conventional conditions. J. Heterocycl. Chem., 2016, 53(2), 383-388.
[http://dx.doi.org/10.1002/jhet.2286]
[111]
Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. In Vogel’s Textbook of Practical Organic Chemistry, 5th ed; Wiley: New York, 1989, p. 965.
[112]
El Rady, E.A. Three‐component uncatalyzed eco‐friendly reactions for one‐pot synthesis of 4,7‐dihydro[1,2,4]triazolo[1,5‐a]pyrimidine derivatives. J. Heterocycl. Chem., 2014, 51(3), 869-875.
[http://dx.doi.org/10.1002/jhet.1771]
[113]
Kolosov, M.A.; Shvets, E.H.; Manuenkov, D.A.; Vlasenko, S.A.; Omelchenko, I.V.; Shishkina, S.V.; Orlov, V.D. A synthesis of 6-function-alized 4,7-dihydro[1,2,4] triazolo[1,5-a]pyrimidines. Tetrahedron Lett., 2017, 58(12), 1207-1210.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.035]
[114]
(a)Bhatt, J.D.; Chudasama, C.J.; Patel, K.D. Pyrazole clubbed triazolo[1,5- a]pyrimidine hybrids as an anti-tubercular agents: synthesis, in vitro screening and molecular docking study. Bioorg. Med. Chem. 2015. 23(24), 7711-7716..
[http://dx.doi.org/10.1016/j.bmc.2015.11.018] [PMID: 26631439]
(b)Lipson, V.V.; Desenko, S.M.; Borodina, V.V.; Shirobokova, M.G.; Musatov, V.I. Synthesis of partially hydrogenated 1, 2, 4-triazoloquinazolines by condensation of 3, 5-diamino-1,2,4-triazole with aromatic aldehydes and dimedone. Russ. J. Org. Chem 2005.41(1), 114-119.
[http://dx.doi.org/10.1007/s11178-005-0131-0]
(c)Wang, H.; Lee, M.; Peng, Z.; Blázquez, B.; Lastochkin, E.; Kumarasiri, M.; Bouley, R.; Chang, M.; Mobashery, S. Synthesis and evaluation of 1,2,4- triazolo[1,5-a]pyrimidines as antibacterial agents against Enterococcus faecium. J. Med. Chem. 2015.58(10), 4194-4203..
[http://dx.doi.org/10.1021/jm501831g] [PMID: 25923368]
(d)Muravyova, E.A.; Desenko, S.M.; Rudenko, R.V.; Shishkina, S.V.; Shishkin, O.V.; Sen’ko, Y.V.; Vashchenko, E.V.; Chebanov, V.A. Switch-able selectivity in multicomponent heterocyclizations of acetoacetamides, aldehydes, and 3-amino-1,2,4-triazoles/5-aminopyrazoles. Tetrahedron, 2011, 67(48), 9389-9400.
[http://dx.doi.org/10.1016/j.tet.2011.09.138]
[115]
Kolosov, M.A.; Shvets, E.H.; Manuenkov, D.A.; Kulyk, O.G.; Mazepa, A.V.; Orlov, V.D. A synthesis of 6-functionalized 7-unsubstituted-and 7-methyl[1,2,4]azolo[1,5-a] pyrimidine derivatives. Synth. Commun., 2019, 49(4), 611-615.
[http://dx.doi.org/10.1080/00397911.2019.1566476]
[116]
Atar, A.B.; Jeong, Y.T. FeF3 catalyzed cascade C-C and C-N bond formation: synthesis of differentially substituted triheterocyclic benzothiazole functionalities under solvent-free condition. Mol. Divers., 2014, 18(2), 389-401.
[http://dx.doi.org/10.1007/s11030-014-9506-x] [PMID: 24504377]
[117]
Kolosov, M.A.; Beloborodov, D.A.; Orlov, V.D.; Dotsenko, V.V. Catalyst-free Biginelli-type synthesis of new functionalized 4, 7-dihydropyrazolo[1,5-a] pyrimidines. New J. Chem., 2016, 40(9), 7573-7579.
[http://dx.doi.org/10.1039/C6NJ00336B]
[118]
Kaur, G.; Raj, T.; Kaur, N.; Singh, N. A Biginelli-based organic nanoprobe for simultaneous estimation of tyramine and 1,2-diaminopropane: application in real samples. New J. Chem., 2016, 40(12), 10536-10544.
[http://dx.doi.org/10.1039/C6NJ02196D]
[119]
Felluga, F.; Benedetti, F.; Berti, F.; Drioli, S.; Regini, G. Efficient Biginelli synthesis of 2-aminodihydropyrimidines under microwave irradiation. Synlett, 2018, 29(08), 1047-1054.
[http://dx.doi.org/10.1055/s-0036-1591900]
[120]
Liang, C.; Song, H.; Jiang, H.; Yao, Q. Base-mediated Biginelli-like reaction ignited by aromatic isocyanate: a facile one-pot synthesis of N4-Aryl-5-carboxyl-6-methyl cytimidine derivatives. Synth. Commun., 2014, 44(20), 2930-2935.
[http://dx.doi.org/10.1080/00397911.2014.908309]
[121]
Val, C.; Crespo, A.; Yaziji, V.; Coelho, A.; Azuaje, J.; El Maatougui, A.; Carbajales, C.; Sotelo, E. Three-component assembly of structurally diverse 2-aminopyrimidine-5-carbonitriles. ACS Comb. Sci., 2013, 15(7), 370-378.
[http://dx.doi.org/10.1021/co4000503] [PMID: 23697392]
[122]
Kefayati, H.; Khandan, S.; Tavancheh, S. One-pot three components synthesis of novel 2-iminoquinazolines and 2-imino spiro[indoline-quinazoline/pyrimidine]ones catalyzed by sodium fluoride. Russ. J. Org. Chem., 2015, 85(7), 1757-1762.
[123]
Gümüş, M.K.; Gorobets, N.Y.; Sedash, Y.V.; Shishkina, S.V.; Desenko, S.M. Rapid formation of chemical complexity via a modified Biginelli reaction leading to dihydrofuran-2(3H)-one spiro-derivatives of triazolo[1,5-a]pyrimidine. Tetrahedron Lett., 2017, 58(35), 3446-3448.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.071]
[124]
Gorobets, N.Y.; Sedash, Y.V.; Ostras, K.S.; Zaremba, O.V.; Shishkina, S.V.; Baumer, V.N.; Shishkin, O.V.; Kovalenko, S.M.; Desenko, S.M.; Van der Eycken, E.V. Unexpected alternative direction of a Biginelli-like multicomponent reaction with 3-amino-1,2,4-triazole as the urea component. Tetrahedron Lett., 2010, 51(16), 2095-2098.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.045]
[125]
Raju, B.C.; Rao, R.N.; Suman, P.; Yogeeswari, P.; Sriram, D.; Shaik, T.B.; Kalivendi, S.V. Synthesis, structure-activity relationship of novel substituted 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates as potential anti-mycobacterial and anticancer agents. Bioorg. Med. Chem. Lett., 2011, 21(10), 2855-2859.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.079] [PMID: 21507635]
[126]
Bari, A.; Parvez, M.K.; Khan, A.A.; Alanazi, A.M.; Syed, S.A.; Al‐Dosari, M.S.; Alobaid, A.M. A facile one‐pot synthesis and anticancer evaluation of novel substituted 1,2‐dihydropyridine and 1,2,3,4‐tetrahydropyrimidine analogues. J. Heterocycl. Chem., 2016, 53(2), 377-382.
[http://dx.doi.org/10.1002/jhet.2400]
[127]
Ghomi, J.S.; Bakhtiari, A. Ultrasonic accelerated Biginelli‐like reaction by the covalently anchored copper‐isatoic anhydride over the modified surface of mesoporous SBA‐15 to the synthesis of pyrimidines. ChemistrySelect, 2018, 3(44), 12704-12711.
[http://dx.doi.org/10.1002/slct.201802435]
[128]
Rimaz, M.; Khalafy, J.; Mousavi, H. A green organocatalyzed one-pot protocol for efficient synthesis of new substituted pyrimido[4, 5-d]pyrimidinones using a Biginelli-like reaction. Res. Chem. Intermed., 2016, 42(12), 8185-8200.
[http://dx.doi.org/10.1007/s11164-016-2588-6]
[129]
Rimaz, M.; Khalafy, J.; Mousavi, H.; Bohlooli, S.; Khalili, B. Two different green catalytic systems for one‐pot regioselective and chemoselective synthesis of some pyrimido [4,5‐d] pyrimidinone derivatives in water. J. Heterocycl. Chem., 2017, 54(6), 3174-3186.
[http://dx.doi.org/10.1002/jhet.2932]
[130]
Nematpour, M.; Rezaee, E.; Jahani, M.; Tabatabai, S.A. Highly regioselective, base-catalyzed, Biginelli-type reaction of aldehyde, phenylacetone and urea/thiourea kinetic vs. thermodynamic control. J. Sulfur Chem., 2018, 39(2), 151-163.
[http://dx.doi.org/10.1080/17415993.2017.1402332]
[131]
Azarifar, D.; Badalkhani, O.; Abbasi, Y. Silica-modiied magnetite Fe3O4 nanoparticles grafted with sulfamic acid functional groups: an eicient heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-one and tetrahydrobenzo[b]pyran derivatives. J. Sulfur Chem., 2016, 37(6), 656-673.
[132]
Ramesha, S.; Naik, H.S.B.; Kumar, H.N.H. Titanium trichloride-catalysed cyclocondensation: synthesis of 2-mercaptoquinoline substituted 1,2,3,4-etrahydropyrimidinones. J. Sulfur Chem., 2007, 28(6), 573-579.
[http://dx.doi.org/10.1080/17415990701625043]
[133]
Shen, Z.L.; Xu, X.P.; Ji, S.J. Brønsted base-catalyzed one-pot three-component Biginelli-type reaction: an efficient synthesis of 4,5,6-triaryl-3,4-dihydropyrimidin-2(1H)-one and mechanistic study. J. Org. Chem., 2010, 75(4), 1162-1167.
[http://dx.doi.org/10.1021/jo902394y] [PMID: 20085235]
[134]
Altamore, T.M.; Duggan, P.J.; Krippner, G.Y. Improving the membrane permeability of sialic acid derivatives. Bioorg. Med. Chem., 2006, 14(4), 1126-1133.
[http://dx.doi.org/10.1016/j.bmc.2005.09.028] [PMID: 16214357]
[135]
Martínez, J.; Vega, S.R.; Cruz, R.A.; Toledano, C.A.; Miranda, R. Green approach - multicomponent production of boron - containing Hantzsch and Biginelli esters. Int. J. Mol. Sci., 2013, 14(2), 2903-2915.
[http://dx.doi.org/10.3390/ijms14022903] [PMID: 23364612]
[136]
Debache, A.; Boumoud, B.; Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni, B. Phenylboronic acid as a mild and efficient catalyst for Biginelli reaction. Tetrahedron Lett., 2006, 47(32), 5697-5699.
[http://dx.doi.org/10.1016/j.tetlet.2006.06.015]
[137]
Sedova, V.F.; Krivopalov, V.P.; Gatilov, Y.V.; Shkurko, O.P. Synthesis and intramolecular conversion of substituted 2-methyl-11-nitro-5,6-dihydro-2H-2,6-methanobenzo [g][1,3,5] oxadiazocin-4(3H)-ones in different solvents. Russ. Chem. Bull., 2014, 63(6), 1378-1385.
[http://dx.doi.org/10.1007/s11172-014-0606-7]
[138]
Gümüş, M.K.; Gorobets, N.Y.; Sedash, Y.V.; Chebanov, V.A.; Desenko, S.M. A modified Biginelli reaction toward oxygen-bridged tetrahydropyrimidines fused with substituted 1, 2, 4-triazole ring. Chem. Heterocycl. Compd., 2017, 53(11), 1261-1267.
[http://dx.doi.org/10.1007/s10593-018-2204-3]
[139]
Natal’ya, V.C.; Kolos, N.N.; Omelchenko, I.V.; Musatov, V.I. Synthesis of functionalized triazolo[1,5-a]pyrimidine derivatives. Chem. Heterocycl. Compd., 2018, 54(1), 58-62.
[http://dx.doi.org/10.1007/s10593-018-2230-1]
[140]
Chechina, N.V.; Zubar, V.V.; Omelchenko, I.V.; Kolos, N.N. One-pot synthesis of new derivatives of 3,4-dihydropyrimidinone, and substituted imidazolin-2-ones. ARKIVOC, 2015, 2015(7), 293-304.
[http://dx.doi.org/10.3998/ark.5550190.p009.324]
[141]
Bhatt, J.D.; Chudasama, C.J.; Patel, K.D. Microwave assisted synthesis of pyrimidines in ionic liquid and their potency as non‐classical malarial antifolates. Arch. Pharm. (Weinheim), 2016, 349(10), 791-800.
[http://dx.doi.org/10.1002/ardp.201600148] [PMID: 27528517]
[142]
Yadlapalli, R.K.; Chourasia, O.P.; Vemuri, K.; Sritharan, M.; Perali, R.S. Synthesis and in vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group. Bioorg. Med. Chem. Lett., 2012, 22(8), 2708-2711.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.101] [PMID: 22437116]
[143]
Chen, P.; Tu, M. Synthesis of 2-selenoxo DHPMs by Biginelli reaction with Hf(OTf)4 as catalyst. Tetrahedron Lett., 2018, 59(11), 987-990.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.070]
[144]
Samdhian, V.; Bhatia, S.K.; Kaur, B. Cell-viability analysis against MCF-7 human breast cell Line and antimicrobial evaluation of newly synthesized selenoxopyrimidines. Russ. J. Org. Chem., 2019, 55(7), 1041-1046.
[http://dx.doi.org/10.1134/S1070428019070212]
[145]
Fouda, A.M.; Assiri, M.A.; Ali, T.E. Facile synthesis of some new functionalized 2-selenoxopyrimidines. Phosphorus Sulfur Silicon Relat. Elem., 2020, 195(4), 324-330.
[http://dx.doi.org/10.1080/10426507.2019.1694023]
[146]
Klein, E.; DeBonis, S.; Thiede, B.; Skoufias, D.A.; Kozielski, F.; Lebeau, L. New chemical tools for investigating human mitotic kinesin Eg5. Bioorg. Med. Chem., 2007, 15(19), 6474-6488.
[http://dx.doi.org/10.1016/j.bmc.2007.06.016] [PMID: 17587586]
[147]
Barbosa, F.A.R.; Siminski, T.; Canto, R.F.S.; Almeida, G.M.; Mota, N.S.R.S.; Ourique, F.; Pedrosa, R.C.; Braga, A.L. Novel pyrimidinic selenourea induces DNA damage, cell cycle arrest, and apoptosis in human breast carcinoma. Eur. J. Med. Chem., 2018, 155, 503-515.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.026] [PMID: 29908443]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy