Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Research Progress on Thermal Conductivity of Graphdiyne Nanoribbons and its Defects: A Review

Author(s): Wenchao Tian, Chunmin Cheng*, Chuqiao Wang and Wenhua Li

Volume 14, Issue 4, 2020

Page: [294 - 306] Pages: 13

DOI: 10.2174/1872210514666200611094435

Price: $65

Abstract

Background: Graphdiyne has a unique pi-conjugated structure, perfect pore distribution and adjustable electronic properties of sp2, sp hybrid planar framework. Due to the presence of acetylenic bonds, it has more excellent properties compared to grapheme, such as a unique structure-dependent Dirac cone, abundant carbon bonds and a large bandgap. As one of the important raw materials for nanodevices, it is extremely important to study the thermal properties of graphdiyne nanoribbon.

Objective: This paper mainly introduces and discusses recent academic research and patents on the preparation methods and thermal conductivity of graphdiyne nanoribbons. Besides, the applications in engineering and vacancy defects in the preparation process of graphdiyne are described.

Methods: Firstly, taking thermal conductivity as an index, the thermal conductivity of graphdiyne with various vacancy defects is discussed from the aspects of length, defect location and defect type. In addition, the graphdiyne nanoribbons were laterally compared with the thermal conductivity of the graphene nanoribbons.

Results: The thermal conductivity of graphdiyne with defects increases with the length and width, which is lower than the intrinsic graphdiyne. The thermal conductivity of the acetylene chain lacking one carbon atom is higher than the one lacking the benzene ring. Typically, the thermal conductivity is larger in armchair than that of zigzag in the same size. Moreover the thermal conductivity of nanoribbons with double vacancy defects is lower than those nanoribbons with single vacancy defects, which can also decrease with the increase of temperature and the number of acetylene chains. The thermal conductivity is not sensitive to shear strain.

Conclusion: Due to the unique structure and electronic characteristics, graphdiyne has provoked an extensive research interest in the field of nanoscience. Graphdiyne is considered as one of the most promising materials of next-generation electronic devices.

Keywords: Graphdiyne nanoribbons, thermal conductivity, vacancy defects, intrinsic, graphene, nanomaterials.

Graphical Abstract
[1]
Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Architecture of graphdiyne nanoscale films. Chem Commun (Camb) 2010; 46(19): 3256-8.
[http://dx.doi.org/10.1039/b922733d] [PMID: 20442882]
[2]
Bai D, Li C, Li J, et al. New progress of acetylene-coupling reactions. Youji Huaxue 2012; 32(6): 994.
[http://dx.doi.org/10.6023/cjoc1202073]
[3]
Liang LY, Biao LH, Jun LY, Min QX. Graphdiyne nanofilm and preparation method thereof. CN Patent 102225757B, 2011..
[4]
Kaloni TP, Joshi RP, Adhikari NP, et al. Band gap tunning in BN-doped graphene systems with high carrier mobility. Appl Phys Lett 2014; 104(7): 770.
[http://dx.doi.org/10.1063/1.4866383]
[5]
Duncan WD, Hyde RA, Kare JT, et al. Applications of graphene grids in vacuum electronics US Patent 20170323755A1, 2017.
[6]
Galashev AE, Rakhmanova OR. Mechanical and thermal stability of graphene and graphene-based materials. Phys Uspekhi 2014; 57(10): 970-89.
[http://dx.doi.org/10.3367/UFNe.0184.201410c.1045]
[7]
Matveev VN, Volkov VT, Levashov VI, et al. One-step synthesis of a hybrid of graphene films and ribbons. Inorg Mater 2018; 54(3): 229-32.
[http://dx.doi.org/10.1134/S002016851803010X]
[8]
Li Z, Wang J, Liu Z. Intrinsic carrier mobility of Dirac cones: The limitations of deformation potential theory. J Chem Phys 2014; 141(14)144107
[http://dx.doi.org/10.1063/1.4897533] [PMID: 25318715]
[9]
Yao C , Xia JW . XZ. Praseodymium cobaltate/attapulgite/ graphdiyne nanocomposite material, preparation method and application thereof. CN Patent 109012150A, 2018
[10]
Huang C, Ze Y, Ning W. Novel triazine carbon-rich twodimensional material and preparation method thereof. CN Patent 107098910A, 2017..
[11]
Zheng Z, Ye X, Wei L. Centimeter sized graphdiyne synthesized through liquid-liquid interface polymerization reaction and application. CN Patent 109626353A, 2019..
[12]
Verberck B, Partoens B, Peeters FM, et al. Strain-induced band gaps in bilayer graphene. Phys Rev B Condens Matter Mater Phys 2012; 85(12): 1092-7.
[http://dx.doi.org/10.1103/PhysRevB.85.125403]
[13]
Terrones M, Botello-Méndez AR, Campos-Delgado J, et al. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 2010; 5(4): 351-72.
[http://dx.doi.org/10.1016/j.nantod.2010.06.010]
[14]
Qin F, Yongtang LI, Huiping QI, et al. Advances in compact manufacturing for shape and performance controllability of large-scale components-A review. Chin J Mech Eng 2017; 30(1): 7-21.
[http://dx.doi.org/10.3901/CJME.2016.1102.128]
[15]
Wang D. Non-diffusive heat conduction in nano-/micro-scale Structures. Dissertations & Theses-Gradworks 2015.
[16]
Jun GZ, Ni X Hua DX, Liang ZY. New application of graphdiyne nano-material serving as free radical scavenger and radiation protective agent. CN108295092A, 2018..
[17]
Zhang YQ, Kepčija N, Kleinschrodt M, et al. Homo-coupling of terminal alkynes on a noble metal surface. Nat Commun 2012; 3: 1286.
[http://dx.doi.org/10.1038/ncomms2291] [PMID: 23250416]
[18]
Liu Y. First-principles study on new photocatalytic materials graphdiyne-TiO2. Acta Chimi Sin 2013; 71(2): 260.
[http://dx.doi.org/10.6023/A12090705]
[19]
Autreto PA, Sousa JMD, Galvao DS. On the dynamics of graphdiyne hydrogenation. Mater Res Soc Symp Proc 2013; 1549(2): 59-64.
[http://dx.doi.org/10.1557/opl.2013.608]
[20]
Frank O, Kalbac M. Chemical Vapor Deposition (CVD) growth of graphene films. Graphene 2014; 16(1): 27-49.
[http://dx.doi.org/10.1533/9780857099334.1.27]
[21]
Liu R, Gao X, Zhou J, et al. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil. Adv Mater 2017; 29(18)1604665
[http://dx.doi.org/10.1002/adma.201604665] [PMID: 28251693]
[22]
Gao A, Chang-zheng ZHAO, Man DI, et al. Microscopic investigation of a copper molten mark by Optical Microscopy (OM) and Atomic Force Microscopy (AFM). Procedia Eng 2011; 11(1): 100-6.
[23]
Qian X, Liu H, Huang C, et al. Self-catalyzed growth of large-area nanofilms of two-dimensional carbon. Sci Rep 2015; 5: 7756.
[http://dx.doi.org/10.1038/srep07756] [PMID: 25583680]
[24]
Buseck PR, Epelboin Y, Rimsky A. Signal processing of high-resolution transmission electron microscope images using Fourier transforms. Acta Crystallogr 2014; 44(6): 975-86.
[http://dx.doi.org/10.1107/S0108767388007500]
[25]
Zehtab Yazdi A, Chizari K, Jalilov AS, Tour J, Sundararaj U. Helical and dendritic unzipping of carbon nanotubes: A route to nitrogen-doped graphene nanoribbons. ACS Nano 2015; 9(6): 5833-45.
[http://dx.doi.org/10.1021/acsnano.5b02197] [PMID: 26028162]
[26]
Baringhaus J, Ruan M, Edler F, et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 2014; 506(7488): 349-54.
[http://dx.doi.org/10.1038/nature12952] [PMID: 24499819]
[27]
Daigle M, Miao D, Lucotti A, Tommasini M, Morin JF. Helically coiled graphene nanoribbons. Angew Chem Int Ed Engl 2017; 56(22): 6213-7.
[http://dx.doi.org/10.1002/anie.201611834] [PMID: 28267293]
[28]
Qian X, Ning Z, Li Y, et al. Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans 2012; 41(3): 730-3.
[http://dx.doi.org/10.1039/C1DT11641J] [PMID: 22127506]
[29]
Chen L, He L, Wang HS, et al. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Nat Commun 2017; 8: 14703.
[http://dx.doi.org/10.1038/ncomms14703] [PMID: 28276532]
[30]
Freitas P, Siegl P. Spectra of graphene nanoribbons with armchair and zigzag boundary conditions. Rev Math Phys 2014; 26(10)1450018
[http://dx.doi.org/10.1142/S0129055X14500184]
[31]
Bai H. Structures, stabilities and electronic properties of graphdiyne nanoribbons. RSC Adv 2011; 1(5): 768-75.
[http://dx.doi.org/10.1039/c1ra00481f]
[32]
Liu Y, Bo M, Sun CQ, Huang Y. the band-gap modulation of graphyne nanoribbons by edge quantum entrapment. Nanomaterials (Basel) 2018; 8(2): 92.
[http://dx.doi.org/10.3390/nano8020092] [PMID: 29414901]
[33]
Hyde RA, Kare JT, Myhrvold NP, Pan TS, Wood LL Jr. Electronic device graphene grid. US Patent 0169142B2, 2013.
[34]
Hengji Z, Geunsik L, Fonseca AF, et al. Isotope effect on the thermal conductivity of graphene. J Nanomater 2010; 2010: 1-5.
[35]
Sun Y, Gao S, Xie Y. Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction. Chem Soc Rev 2014; 43(2): 530-46.
[http://dx.doi.org/10.1039/C3CS60231A] [PMID: 24122032]
[36]
Zhang J, Liu HJ, Cheng L, et al. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci Rep 2014; 4: 6452.
[http://dx.doi.org/10.1038/srep06452] [PMID: 25245326]
[37]
Pan CN, Chen XK, Tang LM, et al. Orientation dependent thermal conductivity in graphyne nanoribbons. Physica E 2014; 64: 129-33.
[http://dx.doi.org/10.1016/j.physe.2014.07.019]
[38]
Xu Y, Chen X, Gu BL, et al. Intrinsic anisotropy of thermal conductance in graphene nanoribbons. Appl Phys Lett 2009; 95(23): 109.
[http://dx.doi.org/10.1063/1.3272678]
[39]
Ding H, Bai H, Huang Y. Electronic properties and carrier mobilities of 6,6,12-graphyne nanoribbons. AIP Adv 2015; 80(7): 162.
[http://dx.doi.org/10.1063/1.4927497]
[40]
Aissa B, Memon N, Ali A, et al. Recent progress in the growth and applications of graphene as a smart material: A review. Frontiers in Materials 2015; 2(58).
[41]
Yang H, Tang Y, Gong J, et al. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons. J Mol Model 2013; 19(11): 4781-8.
[http://dx.doi.org/10.1007/s00894-013-1937-2] [PMID: 24013440]
[42]
Ouyang T, Chen YP, Liu LM, Xie YE, Wei XL, Zhong JX. Thermal transport in graphyne nanoribbons. Phys Rev B Condens Matter Mater Phys 2012; 85: 235436-42.
[http://dx.doi.org/10.1103/PhysRevB.85.235436]
[43]
Sun L, Jiang PH, Liu HJ, et al. Graphdiyne: A two-dimensional thermoelectric material with high figure of merit. Carbon 2015; 90: 255-9.
[http://dx.doi.org/10.1016/j.carbon.2015.04.037]
[44]
Chung PL. Graphene laminate film with thermal conductivity. GB Patent 2534217A, 2016..
[45]
Smalc MD, Shives GD, Reynolds Robert A. Thermal solution for portable electronic devices US Patent 20060126304B2, 2007.
[46]
Smalc MD, Shives GD, Reynolds Robert A. Thermal solution for portable electronic devices US Patent 20050111189B2, 2006.
[47]
Tzeng JW. Thermal management system. US Patent 6482520B1 2002.
[48]
Hsieh TY. Influence of interface arrangement on phonon heat transfer in nanocomposites. Jpn J Appl Phys 2011; 50(3): 035201-035201-8.
[http://dx.doi.org/10.1143/JJAP.50.035201]
[49]
Li G, Yoon KY, Zhong X, et al. A modular synthetic approach for band-gap engineering of armchair graphene nanoribbons. Nat Commun 2018; 9(1): 1687.
[http://dx.doi.org/10.1038/s41467-018-03747-2] [PMID: 29703958]
[50]
Chauhan SS, Srivastava P, Shrivastava AK. Band gap engineering in zigzag graphene nanoribbons-An Ab Initio approach. J Comput Theor Nanosci 2012; 9(8): 1084-9.
[http://dx.doi.org/10.1166/jctn.2012.2147]
[51]
Zhang C, Hao XL, Wang CX, Wei N, Rabczuk T. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation. Sci Rep 2017; 7: 41398.
[http://dx.doi.org/10.1038/srep41398] [PMID: 28120921]
[52]
Wei N, Xu L, Wang HQ, Zheng JC. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility. Nanotechnology 2011; 22(10)105705
[http://dx.doi.org/10.1088/0957-4484/22/10/105705] [PMID: 21289391]
[53]
Huang C, Li Y, Wang N, et al. Progress in research into 2D graphdiyne-based materials. Chem Rev 2018; 118(16): 7744-803.
[http://dx.doi.org/10.1021/acs.chemrev.8b00288] [PMID: 30048120]
[54]
Tanimoto C. Field-effect transistor. Electronics & Power 2018; 7(7-8): 2001-3.
[55]
Duncan WD, Hyde RA, Kare JT, Mankin MN, Pan TS, Lowell L. Applications of graphene grids in vacuum electronics US Patent 20150243468B2, 2015.
[56]
Cui W, Zhang M, Wang N, et al. High-performance field-effect transistor based on novel conjugated P-o-Fluoro-p-alkoxyphenyl-substituted polymers by graphdiyne doping. J Phys Chem C 2017; 121: 23300-6.
[http://dx.doi.org/10.1021/acs.jpcc.7b07364]
[57]
Kang J, Wei Z, Li J. Graphyne and its family: Recent theoretical advances. ACS Appl Mater Interfaces 2019; 11(3): 2692-706.
[58]
Coleman JN, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011; 331(6017): 568-71.
[http://dx.doi.org/10.1126/science.1194975] [PMID: 21292974]
[59]
Jiao Y, Du A, Hankel M, Zhu Z, Rudolph V, Smith SC. Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification. Chem Commun (Camb) 2011; 47(43): 11843-5.
[http://dx.doi.org/10.1039/c1cc15129k] [PMID: 21952115]
[60]
Cranford SW, Buehler MJ. Selective hydrogen purification through graphdiyne under ambient temperature and pressure. Nanoscale 2012; 4(15): 4587-93.
[http://dx.doi.org/10.1039/c2nr30921a] [PMID: 22706782]
[61]
Lei G, Liu C, Li Q, et al. Graphyne nanostructure as a potential adsorbent for separation of H2S/CH4 mixture: Combining grand canonical Monte Carlo simulations with ideal adsorbed solution theory. Fuel 2016; 182: 210-9.
[http://dx.doi.org/10.1016/j.fuel.2016.05.113]
[62]
Zhao L, Sang P, Guo S, et al. Promising monolayer membranes for CO2 /N2 /CH4, separation: Graphdiynes modified respectively with hydrogen, fluorine, and oxygen atoms. Appl Surf Sci 2017; 405: 455-64.
[http://dx.doi.org/10.1016/j.apsusc.2017.02.054]
[63]
Dang Y, Guo W, Zhao L, Zhu H. Porous carbon materials based on graphdiyne basis units by the incorporation of the functional groups and LI atoms for superior CO2 capture and sequestration. ACS Appl Mater Interfaces 2017; 9(35): 30002-13.
[http://dx.doi.org/10.1021/acsami.7b10836] [PMID: 28809100]
[64]
Jia Z, Li Y, Zuo Z, Liu H, Huang C, Li Y. Synthesis and properties of 2D carbon-graphdiyne. Acc Chem Res 2017; 50(10): 2470-8.
[http://dx.doi.org/10.1021/acs.accounts.7b00205] [PMID: 28915007]
[65]
Sun Q, Cai L, Ma H, Yuan C, Xu W. Dehalogenative homocoupling of terminal alkynyl bromides on Au (111): Incorporation of acetylenic scaffolding into surface nanostructures. ACS Nano 2016; 10(7): 7023-30.
[http://dx.doi.org/10.1021/acsnano.6b03048] [PMID: 27326451]
[66]
Xue Y, Li Y, Jin Z, et al. 2D graphdiyne materials: Challenges and opportunities in energy field. Sci China Chem 2018; 61(7): 1-22.
[http://dx.doi.org/10.1007/s11426-018-9270-y]
[67]
Yun J, Zhang Y, Xu M, et al. Effect of single vacancy on the structural, electronic structure and magnetic properties of monolayer graphyne by first-principles. Mater Chem Phys 2016; 182: 439-44.
[http://dx.doi.org/10.1016/j.matchemphys.2016.07.053]
[68]
Haskins J, Kınacı A, Sevik C, Sevinçli H, Cuniberti G, Cağın T. Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano 2011; 5(5): 3779-87.
[http://dx.doi.org/10.1021/nn200114p] [PMID: 21452884]
[69]
Ouyang T, Hu M. Thermal transport and thermoelectric properties of beta-graphyne nanostructures. Nanotechnology 2014; 25(24)245401
[http://dx.doi.org/10.1088/0957-4484/25/24/245401] [PMID: 24859889]
[70]
Fialkovsky IV, Marachevsky VN, Vassilevich DV. Finite temperature Casimir effect for graphene. Physics (College Park Md) 2011; 84(3): 44.
[71]
Nasser JA, Chassagne L, Alayli Y, et al. Molecules with two electronic energy levels: Study of nanoparticles in the atom‐phonon coupling model including a surface effect. Eur J Inorg Chem 2018; 2018(3-4): 493-502.
[http://dx.doi.org/10.1002/ejic.201701307]
[72]
Jones J, Poole LMG, Webster AR. Whipple’s ejection model and the Geminid stream. Mon Not R Astron Soc 2018; 455(4): 3424-9.
[http://dx.doi.org/10.1093/mnras/stv2476]
[73]
Cuffe J, Eliason JK, Maznev AA, et al. Reconstructing phonon mean free path contributions to thermal conductivity using nanoscale membranes. Phys Rev B Condens Matter Mater Phys 2015; 91(24)245423
[http://dx.doi.org/10.1103/PhysRevB.91.245423]
[74]
Parasuraman R, Wu Y, Ordonez-Miranda J, et al. Particle size effect on the thermal conductivity reduction of silicon based thermoelectric composites. Sustainable Energy & Fuels 2018; 2: 1764-71.
[http://dx.doi.org/10.1039/C8SE00131F]
[75]
Liu J, Ju S, Ding Y, et al. Size effect on the thermal conductivity of ultrathin polystyrene films. Appl Phys Lett 2014; 104(15): 210.
[http://dx.doi.org/10.1063/1.4871737]
[76]
Malhotra A, Maldovan M. Impact of phonon surface scattering on thermal energy distribution of Si and SiGe nanowires. Sci Rep 2016; 6: 25818.
[http://dx.doi.org/10.1038/srep25818] [PMID: 27174699]
[77]
Ramazani A, Reihani A, Soleimani A, et al. Molecular dynamics study of phonon transport in graphyne nanotubes. Carbon 2017; 123: 635-44.
[http://dx.doi.org/10.1016/j.carbon.2017.07.093]
[78]
Wallbank JR, Krishna KR, Holwill M, et al. Excess resistivity in graphene superlattices caused by umklapp electron-electron scattering. Nat Phys 2018; 15: 32-6.
[79]
Sahin H. Structural and phononic characteristics of nitrogenated holey graphene. Phys Rev B Condens Matter Mater Phys 2015; 92(8): 85421.
[http://dx.doi.org/10.1103/PhysRevB.92.085421]
[80]
Li X. Size effects of carbon nanotubes and graphene on cellular uptake. EPL 2012; 100(4): 46002.
[http://dx.doi.org/10.1209/0295-5075/100/46002]
[81]
Park JY, Salmeron M. Fundamental aspects of energy dissipation in friction. Chem Rev 2014; 114(1): 677-711.
[http://dx.doi.org/10.1021/cr200431y] [PMID: 24050522]
[82]
Yao L, Chen J. Theoretical study of phonon density of states, thermodynamic properties and phase transitions for HMX. Philos Mag 2014; 94(23): 2656-77.
[http://dx.doi.org/10.1080/14786435.2014.927598]
[83]
Malekpour H, Chang K-H, Chen J-C, et al. Thermal conductivity of graphene laminate. Nano Lett 2014; 14(9): 5155-61.
[http://dx.doi.org/10.1021/nl501996v] [PMID: 25111490]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy