Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Nucleophilic Acylation with Aromatic Aldehydes to 2 Bromoacetonitrile: An Umpolung Strategy for the Synthesis of Active Methylene Compounds

Author(s): Shailesh Singh, Jyoti Tiwari, Deepali Jaiswal, Amit Kumar Sharma, Jaya Singh, Vandana Singh* and Jagdamba Singh*

Volume 17 , Issue 7 , 2020

Page: [518 - 524] Pages: 7

DOI: 10.2174/1570179417666200615153536

Price: $65

Abstract

Background: A novel one-pot N-heterocyclic carbene (NHC)-catalysed acylation of 2- bromoacetonitrile with aromatic aldehydes is reported. The protocol involves carbonyl umpolung reactivity of aldehydes in which the carbonyl carbon attacks nucleophilically (as d1 nucleophile) on the electrophilic terminal of 2-bromoacetonitrile to afford 3-aryl-3-oxopropanenitrile. The salient features of this procedure are short reaction time, operational simplicity, ambient temperature, no by-product formation and high yields.

Materials and Methods: A flame-dried round bottom flask was charged with Imidazolium salts (3a) (0.20 mmol). Aldehyde 1a (1.0 mmol), 2-bromoacetonitrile 2 (1.0 mmol), and THF / t-BuOH 5 mL; 10:1) were added at positive nitrogen pressure followed by the addition of DBU (0.15 mmol) through stirring. The resulting yellow- orange solution was stirred at room temperature for 5-6 h. After completion of the reaction (TLC monitored), the reaction mixture was concentrated under reduced pressure. The product was purified using hexane / EtOAc (10:1) as an eluent to provide analytically pure compound 4a. Physical data of representative compounds and the NMR spectroscopic data are in agreement with the literature value.

Results and Discussion: The salient features of this procedure are short reaction time, operational simplicity, ambient temperature, no by-product formation and high yields.

Conclusion: To sum up, we have developed a convenient, efficient and one-pot route for 3-oxo-3- phenylpropanenitrile synthesis from NHC promoted direct nucleophilic acylation of aromatic aldehydes using 2- bromoacetonitrile. This method provided a wide range of products and good yields. To best of our knowledge, this is the new report for the synthesis of 3-oxo-3-phenylpropanenitrile through NHC promoted nucleophilic acylation of aromatic aldehyde.

Keywords: N-heterocyclic carbene, tetrahydrofuran, DBU, active methylene compound, aromatic aldehydes, nucleophilic acylation.

Graphical Abstract
[1]
(a)Vora, H.U.; Rovis, T. Asymmetric N-Heterocyclic Carbene (NHC). Catalyzed Acyl Anion Reactivity. Aldrichim Acta, 2011, 44(1), 3-11.
[PMID: 25346540]
(b)Hirano, K.; Piel, I.; Glorius, F. Dual Activation in N-Heterocyclic Carbene-organocatalysis. Chem. Lett., 2011, 40, 786-791.
[http://dx.doi.org/10.1246/cl.2011.786]
(c)Chiang, P-C.; Bode, J.W. N-Heterocyclic Carbenes in Organocatalysis. TCI Mail, 2011, 149, 2-17.
(d)Moore, J.L.; Rovis, T. Carbene catalysts. Top. Curr. Chem., 2010, 291, 77-144.
[http://dx.doi.org/10.1007/128_2008_18] [PMID: 21494949]
(e)Bugaut, X.; Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem. Soc. Rev., 2012, 41(9), 3511-3522.
[http://dx.doi.org/10.1039/c2cs15333e] [PMID: 22377957]
(f)Enders, D.; Niemeier, O.; Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev., 2007, 107(12), 5606-5655.
[http://dx.doi.org/10.1021/cr068372z] [PMID: 17956132]
(g)Marion, N.; Díez-González, S.; Nolan, S.P. N-heterocyclic carbenes as organocatalysts. Angew. Chem. Int. Ed. Engl., 2007, 46(17), 2988-3000.
[http://dx.doi.org/10.1002/anie.200603380] [PMID: 17348057]
(h)Biju, A.T.; Kuhl, N.; Glorius, F. Extending NHC-catalysis: Coupling aldehydes with unconventional reaction partners. Acc. Chem. Res., 2011, 44(11), 1182-1195.
[http://dx.doi.org/10.1021/ar2000716] [PMID: 21751790]
(i)Nair, V.; Vellalath, S.; Babu, B.P. Recent advances in carbon-carbon bond-forming reactions involving homoenolates generated by NHC catalysis. Chem. Soc. Rev., 2008, 37(12), 2691-2698.
[http://dx.doi.org/10.1039/b719083m] [PMID: 19020682]
[2]
(a)Nair, V.; Menon, R.S.; Biju, A.T.; Sinu, C.R.; Paul, R.R.; Jose, A.; Sreekumar, V. Employing homoenolates generated by NHC catalysis in carbon-carbon bond-forming reactions: state of the art. Chem. Soc. Rev., 2011, 40(11), 5336-5346.
[http://dx.doi.org/10.1039/c1cs15139h] [PMID: 21776483]
(b)Werstiuk, N.H. Homoenolate anions and homoenolate anion equivalents: Mechanistic aspects and synthetic applications. Tetrahedron, 1983, 39, 205-268.
[http://dx.doi.org/10.1016/S0040-4020(01)91817-4]
(c)Breslow, R. On the mechanism of thiamine action. IV.1 evidence from studies on model systems. J. Am. Chem. Soc., 1958, 80, 3719.
[http://dx.doi.org/10.1021/ja01547a064]
(d)Sheehan, J.; Hunneman, D.H. Homogeneous asymmetric catalysis. J. Am. Chem. Soc., 1966, 88, 3666-3667.
[http://dx.doi.org/10.1021/ja00967a049]
(e)Enders, D.; Breuer, K.; Teles, J.H. One pot synthesis of 3, 4-disubstituted 1-alkyl-4h-1,2,4-triazol-1-ium salts. Synth. Commun., 1999, 29, 1-9.
[http://dx.doi.org/10.1080/00397919908085727]
(f)Enders, D.; Han, J.; Henseler, A. Asymmetric intermolecular stetter reactions catalyzed by a novel triazolium derived n-heterocyclic carbene. Chem. Commun., 2008, 1637.
(g)Ma, Y-J.; Wei, S-P.; Wu, J.; Yang, F.; Liu, B.; Lan, J-B.; Yang, S-Y.; You, J-S. From mono‐triazolium salt to bis‐triazolium salt: improvement of the asymmetric intermolecular benzoin condensation. Adv. Synth. Catal., 2008, 350, 2645-2651.
[http://dx.doi.org/10.1002/adsc.200800371]
(h)Zhao, H.; Foss, F.W., Jr; Breslow, R. Artificial enzymes with thiazolium and imidazolium coenzyme mimics. J. Am. Chem. Soc., 2008, 130(38), 12590-12591.
[http://dx.doi.org/10.1021/ja804577q] [PMID: 18763766]
[3]
(a)He, M.; Struble, J.R.; Bode, J.W. Highly enantioselective azadiene Diels-Alder reactions catalyzed by chiral N-heterocyclic carbenes. J. Am. Chem. Soc., 2006, 128(26), 8418-8420.
[http://dx.doi.org/10.1021/ja062707c] [PMID: 16802805]
(b)Burstein, C.; Tschan, S.; Xie, X.; Glorius, F. N-Heterocyclic Carbene-Catalyzed Conjugate Umpolung for the Synthesis of γ-Butyrolactones. Synthesis, 2006, 14, 2418-2439.
(c)Chan, A.; Scheidt, K.A. Conversion of α,β-unsaturated aldehydes into saturated esters: An Umpolung reaction catalyzed by nucleophilic carbenes. Org. Lett., 2005, 7(5), 905-908.
[http://dx.doi.org/10.1021/ol050100f] [PMID: 15727471]
(d)Nair, V.; Vellalath, S.; Poonoth, M.; Suresh, E. N-heterocyclic carbene-catalyzed reaction of chalcones and enals via homoenolate: an efficient synthesis of 1,3,4-trisubstituted cyclopentenes. J. Am. Chem. Soc., 2006, 128(27), 8736-8737.
[http://dx.doi.org/10.1021/ja0625677] [PMID: 16819860]
(e)Chiang, P-C.; Kaeobamrung, J.; Bode, J.W. Enantioselective, cyclopentene-forming annulations via NHC-catalyzed benzoin-oxy-cope reactions. J. Am. Chem. Soc., 2007, 129(12), 3520-3521.
[http://dx.doi.org/10.1021/ja0705543] [PMID: 17335218]
(f)Chan, A.; Scheidt, K.A. Direct amination of homoenolates catalyzed by N-heterocyclic carbenes. J. Am. Chem. Soc., 2008, 130(9), 2740-2741.
[http://dx.doi.org/10.1021/ja711130p] [PMID: 18260665]
[4]
(a)Grasa, G.A.; Kissling, R.M.; Nolan, S.P. N-heterocyclic carbenes as versatile nucleophilic catalysts for transesterification/acylation reactions. Org. Lett., 2002, 4(21), 3583-3586.
[http://dx.doi.org/10.1021/ol0264760] [PMID: 12375893]
(b)Nyce, G.W.; Lamboy, J.A.; Connor, E.F.; Waymouth, R.M.; Hedrick, J.L. Expanding the catalytic activity of nucleophilic N-heterocyclic carbenes for transesterification reactions. Org. Lett., 2002, 4(21), 3587-3590.
[http://dx.doi.org/10.1021/ol0267228] [PMID: 12375894]
(c)Lai, C-L.; Lee, H.M.; Hu, C-H. Theoretical study on the mechanism of N-heterocyclic carbene catalyzed transesterification reactions. Tetrahedron Lett., 2005, 46, 6265-6270.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.046]
(d)Grasa, G.A.; Güveli, T.; Singh, R.; Nolan, S.P. Efficient transesterification/acylation reactions mediated by N-heterocyclic carbene catalysts. J. Org. Chem., 2003, 68(7), 2812-2819.
[http://dx.doi.org/10.1021/jo0267551] [PMID: 12662057]
(e)Zeng, T.; Song, G.; Li, C-J. Separation, recovery and reuse of N-heterocyclic carbene catalysts in transesterification reactions. Chem. Commun. (Camb.), 2009, (41), 6249-6251.
[http://dx.doi.org/10.1039/b910162d] [PMID: 19826684]
(f)Chiarotto, I.; Feroci, M.; Sotgiu, G.; Inesi, A. Electrogenerated N‐heterocyclic carbenes in the room temperature parent ionic liquid as an efficient medium for transesterification/acylation reactions. Eur. J. Org. Chem., 2013, 326-331.
[http://dx.doi.org/10.1002/ejoc.201201023]
(g)Blümel, M.; Noy, J-M.; Enders, D.; Stenzel, M.H.; Nguyen, T.V. Development and applications of transesterification reactions catalyzed by n-heterocyclic olefins. Org. Lett., 2016, 18(9), 2208-2211.
[http://dx.doi.org/10.1021/acs.orglett.6b00835] [PMID: 27115463]
(h)Samanta, R.C.; De Sarkar, S.; Fröhlich, R.; Grimme, S.; Studer, A. N-Heterocyclic carbene (NHC) catalyzed chemoselective acylation of alcohols in the presence of amines with various acylating reagents. Chem. Sci. (Camb.), 2013, 4, 2177-2184.
[http://dx.doi.org/10.1039/c3sc00099k]
[5]
(a)Enders, D.; Kallfass, U. An efficient nucleophilic carbene catalyst for the asymmetric benzoin condensation. Angew. Chem. Int. Ed. Engl., 2002, 41(10), 1743-1745.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1743::AID-ANIE1743>3.0.CO;2-Q] [PMID: 19750702]
(b)Kerr, M.S.; Read de Alaniz, J.; Rovis, T. A highly enantioselective catalytic intramolecular Stetter reaction. J. Am. Chem. Soc., 2002, 124(35), 10298-10299.
[http://dx.doi.org/10.1021/ja027411v] [PMID: 12197730]
(c)Baar, C.R.; Levy, C.J.; Min, E.Y.; Henling, L.M.; Day, M.W.; Bercaw, J.E. Kinetic resolution of chiral alpha-olefins using optically active ansa-zirconocene polymerization catalysts. J. Am. Chem. Soc., 2004, 126(26), 8216-8231.
[http://dx.doi.org/10.1021/ja040021j] [PMID: 15225063]
(d)Reynolds, N.T.; Read de Alaniz, J.; Rovis, T. Conversion of α-haloaldehydes into acylating agents by an internal redox reaction catalyzed by nucleophilic carbenes. J. Am. Chem. Soc., 2004, 126(31), 9518-9519.
[http://dx.doi.org/10.1021/ja046991o] [PMID: 15291537]
(e)Myers, M.C.; Bharadwaj, A.R.; Milgram, B.C.; Scheidt, K.A. Catalytic conjugate additions of carbonyl anions under neutral aqueous conditions. J. Am. Chem. Soc., 2005, 127(42), 14675-14680.
[http://dx.doi.org/10.1021/ja0520161] [PMID: 16231921]
(f)Yetra, S.R.; Patra, A.; Biju, A.T. Recent advances in the n-heterocyclic carbene (NHC)-organocatalyzed stetter reaction and related chemistry. Synthesis, 2015, 47, 1357-1378.
[http://dx.doi.org/10.1055/s-0034-1378692]
(g)Ryan, S.J.; Candish, L.; Lupton, D.W. Acyl anion free N-heterocyclic carbene organocatalysis. Chem. Soc. Rev., 2013, 42(12), 4906-4917.
[http://dx.doi.org/10.1039/c3cs35522e] [PMID: 23403488]
(h)Stetter, H. Catalyzed addition of aldehydes to activated double bonds - a new synthetic approach.Angew. Chem. Int. Ed. Engl; , 1976, 15, p. 639.
[http://dx.doi.org/10.1002/anie.197606391]
(i)Stetter, H.; Kuhlmann, H. Organic Reactions; 40; Paquette, L.A., Ed.; Wiley & Sons: New York,, 1991, p. 407.
[http://dx.doi.org/10.1002/0471264180.or040.04]
[6]
Burstein, C.; Glorius, F. Organocatalyzed conjugate umpolung of α,β-unsaturated aldehydes for the synthesis of γ-butyrolactones. Angew. Chem. Int. Ed. Engl., 2004, 43(45), 6205-6208.
[http://dx.doi.org/10.1002/anie.200461572] [PMID: 15549739]
[7]
Sohn, S.S.; Rosen, E.L.; Bode, J.W. N-heterocyclic carbene-catalyzed generation of homoenolates: γ-butyrolactones by direct annulations of enals and aldehydes. J. Am. Chem. Soc., 2004, 126(44), 14370-14371.
[http://dx.doi.org/10.1021/ja044714b] [PMID: 15521753]
[8]
(a)Ukai, T.; Tanaka, R.; Dokawa, T. A new catalyst for acyloin condensation. J. Pharm Soc. Jpn., 1943, 63, 296-300.
[http://dx.doi.org/10.1248/yakushi1881.63.6_296]
(b)Ranu, B.C. Jana, Ionic liquid as catalyst and reaction medium - A simple, efficient and green procedure for knoevenagel condensation of aliphatic and aromatic carbonyl compounds using a task-specific basic ionic liquid, R. Eur. J. Org. Chem., 2006, 3767-3770.
[http://dx.doi.org/10.1002/ejoc.200600335]
(c)Zang, H.; Wang, K.; Zhang, M.; Xie, R.; Wang, L.; Chen, E.Y-X. Catalytic coupling of biomass-derived aldehydes into intermediates for biofuels and materials. Catal. Sci. Technol., 2018, 8, 1777-1798.
[http://dx.doi.org/10.1039/C7CY02221B]
(d)Wang, S.; Ren, Z.; Cao, W.; Tong, W. The Knoevenagel Condensation of Aromatic Aldehydes with Malononitrile or Ethyl Cyanoacetate in The Presence OF CTMAB in Water. Synth. Commun., 2001, 31, 673-677.
[http://dx.doi.org/10.1081/SCC-100103255]
(e)Pratap, U.R.; Jawale, D.V.; Waghmare, R.A.; Lingampalle, D.L.; Mane, R.A. Synthesis of 5-arylidene-2,4-thiazolidinediones by Knoevenagel condensation catalyzed by baker’s yeast. New J. Chem., 2011, 35, 49-51.
[http://dx.doi.org/10.1039/C0NJ00691B]
[9]
(a)Yadav, M.R.; Pawar, V.P.; Marvaniya, S.M.; Halen, P.K.; Giridhar, R.; Mishra, A.K. Site specific chemical delivery of NSAIDs to inflamed joints: synthesis, biological activity and gamma-imaging studies of quaternary ammonium salts of tropinol esters of some NSAIDs or their active metabolites. Bioorg. Med. Chem., 2008, 16(21), 9443-9449.
[http://dx.doi.org/10.1016/j.bmc.2008.09.050] [PMID: 18842419]
(b)Andreu, I.; Morera, I.M.; Boscá, F.; Sanchez, L.; Camps, P.; Miranda, M.A. Cholesterol-diaryl ketone stereoisomeric dyads as models for “clean” type I and type II photooxygenation mechanisms. Org. Biomol. Chem., 2008, 6(5), 860-867.
[http://dx.doi.org/10.1039/b718068c] [PMID: 18292877]
(c)Norinder, J.; Bogár, K.; Kanupp, L.; Bäckvall, J.E. An enantioselective route to α-methyl carboxylic acids via metal and enzyme catalysis. Org. Lett., 2007, 9(24), 5095-5098.
[http://dx.doi.org/10.1021/ol702261t] [PMID: 17956114]
(d)Herschhorn, A.; Lerman, L.; Weitman, M.; Gleenberg, I.O.; Nudelman, A.; Hizi, A. De novo parallel design, synthesis and evaluation of inhibitors against the reverse transcriptase of human immunodeficiency virus type-1 and drug-resistant variants. J. Med. Chem., 2007, 50(10), 2370-2384.
[http://dx.doi.org/10.1021/jm0613121] [PMID: 17458947]
[10]
(a)Ranu, B.C.; Banerjee, S. Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles. Org. Lett., 2005, 7(14), 3049-3052.
[http://dx.doi.org/10.1021/ol051004h] [PMID: 15987202]
(b)Jana, U.; Biswas, S.; Maiti, S. A simple and efficient FeCl3-catalyzed direct alkylation of active methylene compounds with benzylic and allylic alcohols under mild conditions. Tetrahedron Lett., 2007, 48, 4065-4069.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.017]
(c)Hu, L-L.; Xue, W.; Yin, J. Rapid and mild synthesis of quinazolinones and chromeno[d]pyrimidinones using nanocrystalline copper(I) iodide under solvent-free conditions. Chin. Chem. Lett., 2016, 27, 114-118.
[http://dx.doi.org/10.1016/j.cclet.2015.08.014]
(d)Banerjee, S.; Santra, S. Remarkable catalytic activity of silica nanoparticle in the bis-Michael addition of active methylene compounds to conjugated alkenes. Tetrahedron Lett., 2009, 50, 2037-2040.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.154]
(e)Gupta, T.; Singh, J.B.; Mishra, K.; Singh, R.M. Active methylene compounds (AMCs) controlled facile synthesis of acridine and phenanthridine from morita Baylis–Hillman acetate. RSC Advances, 2017, 7, 54581-54585.
[http://dx.doi.org/10.1039/C7RA09447G]
[11]
(a)Muthusamy, S.; Babu, S.A.; Gunanathan, C. 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU): A powerful catalyst for the michael addition reaction of β-ketoesters to acrylates and enones. Synth. Commun., 2002, 32, 3247-3254.
[http://dx.doi.org/10.1081/SCC-120014028]
(b)Chakrabarty, M.; Ghosh, N.; Khasnobis, S.; Chakrabarty, M. DBU, A highly efficient reagent for the facile regeneration of (hetero)arylamines from their acetamides and benzamides: Influence of solvent, temperature, and microwave irradiation. Synth. Commun., 2002, 32, 265-272.
[http://dx.doi.org/10.1081/SCC-120002011]
(c)Loucif Seiad, L.; Villemin, D.; Bar, N.; Hachemi, M. Solvent-free condensation of methyl pyridinium and quinolinium salts with aldehydes catalyzed by DBU. Synth. Commun., 2012, 42, 650-657.
[http://dx.doi.org/10.1080/00397911.2010.528573]
(d)Ghosh, N. DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) - A nucleophillic base. Synlett, 2004, 574-575.
[http://dx.doi.org/10.1055/s-2004-815436]
(e)Nand, B.; Khanna, G. chaudhary, A.; Lumb, A.; Khurana, J. M.; 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU): A versatile reagent in organic synthesis. Curr. Org. Chem., 2015, 19, 790-812.
[http://dx.doi.org/10.2174/1385272819666150402221133]
(f)Nikseresht, A.; Bakavoli, M.; Bayraq, S.S. DBU: An efficient base catalyst for synthesis of the new oxazolo[5,4-d]pyrimidine derivatives. Synth. Commun., 2014, 44, 2662-2668.
[http://dx.doi.org/10.1080/00397911.2014.910527]
[12]
(a)Yadav, L.D.S.; Kapoor, R. Novel salicylaldehyde-based mineral-supported expeditious synthesis of benzoxazin-2-ones. J. Org. Chem., 2004, 69(23), 8118-8120.
[http://dx.doi.org/10.1021/jo0492315] [PMID: 15527301]
(b)Yadav, L.D.S.; Yadav, S.; Rai, A.; Rai, V.K.; Awasthi, C. Chiral ionic liquid-catalyzed Biginelli reaction: Stereoselective synthesis of polyfunctionalized perhydropyrimidines. Tetrahedron, 2008, 64, 1420-1429.
[http://dx.doi.org/10.1016/j.tet.2007.11.044]
(c)Yadav, L.D.S.; Rai, V.K. One-pot dehydrazinative β-glycosylation in aqueous media: Synthesis of benzoxazinone C-nucleosides. Synlett, 2007, 1227-1230.
[http://dx.doi.org/10.1055/s-2007-977440]
(d)Yadav, L.D.S.; Rai, V.K. A convenient CeCl3•7H2O/NaI-promoted synthesis of structurally novel and strained tricyclic β-lactams from hydrazines. Tetrahedron Lett., 2008, 49, 5553-5556.
[http://dx.doi.org/10.1016/j.tetlet.2008.07.068]
(e)Yadav, L.D.S.; Rai, V.K.; Singh, S. A novel one-pot stereoselective synthesis of N-protected α-amino acids from morita-baylis-hillman acetates. Synlett, 2009, 1423-1428.
[http://dx.doi.org/10.1055/s-0029-1217164]
(f)Yadav, L.D.S.; Yadav, S.; Rai, V.K. Mercaptoacetic acid based expeditious synthesis of polyfunctionalised 1,3-thiazines. Tetrahedron, 2005, 61, 10013-10017.
[http://dx.doi.org/10.1016/j.tet.2005.08.021]
(g)Yadav, L.D.S.; Singh, S.; Rai, V.K. Catalyst-free, step and pot economic, efficient mercaptoacetylative cyclisation in H2O: Synthesis of 3-mercaptocoumarins. Green Chem., 2009, 11, 878-882.
[http://dx.doi.org/10.1039/b904655k]
(h)Yadav, L.D.S.; Rai, V.K. Three-component coupling strategy for the expeditious synthesis of novel 4-aminobenzoxazinone N-nucleosides. Tetrahedron Lett., 2006, 47, 395-397.
[http://dx.doi.org/10.1016/j.tetlet.2005.11.006]
[13]
Li, J.; Ma, W.; Ming, W.; Xu, C.; Wei, N.; Wang, M. Divergent reactivity in the reaction of β-oxodithioesters and hydroxylamine: Access to β-ketonitriles and isoxazoles. J. Org. Chem., 2015, 80(21), 11138-11142.
[http://dx.doi.org/10.1021/acs.joc.5b01869] [PMID: 26484427]
[14]
Al-Qalaf, F.; Mandani, F.; Abdelkhalik, M.M.; Bassam, A.A. Synthesis of 5-substituted 3-amino-1H-pyrazole-4-carbonitriles as precursors for microwave assisted regiospecific syntheses of pyrazolo[1,5-a]pyrimidines. Molecules, 2008, 14(1), 78-88.
[http://dx.doi.org/10.3390/molecules14010078] [PMID: 19127239]
[15]
Park, A.; Lee, S. Synthesis of benzoylacetonitriles from Pd-catalyzed carbonylation of aryl iodides and trimethylsilylacetonitrile. Org. Lett., 2012, 14(4), 1118-1121.
[http://dx.doi.org/10.1021/ol300035u] [PMID: 22320234]
[16]
Turner, J.A.; Jacks, W.S. Acylation of ester enolates by N-methoxy-N-methylamides: An effective synthesis of. beta.-keto esters. J. Org. Chem., 1989, 54, 4229-4231.
[http://dx.doi.org/10.1021/jo00278a047]
[17]
Barhdadi, R.; Gal, J.; Heintz, M.; Troupel, M.; Périchon, J. Aryl halides as precursors of electrogenerated bases. Utilization in coupling reactions of acetonitrile with various electrophilic compounds. Tetrahedron, 1993, 49, 5091-5098.
[http://dx.doi.org/10.1016/S0040-4020(01)81874-3]
[18]
Ji, Y.; Trenkle, W.C.; Vowles, J.V. A high-yielding preparation of β-ketonitriles. Org. Lett., 2006, 8(6), 1161-1163.
[http://dx.doi.org/10.1021/ol053164z] [PMID: 16524293]
[19]
Shen, J.; Yang, D.; Liu, Y.; Qin, S.; Zhang, J.; Sun, J.; Liu, C.; Liu, C.; Zhao, X.; Chu, C.; Liu, R. Copper-catalyzed aerobic oxidative coupling of aromatic alcohols and acetonitrile to β-ketonitriles. Org. Lett., 2014, 16(2), 350-353.
[http://dx.doi.org/10.1021/ol403555n] [PMID: 24392889]
[20]
Yang, Z. Son, K.-Il; Li, S.; Zhou, B.; Xu, J.; Specific 1,2-hydride shift in the boron trifluoride catalyzed reactions of aromatic aldehydes with diazoacetonitrile: Simple synthesis of β-ketonitriles. Eur. J. Org. Chem., 2014, 6380-6384.
[http://dx.doi.org/10.1002/ejoc.201402901]
[21]
Singh, S.; Tiwari, J.; Jaiswal, D.; Sharma, A.K.; Singh, J.; Singh, V.; Singh, J. Organocatalyst mediated one pot synthesis of 4H-furo[3,4-b]pyran, 4H-benzo[ g]chromene and 1H-benzo[b]xanthene derivatives in aqueous medium: A green approach. Curr. Organocatal., 2018, 5, 51-57.
[http://dx.doi.org/10.2174/2213337205666180614113032]
[22]
Jaiswal, D.; Mishra, A.; Rai, P.; Srivastava, M.; Tripathi, B.P.; Yadav, S.; Singh, J.; Singh, J. A visible light-initiated, one-pot, multi-component synthesis of 2-amino-4-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives under solvent- and catalyst-free conditions. Res. Chem. Intermed., 2018, 44, 231-246.
[http://dx.doi.org/10.1007/s11164-017-3100-7]
[23]
Tiwari, J.; Singh, S.; Saquib, M.; Tufail, F.; Sharma, A.K.; Singh, S.; Singh, J.; Singh, J. Organocatalytic mediated green approach: A versatile new L-valine promoted synthesis of diverse and densely functionalized 2-amino-3-cyano-4H-pyrans. Synth. Commun., 2018, 48, 188.
[http://dx.doi.org/10.1080/00397911.2017.1393087]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy