Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

e-Membranome: A Database for Genome-Wide Analysis of Escherichia coli Outer Membrane Proteins

Author(s): Kang M. Lee, Cheorl-Ho Kim, Jong H. Kim, Sung S. Kim and Seung-Hak Cho*

Volume 22, Issue 4, 2021

Published on: 10 June, 2020

Page: [501 - 507] Pages: 7

DOI: 10.2174/1389201021666200610105549

Price: $65

Abstract

Objective: Lectin-like adhesins of enteric bacterial pathogens such as Escherichia coli are an attractive target for vaccine or drug development. Here, we have developed e-Membranome as a database of genome-wide putative adhesins in Escherichia coli (E. coli).

Methods: The outer membrane adhesins were predicted from the annotated genes of Escherichia coli strains using the PSORTb program. Further analysis was performed using Interproscan and the String database. The candidate proteins can be investigated for homology modeling of the Three-Dimensional (3D) structure (I-TASSER version 5.1), epitope region (ABCpred), and the glycan array.

Results: e-Membranome is implemented using the Django (version 2.2.5) framework. The Web Application Server Apache Tomcat 6.0 is integrated into the platform on Ubuntu Linux (version 16.04). MySQL database (version 5.7) is used as a database engine. The information on homology model of the 3D structure, epitope region, and affinity information from the glycan array will be stored in the e- Membranome database. As a case study, we performed a genome-wide screening of outer membraneembedded proteins from the annotated genes of E. coli using the e-Membranome pipeline.

Conclusion: This platform is expected to be a valuable resource for advancing research of outer membrane proteins for the construction of lectin-glycan interaction network of E. coli. In addition, the e- Membranome pipeline can be extended to other similar biological systems that need to address hostpathogen interactions.

Keywords: Escherichia coli, outer membrane-embedded proteins, genome-wide screening, e-Membranome, lectin-glycan interaction, lectin-like adhesins.

Graphical Abstract
[1]
Pizarro-Cerdá, J.; Cossart, P. Bacterial adhesion and entry into host cells. Cell, 2006, 124(4), 715-727.
[http://dx.doi.org/10.1016/j.cell.2006.02.012] [PMID: 16497583]
[2]
Klemm, P.; Schembri, M.A. Bacterial adhesins: function and structure. Int. J. Med. Microbiol., 2000, 290(1), 27-35.
[http://dx.doi.org/10.1016/S1438-4221(00)80102-2] [PMID: 11043979]
[3]
Kline, K.A.; Fälker, S.; Dahlberg, S.; Normark, S.; Henriques-Normark, B. Bacterial adhesins in host-microbe interactions. Cell Host Microbe, 2009, 5(6), 580-592.
[http://dx.doi.org/10.1016/j.chom.2009.05.011] [PMID: 19527885]
[4]
Langermann, S.; Möllby, R.; Burlein, J.E.; Palaszynski, S.R.; Auguste, C.G.; DeFusco, A.; Strouse, R.; Schenerman, M.A.; Hultgren, S.J.; Pinkner, J.S.; Winberg, J.; Guldevall, L.; Söderhäll, M.; Ishikawa, K.; Normark, S.; Koenig, S. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J. Infect. Dis., 2000, 181(2), 774-778.
[http://dx.doi.org/10.1086/315258] [PMID: 10669375]
[5]
Lomize, A.L.; Lomize, M.A.; Krolicki, S.R.; Pogozheva, I.D. Membranome: a database for proteome-wide analysis of single-pass membrane proteins. Nucleic Acids Res., 2017, 45(D1), D250-D255.
[http://dx.doi.org/10.1093/nar/gkw712] [PMID: 27510400]
[6]
Hubert, P.; Sawma, P.; Duneau, J.P.; Khao, J.; Hénin, J.; Bagnard, D.; Sturgis, J. Single-spanning transmembrane domains in cell growth and cell-cell interactions: More than meets the eye? Cell Adhes. Migr., 2010, 4(2), 313-324.
[http://dx.doi.org/10.4161/cam.4.2.12430] [PMID: 20543559]
[7]
Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; Brinkman, F.S. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 2010, 26(13), 1608-1615.
[http://dx.doi.org/10.1093/bioinformatics/btq249] [PMID: 20472543]
[8]
Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol., 2001, 305(3), 567-580.
[http://dx.doi.org/10.1006/jmbi.2000.4315] [PMID: 11152613]
[9]
Nielsen, H.; Engelbrecht, J.; von Heijne, G.; Brunak, S. Defining a similarity threshold for a functional protein sequence pattern: the signal peptide cleavage site. Proteins, 1996, 24(2), 165-177.
[http://dx.doi.org/10.1002/(SICI)1097-0134(199602)24:2<165:AID-PROT4>3.0.CO;2-I] [PMID: 8820484]
[10]
Juncker, A.S.; Willenbrock, H.; Von Heijne, G.; Brunak, S.; Nielsen, H.; Krogh, A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci., 2003, 12(8), 1652-1662.
[http://dx.doi.org/10.1110/ps.0303703] [PMID: 12876315]
[11]
Jiménez-Munguía, I.; Pulzova, L.; Kanova, E.; Tomeckova, Z.; Majerova, P.; Bhide, K.; Comor, L.; Sirochmanova, I.; Kovac, A.; Bhide, M. Proteomic and bioinformatic pipeline to screen the ligands of S. pneumoniae interacting with human brain microvascular endothelial cells. Sci. Rep., 2018, 8(1), 5231.
[http://dx.doi.org/10.1038/s41598-018-23485-1] [PMID: 29588455]
[12]
Singh, B.; Al-Jubair, T.; Mörgelin, M.; Thunnissen, M.M.; Riesbeck, K. The unique structure of Haemophilus influenzae protein E reveals multiple binding sites for host factors. Infect. Immun., 2013, 81(3), 801-814.
[http://dx.doi.org/10.1128/IAI.01111-12] [PMID: 23275089]
[13]
Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; Pesseat, S.; Quinn, A.F.; Sangrador-Vegas, A.; Scheremetjew, M.; Yong, S.Y.; Lopez, R.; Hunter, S. InterProScan 5: genome-scale protein function classification. Bioinformatics, 2014, 30(9), 1236-1240.
[http://dx.doi.org/10.1093/bioinformatics/btu031] [PMID: 24451626]
[14]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[15]
Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, 5(4), 725-738.
[http://dx.doi.org/10.1038/nprot.2010.5] [PMID: 20360767]
[16]
Saha, S.; Raghava, G.P. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 2006, 65(1), 40-48.
[http://dx.doi.org/10.1002/prot.21078] [PMID: 16894596]
[17]
Latif, H.; Li, H.J.; Charusanti, P.; Palsson, B.O.; Aziz, R.K.; Gapless, A.A. Gapless, Unambiguous Genome Sequence of the Enterohemorrhagic Escherichia coli O157:H7 Strain EDL933. Genome Announc., 2014, 2(4), e00821-e14.
[http://dx.doi.org/10.1128/genomeA.00821-14] [PMID: 25125650]
[18]
Sela-Culang, I.; Kunik, V.; Ofran, Y. The structural basis of antibody-antigen recognition. Front. Immunol., 2013, 4, 302.
[http://dx.doi.org/10.3389/fimmu.2013.00302] [PMID: 24115948]
[19]
Saier, M.H. Jr A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev., 2000, 64(2), 354-411.
[http://dx.doi.org/10.1128/MMBR.64.2.354-411.2000] [PMID: 10839820]
[20]
Korea, C.G.; Ghigo, J.M.; Beloin, C. The sweet connection: Solving the riddle of multiple sugar-binding fimbrial adhesins in Escherichia coli: Multiple E. coli fimbriae form a versatile arsenal of sugar-binding lectins potentially involved in surface-colonisation and tissue tropism. BioEssays, 2011, 33(4), 300-311.
[http://dx.doi.org/10.1002/bies.201000121] [PMID: 21344461]
[21]
Ielasi, F.S.; Alioscha-Perez, M.; Donohue, D.; Claes, S.; Sahli, H.; Schols, D.; Willaert, R.G. Lectin-Glycan Interaction Network-Based Identification of Host Receptors of Microbial Pathogenic Adhesins. MBio, 2016, 7(4), e00584-e16.
[http://dx.doi.org/10.1128/mBio.00584-16] [PMID: 27406561]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy