Review Article

Rediscovering Tocophersolan: A Renaissance for Nano-Based Drug Delivery and Nanotheranostic Applications

Author(s): Dickson P. Wande, Qin Cui, Shijie Chen, Cheng Xu, Hui Xiong* and Jing Yao*

Volume 22, Issue 8, 2021

Published on: 11 June, 2020

Page: [856 - 869] Pages: 14

DOI: 10.2174/1389450121666200611140425

Price: $65

Abstract

A unique and pleiotropic polymer, d-alpha-tocopheryl polyethylene glycol succinate (Tocophersolan), is a polymeric, synthetic version of vitamin E. Tocophersolan has attracted enormous attention as a versatile excipient in different biomedical applications including drug delivery systems and nutraceuticals. The multiple inherent properties of Tocophersolan allow it to play flexible roles in drug delivery system design, including excipients with outstanding biocompatibility, solubilizer with the ability to promote drug dissolution, drug permeation enhancer, P-glycoprotein inhibitor, and anticancer compound. For these reasons, Tocophersolan has been widely used for improving the bioavailability of numerous pharmaceutical active ingredients. Tocophersolan has been approved by stringent regulatory authorities (such as the US FDA, EMA, and PMDA) as a safe pharmaceutical excipient. In this review, the current advances in nano-based delivery systems consisting of Tocophersolan, with possibilities for futuristic applications in drug delivery, gene therapy, and nanotheranostics, were systematically curated.

Keywords: Tocophersolan, bioavailability, bio-enhancer, drug delivery, nanoparticles, nanotheranostics

Graphical Abstract
[1]
Ho PY, Yeh TK, Yao HT, et al. Enhanced oral bioavailability of paclitaxel by D-alpha-tocopheryl polyethylene glycol 400 succinate in mice. Int J Pharm 2008; 359(1-2): 174-81.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.013] [PMID: 18513900]
[2]
Tan S, Zou C, Zhang W, Yin M, Gao X, Tang Q. Recent developments in d-α-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy. Drug Deliv 2017; 24(1): 1831-42.
[http://dx.doi.org/10.1080/10717544.2017.1406561 ] [PMID: 29182031]
[3]
Drugs.com, Tocofersolan. Available from:. https://www.drugs. com/international/tocofersolan.html
[4]
PubChem. Tocophersolan. Available from:. https://pubchem.ncbi. nlm.nih.gov/compound/Tocophersolan
[5]
Sadoqi M, Lau-Cam CA, Wu SH. Investigation of the micellar properties of the tocopheryl polyethylene glycol succinate surfactants TPGS 400 and TPGS 1000 by steady state fluorometry. J Colloid Interface Sci 2009; 333(2): 585-9.
[http://dx.doi.org/10.1016/j.jcis.2009.01.048] [PMID: 19232633]
[6]
Liu T, Liu X, Xiong H, et al. Mechanisms of TPGS and its derivatives inhibiting P-glycoprotein efflux pump and application for reversing multidrug resistance in Hepatocellular carcinoma. Polym Chem 2018; 9(14): 1827-39.
[http://dx.doi.org/10.1039/C8PY00344K]
[7]
Varma MV, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci 2005; 25(4-5): 445-53.
[http://dx.doi.org/10.1016/j.ejps.2005.04.003] [PMID: 15890503]
[8]
Antares Health Products Inc. TPGS Properties. Available from:. https://tpgs.com/tpgs-technical-info/tpgs-properties/
[10]
Antares Health Products Inc. Vitamin E TPGS FG. .Antares Available from: . https://tpgs.com/wp-content/uploads/2017/03/Antares-Vitamin-E-TPGS-Brochure-2017w-1.pdf
[11]
Antares Health Products Inc. TPGS Regulatory Status Available from: https://tpgs.com/tpgs-technical-info/tpgs-regulatory-status/
[12]
Constantinides PP, Han J, Davis SS. Advances in the use of tocols as drug delivery vehicles. Pharm Res 2006; 23(2): 243-55.
[http://dx.doi.org/10.1007/s11095-005-9262-9] [PMID: 16421666]
[13]
Rossi I, Sonvico F, McConville JT, et al. Nebulized coenzyme Q10 nanosuspensions: A versatile approach for pulmonary antioxidant therapy. Eur J Pharm Sci 2018; 113: 159-70.
[http://dx.doi.org/10.1016/j.ejps.2017.10.024] [PMID: 29066385]
[14]
FDA. Inactive Ingredient Search for Approved Drug ProductsAvailable from: https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm
[15]
Rajebahadur M, Zia H, Nues A, Lee C. Mechanistic study of solubility enhancement of nifedipine using vitamin E TPGS or solutol HS-15. Drug Deliv 2006; 13(3): 201-6.
[http://dx.doi.org/10.1080/10717540500316094] [PMID: 16556572]
[16]
Gadadare R, Mandpe L, Pokharkar V. Ultra rapidly dissolving repaglinide nanosized crystals prepared via bottom-up and top-down approach: influence of food on pharmacokinetics behavior. AAPS PharmSciTech 2015; 16(4): 787-99.
[http://dx.doi.org/10.1208/s12249-014-0267-8] [PMID: 25549790]
[17]
Chen L, Chen B, Deng L, et al. An optimized two-vial formulation lipid nanoemulsion of paclitaxel for targeted delivery to tumor. Int J Pharm 2017; 534(1-2): 308-15.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.005] [PMID: 28986321]
[18]
Beig A, Fine-Shamir N, Porat D, Lindley D, Miller JM, Dahan A. Concomitant solubility-permeability increase: Vitamin E TPGS vs. amorphous solid dispersion as oral delivery systems for etoposide. Eur J Pharm Biopharm 2017; 121: 97-103.
[http://dx.doi.org/10.1016/j.ejpb.2017.09.012] [PMID: 28958946]
[19]
Wacher VJ, Wong S, Wong HT. Peppermint oil enhances cyclosporine oral bioavailability in rats: comparison with D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS) and ketoconazole. J Pharm Sci 2002; 91(1): 77-90.
[http://dx.doi.org/10.1002/jps.10008] [PMID: 11782899]
[20]
Jena SK, Sangamwar AT. Polymeric micelles of amphiphilic graft copolymer of α-tocopherol succinate-g-carboxymethyl chitosan for tamoxifen delivery: Synthesis, characterization and in vivo pharmacokinetic study. Carbohydr Polym 2016; 151: 1162-74.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.078] [PMID: 27474667]
[21]
Prasad YV, Puthli SP, Eaimtrakarn S, et al. Enhanced intestinal absorption of vancomycin with Labrasol and D-alpha-tocopheryl PEG 1000 succinate in rats. Int J Pharm 2003; 250(1): 181-90.
[http://dx.doi.org/10.1016/S0378-5173(02)00544-6] [PMID: 12480284]
[22]
Sheu MT, Chen SY, Chen LC, Ho HO. Influence of micelle solubilization by tocopheryl polyethylene glycol succinate (TPGS) on solubility enhancement and percutaneous penetration of estradiol. J Control Release 2003; 88(3): 355-68.
[http://dx.doi.org/10.1016/S0168-3659(02)00492-3] [PMID: 12644362]
[23]
Bittner B, Guenzi A, Fullhardt P, Zuercher G, González RC, Mountfield RJ. Improvement of the bioavailability of colchicine in rats by co-administration of D-alpha-tocopherol polyethylene glycol 1000 succinate and a polyethoxylated derivative of 12-hydroxy-stearic acid. Arzneimittelforschung 2002; 52(9): 684-8.
[PMID: 12404883]
[24]
Gao Y, Li LB, Zhai G. Preparation and characterization of Pluronic/TPGS mixed micelles for solubilization of camptothecin. Colloids Surf B Biointerfaces 2008; 64(2): 194-9.
[http://dx.doi.org/10.1016/j.colsurfb.2008.01.021] [PMID: 18325744]
[25]
Vijayakumar MR, Vajanthri KY, Balavigneswaran CK, et al. Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes. Colloids Surf B Biointerfaces 2016; 145: 479-91.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.037] [PMID: 27236510]
[26]
Xie Z, Zhang Z, Lv H. Rapamycin loaded TPGS-Lecithins-Zein nanoparticles based on core-shell structure for oral drug administration. Int J Pharm 2019.568118529
[http://dx.doi.org/10.1016/j.ijpharm.2019.118529] [PMID: 31323368]
[27]
Hunter J, Hirst BH. Intestinal secretion of drugs. The role of p-glycoprotein and related drug efflux systems in limiting oral drug absorption. Adv Drug Deliv Rev 1997; 25(2): 129-57.
[http://dx.doi.org/10.1016/S0169-409X(97)00497-3]
[28]
Jiang L, Li X, Liu L, Zhang Q. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer. Nanoscale Res Lett 2013; 8(1): 66.
[http://dx.doi.org/10.1186/1556-276X-8-66] [PMID: 23394588]
[29]
Subongkot T. Development and mechanistic study of a microemulsion containing vitamin E TPGS for the enhancement of oral absorption of celecoxib. Int J Nanomedicine 2019; 14: 3087-102.
[http://dx.doi.org/10.2147/IJN.S201449] [PMID: 31118624]
[30]
Cheng X, Yan H, Jia X, Zhang Z. Preparation and in vivo/in vitro evaluation of formononetin phospholipid/vitamin E TPGS micelles. J Drug Target 2016; 24(2): 161-8.
[http://dx.doi.org/10.3109/1061186X.2015.1064435 ] [PMID: 26325229]
[31]
FDA. The Biopharmaceutics Classification System (BCS) Guidance. Available from: . https://www.fda.gov/media/70963/download
[32]
Singh S, Tripathi JS, Rai NP. An appraisal of the bioavailability enhancers in Ayurveda in the light of recent pharmacological advances. Ayu 2016; 37(1): 3-10.
[http://dx.doi.org/10.4103/ayu.AYU_11_15] [PMID: 28827948]
[33]
Kesarwani K, Gupta R, Mukerjee A. Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed 2013; 3(4): 253-66.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X ] [PMID: 23620848]
[34]
Gao L, Wang X, Ma J, et al. Evaluation of TPGS-modified thermo-sensitive Pluronic PF127 hydrogel as a potential carrier to reverse the resistance of P-gp-overexpressing SMMC-7721 cell lines. Colloids Surf B Biointerfaces 2016; 140: 307-16.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.057] [PMID: 26764117]
[35]
Hao T, Chen D, Liu K, et al. Micelles of d-α-Tocopheryl Polyethylene Glycol 2000 Succinate (TPGS 2K) for Doxorubicin Delivery with Reversal of Multidrug Resistance. ACS Appl Mater Interfaces 2015; 7(32): 18064-75.
[http://dx.doi.org/10.1021/acsami.5b04995] [PMID: 26214761]
[36]
Vardhan H, Mittal P, Adena SKR, Upadhyay M, Yadav SK, Mishra B. Process optimization and in vivo performance of docetaxel loaded PHBV-TPGS therapeutic vesicles: A synergistic approach. Int J Biol Macromol 2018; 108: 729-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.172] [PMID: 29111267]
[37]
Stapelberg M, Gellert N, Swettenham E, et al. α-tocopheryl succinate inhibits malignant mesothelioma by disrupting the fibroblast growth factor autocrine loop: mechanism and the role of oxidative stress. J Biol Chem 2005; 280(27): 25369-76.
[http://dx.doi.org/10.1074/jbc.M414498200] [PMID: 15878867]
[38]
Tomasetti M, Nocchi L, Neuzil J, et al. Alpha-tocopheryl succinate inhibits autophagic survival of prostate cancer cells induced by vitamin K3 and ascorbate to trigger cell death. PLoS One 2012; 7(12)e52263
[http://dx.doi.org/10.1371/journal.pone.0052263] [PMID: 23272231]
[39]
Youk HJ, Lee E, Choi M-K, et al. Enhanced anticancer efficacy of α-tocopheryl succinate by conjugation with polyethylene glycol. J Control Release 2005; 107(1): 43-52.
[http://dx.doi.org/10.1016/j.jconrel.2005.05.014] [PMID: 16081183]
[40]
Neophytou CM, Constantinou C, Papageorgis P, Constantinou AI. D-alpha-tocopheryl polyethylene glycol succinate (TPGS) induces cell cycle arrest and apoptosis selectively in Survivin-overexpressing breast cancer cells. Biochem Pharmacol 2014; 89(1): 31-42.
[http://dx.doi.org/10.1016/j.bcp.2014.02.003] [PMID: 24560876]
[41]
Sokol RJ, Heubi JE, Butler-Simon N, McClung HJ, Lilly JR, Silverman A. Treatment of vitamin E deficiency during chronic childhood cholestasis with oral d-α-tocopheryl polyethylene glycol-1000 succinate. Gastroenterology 1987; 93(5): 975-85.
[http://dx.doi.org/10.1016/0016-5085(87)90559-2] [PMID: 3653646]
[42]
Sokol RJ, Butler-Simon N, Conner C, et al. Multicenter trial of d-α-tocopheryl polyethylene glycol 1000 succinate for treatment of vitamin E deficiency in children with chronic cholestasis. Gastroenterology 1993; 104(6): 1727-35.
[http://dx.doi.org/10.1016/0016-5085(93)90652-S] [PMID: 8500733]
[43]
Zhu X, Tsend-Ayush A, Yuan Z, et al. Glycyrrhetinic acid-modified TPGS polymeric micelles for hepatocellular carcinoma-targeted therapy. Int J Pharm 2017; 529(1-2): 451-64.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.011] [PMID: 28698067]
[44]
Tsend-Ayush A, Zhu X, Ding Y, et al. Lactobionic acid-conjugated TPGS nanoparticles for enhancing therapeutic efficacy of etoposide against hepatocellular carcinoma. Nanotechnology 2017; 28(19)195602
[http://dx.doi.org/10.1088/1361-6528/aa66ba] [PMID: 28291743]
[45]
Danhier F, Kouhé TTB, Duhem N, et al. Vitamin E-based micelles enhance the anticancer activity of doxorubicin. Int J Pharm 2014; 476(1-2): 9-15.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.028] [PMID: 25245548]
[46]
Emami J, Rezazadeh M, Mashayekhi M, Rostami M, Jahanian-Najafabadi A. A novel mixed polymeric micelle for co-delivery of paclitaxel and retinoic acid and overcoming multidrug resistance: synthesis, characterization, cytotoxicity, and pharmacokinetic evaluation. Drug Dev Ind Pharm 2018; 44(5): 729-40.
[http://dx.doi.org/10.1080/03639045.2017.1411940 ] [PMID: 29235901]
[47]
Cagel M, Bernabeu E, Gonzalez L, et al. Mixed micelles for encapsulation of doxorubicin with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines versus Doxil®. Biomed Pharmacother 2017; 95: 894-903.
[http://dx.doi.org/10.1016/j.biopha.2017.09.006] [PMID: 28903185]
[48]
Tian Q, Shi J, Zhao X, Di D, Deng Y, Song Y. The antitumor efficacy of docetaxel is enhanced by encapsulation in novel amphiphilic polymer cholesterol-coupled tocopheryl polyethylene glycol 1000 succinate micelles. Drug Deliv Transl Res 2017; 7(5): 642-53.
[http://dx.doi.org/10.1007/s13346-017-0403-6] [PMID: 28695431]
[49]
Cheriyan VT, Alsaab HO, Sekhar S, et al. A CARP-1 functional mimetic loaded vitamin E-TPGS micellar nano-formulation for inhibition of renal cell carcinoma. Oncotarget 2017; 8(62): 104928-45.
[http://dx.doi.org/10.18632/oncotarget.20650] [PMID: 29285223]
[50]
Yu A, Lv J, Yuan F, et al. mPEG-PLA/TPGS mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus. Int J Nanomedicine 2017; 12: 8353-62.
[http://dx.doi.org/10.2147/IJN.S145488] [PMID: 29200847]
[51]
Yang L, Zhang Z, Hou J, et al. Targeted delivery of ginsenoside compound K using TPGS/PEG-PCL mixed micelles for effective treatment of lung cancer. Int J Nanomedicine 2017; 12: 7653-67.
[http://dx.doi.org/10.2147/IJN.S144305] [PMID: 29089761]
[52]
Zhao J, Xu Y, Wang C, et al. Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy. Drug Dev Ind Pharm 2017; 43(7): 1197-204.
[http://dx.doi.org/10.1080/03639045.2017.1304956 ] [PMID: 28300426]
[53]
Song J, Huang H, Xia Z, et al. TPGS/Phospholipids Mixed Micelles for Delivery of Icariside II to Multidrug-Resistant Breast Cancer. Integr Cancer Ther 2016; 15(3): 390-9.
[http://dx.doi.org/10.1177/1534735415596571] [PMID: 26293804]
[54]
Wang S, Chen R, Morott J, Repka MA, Wang Y, Chen M. mPEG-b-PCL/TPGS mixed micelles for delivery of resveratrol in overcoming resistant breast cancer. Expert Opin Drug Deliv 2015; 12(3): 361-73.
[http://dx.doi.org/10.1517/17425247.2014.951634] [PMID: 25392124]
[55]
Pardridge WM. Drug targeting to the brain. Pharm Res 2007; 24(9): 1733-44.
[http://dx.doi.org/10.1007/s11095-007-9324-2] [PMID: 17554607]
[56]
Sonali P, Agrawal P, Singh RP, et al. Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats. Drug Deliv 2016; 23(5): 1788-98.
[http://dx.doi.org/10.3109/10717544.2015.1094681 ] [PMID: 26431064]
[57]
Sonali R, Singh RP, Sharma G, et al. RGD-TPGS decorated theranostic liposomes for brain targeted delivery. Colloids Surf B Biointerfaces 2016; 147: 129-41.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.058] [PMID: 27497076]
[58]
Gan CW, Feng SS. Transferrin-conjugated nanoparticles of poly(lactide)-D-α-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Biomaterials 2010; 31(30): 7748-57.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.053 ] [PMID: 20673685]
[59]
Kulkarni SA, Feng SS. Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood-brain barrier. Nanomedicine (Lond) 2011; 6(2): 377-94.
[http://dx.doi.org/10.2217/nnm.10.131] [PMID: 21385139]
[60]
Agrawal P. Sonali , Singh RP, et al. Bioadhesive micelles of d-α-tocopherol polyethylene glycol succinate 1000: Synergism of chitosan and transferrin in targeted drug delivery. Colloids Surf B Biointerfaces 2017; 152: 277-88.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.021] [PMID: 28122295]
[61]
Meng X, Liu J, Yu X, Li J, Lu X, Shen T. Pluronic f127 and d-α-tocopheryl polyethylene glycol succinate (tpgs) mixed micelles for targeting drug delivery across the blood brain barrier. Sci Rep 2017; 7(1): 2964.
[http://dx.doi.org/10.1038/s41598-017-03123-y] [PMID: 28592843]
[62]
Pooja D, Kulhari H, Singh MK, Mukherjee S, Rachamalla SS, Sistla R. Dendrimer-TPGS mixed micelles for enhanced solubility and cellular toxicity of taxanes. Colloids Surf B Biointerfaces 2014; 121: 461-8.
[http://dx.doi.org/10.1016/j.colsurfb.2014.06.059] [PMID: 25063311]
[63]
Batista P, Castro PM, Madureira AR, Sarmento B, Pintado M. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides 2018; 101: 112-23.
[http://dx.doi.org/10.1016/j.peptides.2018.01.002] [PMID: 29329977]
[64]
Suksiriworapong J, Mingkwan T, Chantasart D. Enhanced transmucosal delivery of itraconazole by thiolated d-ɑ-tocopheryl poly(ethylene glycol) 1000 succinate micelles for the treatment of Candida albicans. Eur J Pharm Biopharm 2017; 120: 107-15.
[http://dx.doi.org/10.1016/j.ejpb.2017.08.012] [PMID: 28865759]
[65]
Nam S, Lee SY, Cho H-J. Phloretin-loaded fast dissolving nanofibers for the locoregional therapy of oral squamous cell carcinoma. J Colloid Interface Sci 2017; 508: 112-20.
[http://dx.doi.org/10.1016/j.jcis.2017.08.030] [PMID: 28822860]
[66]
Gavin A, Pham JT, Wang D, Brownlow B, Elbayoumi TA. Layered nanoemulsions as mucoadhesive buccal systems for controlled delivery of oral cancer therapeutics. Int J Nanomedicine 2015; 10: 1569-84.
[PMID: 25759580]
[67]
Singh H, Narang JK, Singla YP, et al. TPGS stabilized sublingual films of frovatriptan for the management of menstrual migraine: Formulation, design and antioxidant activity. J Drug Deliv Sci Technol 2017; 41: 144-56.
[http://dx.doi.org/10.1016/j.jddst.2017.07.008]
[68]
Xu P, Yin Q, Shen J, et al. Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. Int J Pharm 2013; 454(1): 21-30.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.053] [PMID: 23830941]
[69]
Chen X-P, Li Y, Zhang Y, Li GW. Formulation, characterization and evaluation of curcumin- loaded plga- tpgs nanoparticles for liver cancer treatment. Drug Des Devel Ther 2019; 13: 3569-78.
[http://dx.doi.org/10.2147/DDDT.S211748] [PMID: 31802845]
[70]
Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 2004; 58(3): 0-182..
[71]
Cardona MI, Nguyen Le N-M, Zaichik S, Aragón DM, Bernkop-Schnürch A. Development and in vitro characterization of an oral self-emulsifying delivery system (SEDDS) for rutin fatty ester with high mucus permeating properties. Int J Pharm 2019; 562: 180-6.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.036] [PMID: 30898639]
[72]
Jo K, Kim H, Khadka P, et al. Enhanced intestinal lymphatic absorption of saquinavir through supersaturated self-microemulsifying drug delivery systems. Asian J Pharm Sci 2019.
[http://dx.doi.org/10.1016/j.ajps.2018.11.009]
[73]
Zhang Z, Tan S, Feng S-S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 2012; 33(19): 4889-906.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.046 ] [PMID: 22498300]
[74]
Wang Y, Sun J, Zhang T, Liu H, He F, He Z. Enhanced oral bioavailability of tacrolimus in rats by self-microemulsifying drug delivery systems. Drug Dev Ind Pharm 2011; 37(10): 1225-30.
[http://dx.doi.org/10.3109/03639045.2011.565774] [PMID: 21615281]
[75]
Derajram M, Benival M, Devarajan PV, Devarajan PV. In Situ Lipidization as a New Approach for the Design of a Self Microemulsifying Drug Delivery System (SMEDDS) of Doxorubicin Hydrochloride for Oral Administration. J Biomed Nanotechnol 2015; 11(5): 913-22.
[http://dx.doi.org/10.1166/jbn.2015.1978] [PMID: 26390522]
[76]
Lin YM, Wu JY, Chen YC, et al. In situ formation of nanocrystals from a self-microemulsifying drug delivery system to enhance oral bioavailability of fenofibrate. Int J Nanomedicine 2011; 6: 2445-57.
[PMID: 22072880]
[77]
Rayaprolu BM, Strom JG. Design and evaluation of D-α tocopheryl polyethylene glycol 1000 succinate emulsified poly-ϵ-caprolactone nanoparticles for protein/peptide drug delivery. Drug Dev Ind Pharm 2013; 39(7): 1046-52.
[http://dx.doi.org/10.3109/03639045.2012.699069] [PMID: 22758209]
[78]
Malathi S, Nandhakumar P, Pandiyan V, Webster TJ, Balasubramanian S. Novel PLGA-based nanoparticles for the oral delivery of insulin. Int J Nanomedicine 2015; 10: 2207-18.
[PMID: 25848248]
[79]
Ke W-T, Lin S-Y, Ho H-O, Sheu MT. Physical characterizations of microemulsion systems using tocopheryl polyethylene glycol 1000 succinate (TPGS) as a surfactant for the oral delivery of protein drugs. J Control Release 2005; 102(2): 489-507.
[http://dx.doi.org/10.1016/j.jconrel.2004.10.030] [PMID: 15653166]
[81]
Feldman AG, Sokol RJ. Neonatal Cholestasis. Neoreviews 2013; 14(2): 61-167.
[http://dx.doi.org/10.1542/neo.14-2-e63] [PMID: 24244109]
[82]
Cao N, Feng SS. Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS): conjugation chemistry, characterization, in vitro and in vivo evaluation. Biomaterials 2008; 29(28): 3856-65.
[http://dx.doi.org/10.1016/j.biomaterials.2008.05.016 ] [PMID: 18606445]
[83]
Mi Y, Zhao J, Feng S-S. Vitamin E TPGS prodrug micelles for hydrophilic drug delivery with neuroprotective effects. Int J Pharm 2012; 438(1-2): 98-106.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.038] [PMID: 22954445]
[84]
Khare V, Sakarchi WA, Gupta PN, et al. Correction: Synthesis and characterization of TPGS–gemcitabine prodrug micelles for pancreatic cancer therapy. RSC Advances 2017; 7(21): 12598.
[http://dx.doi.org/10.1039/C7RA90021J]
[85]
Song Q, Tan S, Zhuang X, et al. Nitric oxide releasing d-α-tocopheryl polyethylene glycol succinate for enhancing antitumor activity of doxorubicin. Mol Pharm 2014; 11(11): 4118-29.
[http://dx.doi.org/10.1021/mp5003009] [PMID: 25222114]
[86]
Qiao H, Zhu Z, Fang D, et al. Redox-triggered mitoxantrone prodrug micelles for overcoming multidrug-resistant breast cancer. J Drug Target 2018; 26(1): 75-85.
[http://dx.doi.org/10.1080/1061186X.2017.1339195 ] [PMID: 28583001]
[87]
Leung SSY, Wong J, Guerra HV, Samnick K, Prud’homme RK, Chan HK. Porous mannitol carrier for pulmonary delivery of cyclosporine A nanoparticles. AAPS J 2017; 19(2): 578-86.
[http://dx.doi.org/10.1208/s12248-016-0039-3] [PMID: 28070713]
[88]
Ishak RAH, Osman R. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity. Int J Pharm 2015; 485(1-2): 249-60.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.019] [PMID: 25772421]
[89]
Levet V, Rosière R, Merlos R, et al. Development of controlled-release cisplatin dry powders for inhalation against lung cancers. Int J Pharm 2016; 515(1-2): 209-20.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.019] [PMID: 27737810]
[90]
Duret C, Wauthoz N, Sebti T, Vanderbist F, Amighi K. Solid dispersions of itraconazole for inhalation with enhanced dissolution, solubility and dispersion properties. Int J Pharm 2012; 428(1-2): 103-13.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.002] [PMID: 22414388]
[91]
Muizzuddin N, Marenus KD, Schnittger SF, Sullivan M, Maes DH. Effect of systemic hormonal cyclicity on skin. J Cosmet Sci 2005; 56(5): 311-21.
[PMID: 16258697]
[92]
Khandavilli S, Panchagnula R. Nanoemulsions as versatile formulations for paclitaxel delivery: peroral and dermal delivery studies in rats. J Invest Dermatol 2007; 127(1): 154-62.
[http://dx.doi.org/10.1038/sj.jid.5700485] [PMID: 16858422]
[93]
Chen C-H, Sheu M-T, Wu A-B, Lin KP, Ho HO. Simultaneous effects of tocopheryl polyethylene glycol succinate (TPGS) on local hair growth promotion and systemic absorption of topically applied minoxidil in a mouse model. Int J Pharm 2005; 306(1-2): 91-8.
[http://dx.doi.org/10.1016/j.ijpharm.2005.09.005] [PMID: 16253450]
[94]
Sheng X, Fan L, He C, Zhang K, Mo X, Wang H. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application. Int J Biol Macromol 2013; 56: 49-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.01.029] [PMID: 23396066]
[95]
Ghosh I, Michniak-Kohn B. Influence of critical parameters of nanosuspension formulation on the permeability of a poorly soluble drug through the skin--a case study. AAPS PharmSciTech 2013; 14(3): 1108-17.
[http://dx.doi.org/10.1208/s12249-013-9995-4] [PMID: 23824877]
[96]
Somagoni J, Boakye CHA, Godugu C, et al. Nanomiemgel--a novel drug delivery system for topical application--in vitro and in vivo evaluation. PLoS One 2014; 9(12)e115952
[http://dx.doi.org/10.1371/journal.pone.0115952] [PMID: 25546392]
[97]
Brownlow B, Nagaraj VJ, Nayel A, Joshi M, Elbayoumi T. Development and in vitro evaluation of vitamin e-enriched nanoemulsion vehicles loaded with genistein for chemoprevention against uvb-induced skin damage. J Pharm Sci 2015; 104(10): 3510-23.
[http://dx.doi.org/10.1002/jps.24547] [PMID: 26108889]
[98]
Zhu X, Zeng X, Zhang X, et al. The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo. Nanomedicine (Lond) 2016; 12(3): 623-32.
[http://dx.doi.org/10.1016/j.nano.2015.10.016] [PMID: 26656634]
[99]
Romero GB, Arntjen A, Keck CM, Müller RH. Amorphous cyclosporin A nanoparticles for enhanced dermal bioavailability. Int J Pharm 2016; 498(1-2): 217-24.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.019] [PMID: 26688038]
[100]
Wang Y, Xu H, Liu H, Wang Y, Sun J, He Z. Efficacy and biodistribution of tocopheryl polyethylene glycol succinate noncovalent functionalized single walled nanotubes loading doxorubicin in sarcoma bearing mouse model. J Biomed Nanotechnol 2012; 8(3): 450-7.
[http://dx.doi.org/10.1166/jbn.2012.1390] [PMID: 22764414]
[101]
Vadlapudi AD, Cholkar K, Vadlapatla RK, Mitra AK. Aqueous nanomicellar formulation for topical delivery of biotinylated lipid prodrug of acyclovir: formulation development and ocular biocompatibility. J Ocul Pharmacol Ther 2014; 30(1): 49-58.
[http://dx.doi.org/10.1089/jop.2013.0157] [PMID: 24192229]
[102]
Elsaid Elsaid. A stable chitosan-coated nanomicelle combination of vitamin e-tpgs and cholesterol-peg for the topical administration and scleral retention of rapamycin. Invest Ophthalmol Vis Sci 2012; 53(14): 328.
[103]
Grimaudo MA, Pescina S, Padula C, et al. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Mol Pharm 2018; 15(2): 571-84.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00939 ] [PMID: 29313693]
[104]
Warsi MH, Anwar M, Garg V, et al. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids Surf B Biointerfaces 2014; 122: 423-31.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.004] [PMID: 25159319]
[105]
Davis BM, Pahlitzsch M, Guo L, et al. Topical curcumin nanocarriers are neuroprotective in eye disease. Sci Rep 2018; 8(1): 11066.
[http://dx.doi.org/10.1038/s41598-018-29393-8] [PMID: 30038334]
[106]
Zhao J, Mi Y, Feng S-S. Targeted co-delivery of docetaxel and siPlk1 by herceptin-conjugated vitamin E TPGS based immunomicelles. Biomaterials 2013; 34(13): 3411-21.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.009 ] [PMID: 23375951]
[107]
Gaspar VM, Moreira AF, Costa EC, et al. Gas-generating TPGS-PLGA microspheres loaded with nanoparticles (NIMPS) for co-delivery of minicircle DNA and anti-tumoral drugs. Colloids Surf B Biointerfaces 2015; 134: 287-94.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.004] [PMID: 26209779]
[108]
Zheng Y, Chen H, Zeng X, et al. Surface modification of TPGS-b-(PCL-ran-PGA) nanoparticles with polyethyleneimine as a co-delivery system of TRAIL and endostatin for cervical cancer gene therapy. Nanoscale Res Lett 2013; 8(1): 161.
[http://dx.doi.org/10.1186/1556-276X-8-161] [PMID: 23570619]
[109]
Roy Chowdhury M, Schumann C, Bhakta-Guha D, Guha G. Cancer nanotheranostics: Strategies, promises and impediments. Biomed Pharmacother 2016; 84: 291-304.
[http://dx.doi.org/10.1016/j.biopha.2016.09.035] [PMID: 27665475]
[110]
Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn 2013; 13(3): 257-69.
[http://dx.doi.org/10.1586/erm.13.15] [PMID: 23570404]
[111]
Wan D, Liu W, Wang L, Wang H, Pan J. Fluoridated hydroxyapatite: Eu(3+) nanorods-loaded folate-conjugated D-α-tocopheryl polyethylene glycol succinate (vitamin E TPGS) micelles for targeted imaging of cancer cells. Nanotechnology 2016; 27(10)105703
[http://dx.doi.org/10.1088/0957-4484/27/10/105703 ] [PMID: 26862066]
[112]
Chandrasekharan P, Maity D, Yong CX, et al. D-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials 2011; 32(24): 5663-72.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.037 ] [PMID: 21550654]
[113]
Tan YF, Chandrasekharan P, Maity D, et al. Multimodal tumor imaging by iron oxides and quantum dots formulated in poly (lactic acid)-D-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Biomaterials 2011; 32(11): 2969-78.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.055 ] [PMID: 21257200]
[114]
Tian G, Zheng X, Zhang X, et al. TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials 2015; 40: 107-16.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.022 ] [PMID: 25433607]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy