Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Letter Article

Supramolecular Catalysis: An Efficient and Sustainable Multicomponent Approach to the Synthesis of Novel Hexahydro-4H-indazol-4-one Derivatives

Author(s): Jyoti Tiwari, Swastika Singh, Deepali Jaiswal, Amit Kumar Sharma, Shailesh Singh, Jaya Singh and Jagdamba Singh*

Volume 9 , Issue 2 , 2020

Page: [92 - 101] Pages: 10

DOI: 10.2174/2211544709999200614165508

Abstract

We have developed an efficient, novel one-pot multicomponent protocol for the synthesis of hexahydro-4H-indazol-4-onederivatives using β-cyclodextrin as a biomimetic catalyst in an aqueous medium. To the best of our knowledge, the targeted molecules have not been reported in the literature till now. The present method is very effective for our densely functionalized and diversified targeted molecules and includes several advantages like environment benign, cost-effectiveness, short reaction times, high yields and recyclability of the catalyst.

Keywords: β-Cyclodextrin, one-pot, green synthesis, phase transfer catalyst, hexahydro-4H-indazol-4-one, aqueous medium.

Graphical Abstract
[1]
Gupta, A.; Chaphalkar, S.R. Immunopharmacological screening of aqueous root extract of Santalum album. J. Herbmed.Pharmacol., 2016, 5, 7.
[2]
Eskandari, K.; Karami, B.; Khodabakhshi, S. An unexpected catalytic synthesis of novel and known bis(pyrazolyl) methanes by the use of α-aryl-N-phenyl nitrones in aqueous media. J. Chem. Res., 2014, 38, 600.
[http://dx.doi.org/10.3184/174751914X14114871789226]
[3]
Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S.; Varma, R.S. Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409]
[4]
Yang, H.; Hu, W.; Deng, S.; Wu, T.; Cen, H.; Chen, Y.; Zhang, D.; Wang, B. Catalyst-free amidation of aldehyde with amine under mild conditions. New J. Chem., 2015, 39, 5912.
[http://dx.doi.org/10.1039/C5NJ01372K]
[5]
Liu, J.; Lei, M.; Hu, L. A catalyst-free reaction in water: synthesis of benzo[4,5]imidazo[1,2-a]pyrimido[4,5-d]pyrimidin-4(1H)-one derivatives. Green Chem., 2012, 14, 2534.
[http://dx.doi.org/10.1039/c2gc35745c]
[6]
Chen, G.; Miao, Y.; Zhou, R.; Zhang, L.; Zhang, J.; Hao, X. Investigation of regioselectivity in the synthesis of spiro [pyrrolidine-2,3′-oxindoles] by use of the Huisgen reaction. Res. Chem. Intermed., 2013, 39, 2445.
[http://dx.doi.org/10.1007/s11164-012-0770-z]
[7]
Wang, Y-C.; Wang, J-L.; Burgess, K.S.; Zhang, J-W.; Zheng, Q-M.; Pu, Y-D.; Yan, L-J.; Chen, X-B. Green synthesis of new pyrrolidine-fused spirooxindoles via three-component domino reaction in EtOH/H2O. RSC Advances, 2018, 8, 5702.
[http://dx.doi.org/10.1039/C7RA13207G]
[8]
Yan, L-J.; Wang, J-L.; Xu, D.; Burgess, K.S.; Zhu, A-F.; Rao, Y-Y. Chen, X.- B.; Wang, Y.-C. Chemically Sustainable and Green One-Pot Multicomponent Synthesis of Highly Functionalized Polycyclic N-Fused-Pyrrolidine Heterocycles. ChemistrySelect, 2018, 3, 662.
[http://dx.doi.org/10.1002/slct.201702188]
[9]
Zeynizadeh, B.; Sepehraddin, F.; Mousavi, H. Green and Highly Efficient Strategies for the Straightforward Reduction of Carboxylic Acids to Alcohols Using Four Different and Affordable Types of Hydrogen Donors. Ind. Eng. Chem. Res., 2019, 58, 16379.
[http://dx.doi.org/10.1021/acs.iecr.9b01847]
[10]
Mousavi, H.; Zeynizadeh, B.; Younesi, R.; Esmat, M. Simple and Practical Synthesis of Various New Nickel Boride- Based Nanocomposites and their Applications for the Green and Expeditious Reduction of Nitroarenes to Arylamines under Wet-Solvent-Free Mechanochemical Grinding. Aust. J. Chem., 2018, 71, 595.
[http://dx.doi.org/10.1071/CH18200]
[11]
Rimaz, M.; Mousavi, H.; Khalili, B.; Aali, F. A green and practical one-pot two-step strategy for the synthesis of symmetric 3,6-diarylpyridazines. J. Chin. Chem. Soc. (Taipei), 2018, 65, 1389.
[http://dx.doi.org/10.1002/jccs.201700470]
[12]
Zeynizadeh, B.; Younesi, R.; Mousavi, H. Ni2B@Cu2O and Ni2B@CuCl2: two new simple and efficient nanocatalysts for the green one-pot reductive acetylation of nitroarenes and direct N-acetylation of arylamines using solvent-free mechanochemical grinding. Res. Chem. Intermed., 2018, 44, 7331.
[http://dx.doi.org/10.1007/s11164-018-3559-x]
[13]
Ameta, C.; Ameta, K.L. Green Chemistry: Synthesis of Bioactive Heterocycles Water: A Benign Solvent for the Synthesis of Various Organic Moieties; Springer: India, 2014, p. 231.
[14]
Breslow, R. Determining the geometries of transition States by use of antihydrophobic additives in water. Acc. Chem. Res., 2004, 37(7), 471-478.
[http://dx.doi.org/10.1021/ar040001m] [PMID: 15260509]
[15]
Ramana, D.V.; Vinayak, B.; Kumar, V.D.; Murty, U.S.N.; Chowhan, L.R.; Kharam, M.C. Hydrophobically directed, catalyst-free, multi-component synthesis of functionalized 3,4-dihydroquinazolin-2(1H)-ones. RSC Advances, 2016, 6, 21789.
[http://dx.doi.org/10.1039/C6RA00381H]
[16]
Rimaz, M.; Khalafy, J.; Mousavi, H. A green organocatalyzed one-pot protocol for efficient synthesis of new substituted pyrimido [4,5- d] pyrimidinones using a Biginelli-like reaction. Res. Chem. Intermed., 2016, 42, 8185.
[http://dx.doi.org/10.1007/s11164-016-2588-6]
[17]
Rimaz, M.; Khalafy, J.; Mousavi, H.; Bohlooli, S.; Khalili, B. Two Different Green Catalytic Systems for One-Pot Regioselective and Chemoselective Synthesis of Some Pyrimido[4,5-d]Pyrimidinone Derivatives in Water. J. Heterocycl. Chem., 2017, 54, 3174-3186.
[18]
Zeynizadeh, B.; Aminzadeh, F.M.; Mousavi, H. Two different facile and efficient approaches for the synthesis of various N-arylacetamides via N-acetylation of arylamines and straightforward one-pot reductive acetylation of nitroarenes promoted by recyclable CuFe2O4 nanoparticles in water Green Process. Synth, 2019, 8, 742.
[http://dx.doi.org/10.1515/gps-2019-0044]
[19]
Zeynizadeh, B.; Aminzadeh, F.M.; Mousavi, H. Green and convenient protocols for the efficient reduction of nitriles and nitro compounds to corresponding amines with NaBH4 in water catalyzed by magnetically retrievable CuFe2O4 nanoparticles. Res. Chem. Intermed., 2019, 45, 3329.
[http://dx.doi.org/10.1007/s11164-019-03794-4]
[20]
Wan, J-P.; Gan, L.; Liu, Y. Transition metal-catalyzed C-H bond functionalization in multicomponent reactions: a tool toward molecular diversity. Org. Biomol. Chem., 2017, 15(43), 9031-9043.
[http://dx.doi.org/10.1039/C7OB02011B] [PMID: 29075706]
[21]
Liu, Y.; Wang, H.; Wan, J. Recent Advances in Diversity Oriented Synthesis through Isatin-based Multicomponent Reactions. Asian J. Org. Chem., 2013, 2, 374-386.
[http://dx.doi.org/10.1002/ajoc.201200180]
[22]
Xiong, J.; Zhong, G.; Zou, L.; Liu, Y. Direct Synthesis of Methylene-Bridged Bis-biaryl Carboxylates via Cascade Suzuki Coupling and CH2Cl2-Based Bis-esterification. ChemistrySelect, 2018, 3, 8291.
[http://dx.doi.org/10.1002/slct.201801480]
[23]
Bharti, R.; Parvin, T. Diversity oriented synthesis of tri-substituted methane containing aminouracil and hydroxynaphthoquinone/hydroxycoumarin moiety using organocatalysed multicomponent reactions in aqueous medium. RSC Advances, 2015, 5, 66833.
[http://dx.doi.org/10.1039/C5RA13093J]
[24]
Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043.
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[25]
Rimaz, M.; Mousavi, H.; Khalili, L.N.B. Novel and convenient one-pot strategy for regioselective synthesis of new 5-aryl-3-methyl-1-phenyl-1,2-dihydro-7aH-pyrazolo[3,4-c]pyridazin-7a-ol derivatives. Res. Chem. Intermed., 2017, 43, 3925.
[http://dx.doi.org/10.1007/s11164-016-2848-5]
[26]
Rimaz, M.; Mousavi, H.; Ozzar, L.; Khalili, B. Facile, capable, atom economical one pot multicomponent strategy for the direct regioselective synthesis of novel isoxazolo [5,4d] pyrimidines. Res. Chem. Intermed., 2019, 45, 2673.
[http://dx.doi.org/10.1007/s11164-019-03757-9]
[27]
Rimaz, M.; Mousavi, H.; Khalili, B.; Sarvari, L. One-pot pseudo three-component condensation reaction of arylglyoxal monohydrates with 1-ethyl-2-thioxodihydropyrimidine- 4,6(1H,5H)-dione for the synthesis of new pyrano[2,3-d:6,5-d’] dipyrimidines as HIV integrase inhibitor-like frameworks using two different environmentally benign catalytic systems. J. Iran. Chem. Soc., 2019, 16, 1687.
[http://dx.doi.org/10.1007/s13738-019-01642-1]
[28]
Rajendra Prasad, Y.; Lakshmana Rao, A.; Prasoona, L.; Murali, K.; Ravi Kumar, P. Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2′'-hydroxy naphthalen-1′'-yl)-1,5-diphenyl-2-pyrazolines. Bioorg. Med. Chem. Lett., 2005, 15(22), 5030-5034.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.040] [PMID: 16168645]
[29]
Abid, M.; Azam, A. 1-N-substituted thiocarbamoyl-3-phenyl-2-pyrazolines: synthesis and in vitro antiamoebic activities. Eur. J. Med. Chem., 2005, 40(9), 935-942.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.015] [PMID: 15922492]
[30]
Morley, A.D.; King, S.; Roberts, B.; Lever, S.; Teobald, B.; Fisher, A.; Cook, T.; Parker, B.; Wenlock, M.; Phillips, C.; Grime, K. Lead optimisation of pyrazoles as novel FPR1 antagonists. Bioorg. Med. Chem. Lett., 2012, 22(1), 532-536.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.090] [PMID: 22094028]
[31]
El-Moghazy, S.M.; Barsoum, F.F.; Rahman, H.M.A.; Marzouk, A.A. Synthesis and anti-inflammatory activity of some pyrazole derivatives. Med. Chem. Res., 2012, 21, 1722.
[http://dx.doi.org/10.1007/s00044-011-9691-4]
[32]
Ansari, A.; Ali, A.; Asif, M. Shamsuzzaman. Review: biologically active pyrazole derivatives. New J. Chem., 2017, 41, 16.
[http://dx.doi.org/10.1039/C6NJ03181A]
[33]
Shekarchi, M.; Hamedani, M.P.; Navidpour, L.; Adib, N.; Shafiee, A. Synthesis, antibacterial and antifungal activities of 3-aryl-5-(pyridin-3-yl)-4,5-dihydropyrazole-1-carbothioamide derivatives. J. Iran. Chem. Soc., 2008, 5, 150.
[http://dx.doi.org/10.1007/BF03245828]
[34]
George, R.F.; Fouad, M.A.; Gomaa, I.E.O. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. Eur. J. Med. Chem., 2016, 112, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.048] [PMID: 26874744]
[35]
Alegaon, S.G.; Hirpara, M.B.; Alagawadi, K.R.; Jalalpure, S.S.; Rasa, V.P.; Salve, P.S.; Kumbar, V.M. Synthesis and biological evaluation of 1,3,4-trisubstituted pyrazole analogues as anti-mycobacterial agents. Med. Chem. Res., 2017, 26, 1127.
[http://dx.doi.org/10.1007/s00044-017-1821-1]
[36]
Zora, M.; Kivrak, A. Synthesis of pyrazoles via CuI-mediated electrophilic cyclizations of α,β-alkynic hydrazones. J. Org. Chem., 2011, 76(22), 9379-9390.
[http://dx.doi.org/10.1021/jo201685p] [PMID: 21992574]
[37]
Yu, Y.; Huang, W.; Chen, Y.; Gao, B.; Wu, W.; Jiang, H. Calcium carbide as the acetylide source: transition-metal-free synthesis of substituted pyrazoles via [1,5]-sigmatropic rearrangements. Green Chem., 2016, 18, 6445.
[http://dx.doi.org/10.1039/C6GC02776H]
[38]
Zhu, X.; Li, Z.; Jin, C.; Xu, L.; Wu, Q.; Su, W. Mechanically activated synthesis of 1,3,5-triaryl-2-pyrazolines by high speed ball milling. Green Chem., 2009, 11, 163.
[http://dx.doi.org/10.1039/b816788e]
[39]
Lin, Z.P.; Li, J-T. A Convenient and Efficient Protocol for the Synthesis of 1,3,5-Triaryl-2-pyrazolines in Acetic Acid under Ultrasound Irradiation. Eur. J. Chem., 2012, 9, 267-271.
[40]
Conrad, W.E.; Rodriguez, K.X.; Nguyen, H.H.; Fettinger, J.C.; Haddadin, M.J.; Kurth, M.J. A one-pot-three-step route to triazolotriazepinoindazolones from oxazolino-2H-indazoles. Org. Lett., 2012, 14(15), 3870-3873.
[http://dx.doi.org/10.1021/ol3015804] [PMID: 22823414]
[41]
Li, C.; Zhang, T.; Zeng, Z.; Liu, X.; Zhao, Y.; Zhang, B.; Feng, Y. A new route to indazolone via amidation reaction of o-carboxyazobenzene. Org. Lett., 2012, 14(2), 479-481.
[http://dx.doi.org/10.1021/ol203020x] [PMID: 22233207]
[42]
Correa, A.; Tellitu, I.; Domínguez, E.; Sanmartin, R. Novel alternative for the N-N bond formation through a PIFA-mediated oxidative cyclization and its application to the synthesis of indazol-3-ones. J. Org. Chem., 2006, 71(9), 3501-3505.
[http://dx.doi.org/10.1021/jo060070+] [PMID: 16626131]
[43]
Abouzid, K.A.M.; el-Abhar, H.S. Synthesis and antiinflammatory activity of novel indazolones. Arch. Pharm. Res., 2003, 26(1), 1-8.
[http://dx.doi.org/10.1007/BF03179922] [PMID: 12568349]
[44]
Rimaz, M.; Khalili, B.; Khatyal, G.; Mousavi, H.; Aali, F. A Simple and Efficient Diversity-Oriented Synthesis of NewSubstituted 3-(Arylamino)-6,7-dihydro-1H-indazol-4(5H)- ones by a KOH-Assisted One-Pot Reaction. Aust. J. Chem., 2017, 70, 1274.
[http://dx.doi.org/10.1071/CH17146]
[45]
Wang, X.; Pan, Y.M.; Huang, X.C.; Mao, Z.Y.; Wang, H.S. A novel methodology for synthesis of dihydropyrazole derivatives as potential anticancer agents. Org. Biomol. Chem., 2014, 12(13), 2028-2032.
[http://dx.doi.org/10.1039/C3OB42432D] [PMID: 24519368]
[46]
Ranganathan, K.; Suresh, R.; Vanangamudi, G.; Thirumurthy, K.; Mayavel, P.; Thirunarayanan, G. SOCl2 catalyzed cyclization of chalcones: Synthesis and spectral studies of some bio-potent 1H pyrazoles. Bull. Chem. Soc. Ethiop., 2014, 28, 271.
[http://dx.doi.org/10.4314/bcse.v28i2.11]
[47]
Parmar, K.A.; Vihol, J.R.; Dabhi, Y.M.; Sutariya, S.D. Synthesis, spectral studies and antibacterial screening of some novel derivatives of pyrazoline based on chalcones. J. Chem. Pharm. Res., 2012, 4, 1584.
[48]
Kanwar, K.; Rawal, M.K.; Regar, V.; Khanam, R.; Sharma, D.; Jain, A.; Khan, S. One pot synthesis and antimicrobial activity of diverse hexazoles containing pyrazole moiety. Asian J. Bio. Chem. Pharm. Res, 2014, 4, 188.
[49]
Vilar, M.; Navarro, M. β-cyclodextrin as inverse phase transfer catalyst on the electrocatalytic hydrogenation of organic compounds in water. Electrochim. Acta, 2012, 59, 270.
[50]
Bram, G.; Sansoulet, J.; Galons, H.; Bensaid, Y.; Combet-Farnoux, C. Miocque, M.catalyse par transfert de phase solide-liquide sans solvant: application a la reaction de Michael. Hexahedron Lett., 1985, 26, 4601.
[http://dx.doi.org/10.1016/S0040-4039(00)98762-8]
[51]
Guo, R.; Wilson, L.D. Cyclodextrin-based microcapsule materials - their preparation and physiochemical properties. Curr. Org. Chem., 2013, 17, 14.
[http://dx.doi.org/10.2174/138527213805289204]
[52]
Ma, L.; Zhou, C.; Yang, Q.; Yang, X.; Zhang, C.; Liao, L. Polymeric Supramolecular materials and their biomedical applications. Curr. Org. Chem., 2014, 18, 1937.
[http://dx.doi.org/10.2174/1385272819666140514004440]
[53]
Villalonga, R.; Cao, R.; Fragoso, A. Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev., 2007, 107(7), 3088-3116.
[http://dx.doi.org/10.1021/cr050253g] [PMID: 17590054]
[54]
Marchetti, L.; Levine, M. Biomimetic Catalysis. ACS Catal., 2011, 1, 1090.
[http://dx.doi.org/10.1021/cs200171u]
[55]
Sridhar, R.; Srinivas, B.; Surendra, K.; Srilakshmi, N.; Krishnaveni, K.; Rao, R. Synthesis of β-hydroxy selenides using benzeneselenol and oxiranes under supramolecular catalysis in the presence of β-cyclodextrin in water. Hexahedron Lett., 2005, 46, 8837.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.094]
[56]
Shin, J-A.; Lim, Y.G.; Lee, K.H. Copper-catalyzed azide-alkyne cycloaddition reaction in water using cyclodextrin as a phase transfer catalyst. J. Org. Chem., 2012, 77(8), 4117-4122.
[http://dx.doi.org/10.1021/jo3000095] [PMID: 22448725]
[57]
Londhe, B.S.; Pratap, U.R.; Mali, J.R.; Mane, R.A. Synthesis of 2-arylbenzothiazoles catalyzed by biomimetic catalyst -cyclodextrin. Bull. Korean Chem. Soc., 2010, 31, 2329.
[http://dx.doi.org/10.5012/bkcs.2010.31.8.2329]
[58]
Hu, Y.L.; Jiang, H.; Lu, M. Efficient and convenient C-3 functionalization of indoles through Ce(OAc)3/TBHP-mediated oxidative C–H bond activation in the presence of β-cyclodextrin. Green Chem., 2011, 13, 3079.
[http://dx.doi.org/10.1039/c1gc15639j]
[59]
Shen, H-M.; Ji, H-B. Biomimetic asymmetric aldol reactions catalyzed by proline derivatives attached to β-cyclodextrin in water. Hexahedron Lett., 2012, 53, 3541.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.140]
[60]
Rai, P.; Srivastava, M.; Yadav, S.; Singh, J.; Singh, J. β-Cyclodextrin: A biomimetic catalyst used for the synthesis of 4H-chromene-3-carbonitrile and hexahydro-1H-xanthen-1-one derivatives. Catal. Lett., 2015, 145, 2020.
[http://dx.doi.org/10.1007/s10562-015-1588-2]
[61]
Singh, S.B.; Tiwari, K.; Verma, P.K.; Srivastava, M.; Tiwari, K.P.; Singh, J. A new eco-friendly strategy for the synthesis of novel antimicrobial spiro-oxindole derivatives via supramolecular catalysis. Supramol. Catal., 2013, 25, 255.
[http://dx.doi.org/10.1080/10610278.2012.761341]
[62]
Tiwari, J.; Singh, S.; Saquib, M.; Tufail, F.; Sharma, A.K.; Singh, S.; Singh, J.; Singh, J. Organocatalytic mediated green approach: A versatile new L-valine promoted synthesis of diverse and densely functionalized 2-amino-3- cyano-4H-pyrans. Synth. Commun., 2018, 48, 188.
[http://dx.doi.org/10.1080/00397911.2017.1393087]
[63]
Tiwari, J.; Singh, S.; Tufail, F.; Jaiswal, D.; Singh, J.; Singh, J. Glycerol micellar catalysis: an efficient multicomponent-tandem green synthetic approach to biologically important 2, 4-disubstituted thiazole derivatives. ChemistrySelect, 2018, 3, 11634.
[http://dx.doi.org/10.1002/slct.201802511]
[64]
Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, J.; Singh, J. Catalyst-free glycerol-mediated green synthesisof 5′-thioxospiro[indoline-3,3′-[1,2,4]triazolidin]-2-ones/spiro[indoline-3,3′-[1,2,4]triazolidine]-2,5′-diones. Synth. Commun., 2017, 47, 1999.
[http://dx.doi.org/10.1080/00397911.2017.1359844]
[65]
Tufail, F.; Saquib, M.; Singh, S.; Tiwari, J.; Singh, M.; Singh, J.; Singh, J. Bioorganopromoted green Friedländer synthesis: A versatilenew malic acid promoted solvent free approach to multisubstitutedquinolines. New J. Chem., 2017, 41, 1618.
[http://dx.doi.org/10.1039/C6NJ03907C]
[66]
Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, M.; Singh, J.; Singh, J. Visible light promoted synthesis of dihydropyrano-[2,3-c]chromenes via a multicomponent-tandemstrategy under solvent and catalyst free conditions. Green Chem., 2016, 18, 3221.
[http://dx.doi.org/10.1039/C5GC02855H]

© 2022 Bentham Science Publishers | Privacy Policy