Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Antioxidant, Anti-Inflammatory and Cytotoxic Properties of Centaurea africana Lamk var. [Bonnet] M

Author(s): Sabrina Hadjira, Amira Mansour, Caglar Berkel, Ramdane Seghiri, Ahmed Menad, Fadila Benayache, Samir Benayache, Ercan Cacan and Souad Ameddah*

Volume 20, Issue 1, 2021

Published on: 09 June, 2020

Page: [89 - 100] Pages: 12

DOI: 10.2174/1871523019666200609140532

Price: $65

Abstract

Background: In Algerian traditional medicine, Centaurea species are well known in traditherapy. Centaurea africana has been used in folk medicine for the treatment of several inflammatory disorders.

Objective: This study aims to examine the antioxidant, anti-inflammatory and anti-proliferative potential of both n-Butanol (BECA) and ethyl acetate (EAECA) extracts of Centaurea africana.

Methods: The phytochemical analysis of both BECA and EAECA were explored and the antioxidant activities were investigated by measuring the DPPH° scavenging effect, the reducing power and the inhibition of lipid peroxidation (LPO) induced by by Fe2+/ ascorbic acid system. The antiinflammatory properties were determined by measuring the NO° scavenging effect and by using carrageenan-induced rat paw oedema. The antiproliferative activity was studied on HT29 (human colorectal adenocarcinoma), OV2008 (human ovarian cancer) and C6 (Rattus norvegicus brain glioma) cell lines using the Sulforhodamine B assay.

Results: The total polyphenol contents (TPC) of EAECA and BECA are recorded at 125.24±10.14 and 53.03±2.50 mgGAE/g extract, respectively. Both extracts revealed the antioxidant activity in a concentration-dependent manner; this effect is more pronounced with EAECA. The BECA exhibited a higher anti-inflammatory activity. This anti-inflammatory activity was reflected in a reduction of swelling of carrageenan-evoked edemas (48.45 %), inhibition of nitric oxide (84.7 %), effective decrease in myeloperoxidase activity (58.82 %) and malondialdehyde level (65.58 %). The cytotoxic effect of BECA was found to be more pronounced against C6 cell lines (IC50 value: 131.93 μg/mL) while the cytotoxic activity of EAECA was more effective against HT29 and OV2008 cell lines.

Conclusion: The obtained results indicated that EAECA exhibited a high antioxidant activity, while BECA has significant anti-inflammatory activity. Both extracts showed cytotoxic effects against cancer cell lines at certain concentrations in a cell-specific manner.

Keywords: Centaurea africana, phenolic content, antioxidant activity, anti-inflammatory activity, antiproliferative activity, flavonoids, oxidative stress.

Graphical Abstract
[1]
Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res., 2012, 3(4), 200-201.
[http://dx.doi.org/10.4103/2231-4040.104709] [PMID: 23378939]
[2]
Calixto, J.B. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz. J. Med. Biol. Res., 2000, 33(2), 179-189.
[http://dx.doi.org/10.1590/S0100-879X2000000200004] [PMID: 10657057]
[3]
Mitjavila, M.T.; Moreno, J.J. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem. Pharmacol., 2012, 84(9), 1113-1122.
[http://dx.doi.org/10.1016/j.bcp.2012.07.017] [PMID: 22858365]
[4]
Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J., 2016, 15(1), 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[5]
Abdel-lateif, K.S.; Maghrabi, I.A.; Eldeab, H.A. The plant natural products: Their antioxidants, free radical scavengers, dna protection and antimicrobial activities. J. Bioprocess. Biotech., 2016, 6(9), 293.
[http://dx.doi.org/10.4172/2155-9821.1000293]
[6]
Kruk, J.; Aboul-Enein, H.Y.; Kładna, A.; Bowser, J.E. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic. Res., 2019, 53(5), 497-521.
[http://dx.doi.org/10.1080/10715762.2019.1612059] [PMID: 31039624]
[7]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[8]
Vivancos, M.; Moreno, J.J. Role of Ca(2+)-independent phospholipase A(2) and cyclooxygenase/lipoxygenase pathways in the nitric oxide production by murine macrophages stimulated by lipopolysaccharides. Nitric Oxide, 2002, 6(3), 255-262.
[http://dx.doi.org/10.1006/niox.2001.0410] [PMID: 12009843]
[9]
Martinez, J.; Sanchez, T.; Moreno, J.J. Regulation of prostaglandin E2 production by the superoxide radical and nitric oxide in mouse peritoneal macrophages. Free Radic. Res., 2000, 32(4), 303-311.
[http://dx.doi.org/10.1080/10715760000300301] [PMID: 10741851]
[10]
Attiq, A.; Jalil, J.; Husain, K.; Ahmad, W. Raging the war against inflammation with natural products. Front. Pharmacol., 2018, 9, 976.
[http://dx.doi.org/10.3389/fphar.2018.00976] [PMID: 30245627]
[11]
Boukhary, R. Aboul-ElA, M.; Othman Al-Hanbali, O.; El-Lakany, A. Phenolic compounds from Centaurea horrida L growing in Lebanon. IJPPR, 2017, 9(1), 1-4.
[http://dx.doi.org/10.25258/ijpapr.v9i1.8031]
[12]
Bakr, R.O.; Mohamed, S.A.E.H.; Ayoub, N. Phenolic profile of Centaurea aegyptiaca L. growing in Egypt and its cytotoxic and antiviral activities. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(6), 135-143.
[http://dx.doi.org/10.21010/ajtcam.v13i6.19] [PMID: 28480370]
[13]
Ayad, R.; Ababsa, Z.A.; Belfadel, Z.F.; Akkal, S.; León, F.; Brouard, I.; Medjroubi, K. Phytochemical and biological activity of Algerian Centaurea melitensis. Int. J. Med. Arom. Plantas., 2012, 2(1), 151-154.
[14]
Seghiri, R.; Mekkiou, R.; Boumaza, O.; Benayache, S.; Bermijo, J.; Benayache, F. Phenolic compounds from Centaurea africana. Chem. Nat. Compd., 2006, 42, 610-611.
[http://dx.doi.org/10.1007/s10600-006-0228-x]
[15]
Seghiri, R.; Boumaza, O.; Mekkio, R.; Benayache, S.; Mosset, P.; Quintana, J.; Estévez, F.; León, F.; Bermejo, J.; Benayach, F. A flavonoid with cytotoxic activity and other constituents from Centaurea africana. Phytochem. Lett., 2009, 2(3), 114-118.
[http://dx.doi.org/10.1016/j.phytol.2009.03.002]
[16]
Quézel, P.; Santa, S. The new flora of Algeria and southern desert regions; The french national center for scientific research; , 1962, p. 1170.
[17]
Zaouani, M.; Bitam, A.; Baz, A.; Nenali, Y.; Ben-Mahdi, M.H. In vivo evaluation of wound healing and anti-inflammatory activity of methanolic extract of roots of Centaurea africana (L.) in a topical formulation. Asian J. Pharm. Clin. Res., 2017, 10, 341-346.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i1.15436]
[18]
Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol., 1999, 299, 152-178.
[http://dx.doi.org/10.1016/S0076-6879(99)99017-1]
[19]
Ordonez, A.A.L.; Gomez, J.D.; Vattuone, M.A.; Isla, M.I. Antioxidant activities of Sechium edule (Jacq.) Swart extracts. Food Chem., 2006, 97(3), 452-458.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.024]
[20]
Ohinishi, M.; Morishita, H.; Iwahashi, H.; Toda, S.; Shirataki, Y.; Kimura, M.; Kido, R. Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry, 1994, 36(3), 579-583.
[http://dx.doi.org/10.1016/S0031-9422(00)89778-2]
[21]
Oyaizu, M. Studies on product of browning reaction prepared from glucose amine. Japan J. Nutr., 1986, 44(6), 307-315.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[22]
Bishayee, S.; Balasubramanian, A.S. Lipid peroxide formation in rat brain. J. Neurochem., 1971, 18(6), 909-920.
[http://dx.doi.org/10.1111/j.1471-4159.1971.tb12020.x] [PMID: 4398119]
[23]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[24]
Marcocci, L.; Packer, L.; Droy-Lefaix, M.T.; Sekaki, A.; Gardès-Albert, M. Antioxidant action of Ginkgo biloba extract EGb 761. Methods Enzymol., 1994, 234, 462-475.
[http://dx.doi.org/10.1016/0076-6879(94)34117-6] [PMID: 7808320]
[25]
Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother., 2010, 1(2), 94-99.
[http://dx.doi.org/10.4103/0976-500X.72351] [PMID: 21350617]
[26]
Srivastava, S.; Singh, P.; Jha, K.K.; Mishra, G.; Srivastava, S.; Khosa, R.L. Anti-inflammatory, analgesic and antipyretic activities of aerial parts of Costus speciosus Koen. Indian J. Pharm. Sci., 2013, 75(1), 83-88.
[http://dx.doi.org/10.4103/0250-474X.113532] [PMID: 23901165]
[27]
Bradley, P.P.; Priebat, D.A.; Christensen, R.D.; Rothstein, G. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. J. Invest. Dermatol., 1982, 78(3), 206-209.
[http://dx.doi.org/10.1111/1523-1747.ep12506462] [PMID: 6276474]
[28]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1(3), 1112-1116.
[http://dx.doi.org/10.1038/nprot.2006.179] [PMID: 17406391]
[29]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[30]
Ozturk, N.; Tunçel, M.; Potoglu-Erkara, I. Phenolic compounds and antioxidant activities of some Hypericum species: A comparative study with H. perforatum. Pharm. Biol., 2009, 47(2), 120-127.
[http://dx.doi.org/10.1080/13880200802437073]
[31]
Aissaoui, H.; Menad, A.; Mezhoud, S.; Ameddah, S.; Mekkiou, R.; Benayache, S. benayache, F. Phytochemical screening, quantitative analysis and antioxidant activity of Lifago dielsii Schweunj & Mushl. (Asteraceae). Phytomedicine, 2014, 6(2), 280-285.
[32]
Benabdallah, A.; Rahmoune, C.; Boumendjel, M.; Aissi, O.; Messaoud, C. Total phenolic content and antioxidant activity of six wild Mentha species (Lamiaceae) from northeast of Algeria. Asian Pac. J. Trop. Biomed., 2016, 6(9), 760-766.
[http://dx.doi.org/10.1016/j.apjtb.2016.06.016]
[33]
Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidantactivity and health effects-A review. J. Funct. Foods, 2015, 18, 820-897.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[34]
Kerkatou, M.; Menad, A.; Sarri, D.; León, F.; Brouard, I.; Bouldjedj, R.; Chalard, P.; Ameddah, S.; Benayache, S.; Benayache, F. Secondary metabolites from Genista aspalathoides Lamks sp. aspalathoides M. Der Pharmacia Lettre., 2013, 5(5), 285-289.
[35]
Cherbi, R.; Hamia, C.; Gourine, N.; Bombarda, I.; Saïdi, M.; Yousfi, M. Lipid classes, fatty acids, tocopherols compositions and antioxidant activity of lawsonia alba seed oils growing in Algeria. Curr. Nutr. Food Sci., 2017, 13(2), 121-130.
[http://dx.doi.org/10.2174/1573401313666161125144545]
[36]
Oracz, J.; Zyzelewicz, D. In vitro antioxidant activity and FTIR characterization of high-molecular weight melanoidin fractions from different types of cocoa beans. Antioxidants, 2019, 8(11)E560
[http://dx.doi.org/10.3390/antiox8110560] [PMID: 31731784]
[37]
Dar, R.A.; Brahman, P.K.; Khurana, N.; Wagay, J.A.; Lone, Z.A.; Ganaie, M.A.; Pitre, K.S. Evaluation of antioxidant activity of crocin, podophyllotoxin and kaempferol by chemical, biochemical and electrochemical assays. Arab. J. Chem., 2017, 10, S1119-S1128.
[http://dx.doi.org/10.1016/j.arabjc.2013.02.004]
[38]
Akanni, O.O.; Owumi, S.E.; Adaramoye, O.A. In vitro studies to assess the antioxidative, radical scavenging and arginase inhibitory potentials of extracts from Artocarpus altilis, Ficus exasperate and Kigelia africana. Asian Pac. J. Trop. Biomed., 2014, 4(1), S492-S499.
[http://dx.doi.org/10.12980/APJTB.4.2014C581] [PMID: 25183137]
[39]
Osman, W.J.A.; Mothana, R.A.; Basudan, O.; Mohammed, M.S.; Mohamed, M.S. Antibacterial effect and radical scavenging activity of Hispidulin and Nepetin: A two flavones from Tarconanthus camphoratus L. World J. Pharm. Res., 2014, 4, 424-433.
[40]
Pérez, G, R.M.; Vargas, S, R.; Martinez, M, F.J.; Cordova, R, I. Antioxidant and free radical scavenging activities of 5,7,3′-trihydroxy-3,6,4′-trimethoxyflavone from Brickellia veronicaefolia. Phytother. Res., 2004, 18(5), 428-430.
[http://dx.doi.org/10.1002/ptr.1445] [PMID: 15174007]
[41]
Mishra, B.; Priyadarsini, K.I.; Kumar, M.S.; Unnikrishnan, M.K.; Mohan, H. Effect of O-glycosilation on the antioxidant activity and free radical reactions of a plant flavonoid, chrysoeriol. Bioorg. Med. Chem., 2003, 11(13), 2677-2685.
[http://dx.doi.org/10.1016/S0968-0896(03)00232-3] [PMID: 12788341]
[42]
Aljancić, I.; Stanković, M.; Tesević, V.; Vujisić, L.; Vajs, V.; Milosavljević, S. Protective effect on human lymphocytes of some flavonoids isolated from two Achillea species. Nat. Prod. Commun., 2010, 5(5), 729-732.
[http://dx.doi.org/10.1177/1934578X1000500511] [PMID: 20521537]
[43]
Jachak, S.M.; Gautam, R.; Selvam, C.; Madhan, H.; Srivastava, A.; Khan, T. Anti-inflammatory, cyclooxygenase inhibitory and antioxidant activities of standardized extracts of Tridax procumbens L. Fitoterapia, 2011, 82(2), 173-177.
[http://dx.doi.org/10.1016/j.fitote.2010.08.016] [PMID: 20804828]
[44]
Gaweesh, A.; Sengab, A.E.N.B.; El-Hefnawy, H.M.; Osman, S.M.; Abdou, A.M. Phytoconstituents, cytotoxic, antioxidant and hepatoprotective activities of the aerial parts of Lycium shawii R. Growing in Egypt. Med. Aromat. Plants, 2015, 4, 180.
[http://dx.doi.org/10.4172/2167-0412.1000180]
[45]
Shoeb, M.; Macmanus, S.; Kong-Thoo-Lin, P.; Celik, S.; Jaspars, M.; Nahar, L.; Sarker, S.D. Bioactivity of the extracts and isolation of lignans and a sesquiterpene from the aerial parts of Centaurea pamphylica (Asteraceae). Daru, 2007, 15(3), 118-122.
[46]
Chougule, P.; Pawar, R.; Limaye, D.; Joshi, Y.M.; Kadam, V. In-vitro Antioxidant activity of ethanolic extract of Centaurea behen. J. Appl. Pharm. Sci., 2012, 02(04), 106-110.
[http://dx.doi.org/10.7324/JAPS.2012.2421]
[47]
Granger, M.; Samson, E.; Sauvage, S.; Majumdar, A. Singh - Nee Nigam, P.; Nahar, L.; Celik, Z.; Sarker, S. D. Bioactivity of extracts of Centaurea polyclada (asteraceae). Arch. Biol. Sci., 2009, 61(3), 447-452.
[http://dx.doi.org/10.2298/ABS0903447G]
[48]
Keser, S.; Keser, F.; Turkoglu, I.; Kaygılı, O.; Tekin, S.; Demir, E.; Karatepe, M.; Yilmaz, O.; Kırbag, S.; Sandal, S.; Turkoglu, S. In vitro biological evaluation and phytochemical contents of three Centaurea l. species growing from Eastern Anatolia in Turkey. KSU J. Agric. Nat., 2020, 23, 148-156.
[http://dx.doi.org/10.18016/ksutarimdoga.vi.589279]
[49]
Baali, N.; Baali, S.; Bentamen, A.; Ameddah, S. Ameliorative effect of Centaurea maroccana and Centaurea acaulis against nephrotoxicity induced by carbon tetrachloride. Curr. Bioact. Compd., 2018, 14, 174-180.
[http://dx.doi.org/10.2174/1573407214666180820151905]
[50]
Bioud, K.; Azzouzi, D.; Benrebai, M.; Mekkiou, R.; Benayache, S.; Benayache, F.; Ameddah, S. Renoprotective Effect of Centaurea choulettiana Pomel (Asteraceae) leaves on cisplatin-induced oxidative stress and renal dysfunction in mice. J. Appl. Pharm. Sci., 2017, 7(11), 147-154.
[http://dx.doi.org/10.7324/JAPS.2017.71122]
[51]
Azzouzi, D.; Bioud, K.; Demirtas, I.; Gul, F.; Sarri, D.; Benayache, S.; Benayache, F.; Mekkiou, R. Phenolic profile and antioxidant activity of Centaurea choulettiana pomel (asteraceae) extracts. Comb. Chem. High Throughput Screen., 2016, 19(10), 841-846.
[http://dx.doi.org/10.2174/1574888X11666161102092319] [PMID: 27809745]
[52]
Lahneche, A.M.; Boucheham, R.; Ozen, T.; Altun, M.; Boubekri, N.; Demirtas, I.; Bicha, S.; Bentamene, A.; Benayache, F.; Benayache, S.; Zama, D. In vitro antioxidant, DNA-damaged protection and antiproliferative activities of ethyl acetate and n-butanol extracts of Centaurea sphaerocephala L. An. Acad. Bras. Cienc., 2019, 91(3), e20180462.
[http://dx.doi.org/10.1590/0001-3765201920180462] [PMID: 31553365]
[53]
Bouzghaia, B.; Moussa, M.T.B.; Goudjil, R.; Harkat, H.; Pale, P. Chemical composition, in vitro antioxidant and antibacterial activities of Centaurea resupinata subsp. dufourii (dostál) greuter. Nat. Prod. Res., 2020, 1-5, 1-6.
[http://dx.doi.org/10.1080/14786419.2020.1715397] [PMID: 31971020]
[54]
Hazeena Begum, V.; Muthukumaran, P. Phytochemical and free radical scavenging activity of Poorna chandrodayam chendooram (metallic herbal based drug). J. Phytopharmacol., 2014, 3(6), 418-422.
[55]
Singh, M.; Kumar, V.; Singh, I.; Gauttam, V.; Kalia, A.N. Anti-inflammatory activity of aqueous extract of Mirabilis Jalapa Linn. leaves. Pharmacognosy Res., 2010, 2(6), 364-367.
[http://dx.doi.org/10.4103/0974-8490.75456] [PMID: 21713140]
[56]
Baharuddin, A.A.; Roosli, R.A.J.; Zakaria, Z.A.; Md Tohid, S.F. Dicranopteris linearis extract inhibits the proliferation of human breast cancer cell line (MDA-MB-231) via induction of S-phase arrest and apoptosis. Pharm. Biol., 2018, 56(1), 422-432.
[http://dx.doi.org/10.1080/13880209.2018.1495748] [PMID: 30301390]
[57]
Soni, R.K.; Irchhaiya, R.; Dixit, V.; Bhat, Z.A.; Wani, H.A.; Najar, A.H. Antiinflammatory activity of Kirganelia reticulata (poir). Baill. Root by carrageenan-induced rat paw oedema model. Int. J. Pharma Sci., 2014, 6(1), 520-523.
[58]
Vivancos, M.; Moreno, J.J. Effect of resveratrol, tyrosol and β-sitosterol on oxidised low-density lipoprotein-stimulated oxidative stress, arachidonic acid release and prostaglandin E2 synthesis by RAW 264.7 macrophages. Br. J. Nutr., 2008, 99(6), 1199-1207.
[http://dx.doi.org/10.1017/S0007114507876203] [PMID: 18081942]
[59]
Lloret, S.; Moreno, J.J. Effects of an anti-inflammatory peptide (antiflammin 2) on cell influx, eicosanoid biosynthesis and oedema formation by arachidonic acid and tetradecanoyl phorbol dermal application. Biochem. Pharmacol., 1995, 50(3), 347-353.
[http://dx.doi.org/10.1016/0006-2952(95)00148-S] [PMID: 7646536]
[60]
Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res., 2018, 122(6), 877-902.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311401] [PMID: 29700084]
[61]
Sdayria, J.; Rjeibi, I.; Feriani, A.; Ncib, S.; Bouguerra, W.; Hfaiedh, N.; Elfeki, A.; Allagui, M.S. Chemical composition and antioxidant, analgesic, and anti-inflammatory effects of methanolic extract of Euphorbia retusa in mice. Pain Res. Manag., 2018, 2018, 4838413.
[http://dx.doi.org/10.1155/2018/4838413] [PMID: 30073041]
[62]
Koca, U.; Suntar, I.P.; Keles, H.; Yesilada, E.; Akkol, E.K. In vivo anti-inflammatory and wound healing activities of Centaurea iberica Trev. ex Spreng. J. Ethnopharmacol., 2009, 126(3), 551-556.
[http://dx.doi.org/10.1016/j.jep.2009.08.017] [PMID: 19703541]
[63]
Kubacey, T.M.; Haggag, E.G.; El-Toumy, S.A.; Ahmed, A.; El-Ashmawy, I.M.; Youns, M.M. Biological activity and flavonoids from Centaurea alexanderina leaf extract. J. Pharm. Res., 2012, 5(6), 3352-3361.
[64]
Talhouk, R.S.; El-Jouni, W.; Baalbaki, R.; Gali-Muhtasib, H.; Kogan, J.; Talhouk, S.N. Anti-inflammatory bio-activities in a water extract of Centaurea ainetensis. J. Med. Plants Res., 2008, 2(2), 24-33.
[65]
Negrete, R.E.; Backhouse, N.; Cajigal, I.; Delporte, C.; Cassels, B.K.; Breitmaier, E.; Eckhardt, G. Two new antiinflammatory elemanolides from Centaurea chilensis. J. Ethnopharmacol., 1993, 40(3), 149-153.
[http://dx.doi.org/10.1016/0378-8741(93)90062-A] [PMID: 8145569]
[66]
Karamenderes, C.; Konyalioglu, S.; Khan, S.; Khan, I.A. Total phenolic contents, free radical scavenging activities and inhibitory effects on the activation of NF-kappa B of eight Centaurea L. species. Phytother. Res., 2007, 21(5), 488-491.
[http://dx.doi.org/10.1002/ptr.2097] [PMID: 17245684]
[67]
Erel, S.B.; Demir, S.; Nalbantsoy, A.; Ballar, P.; Khan, S.; Yavasoglu, N.U.K.; Karaalp, C. Bioactivity screening of five Centaurea species and in vivo anti-inflammatory activity of C. athoa. Pharm. Biol., 2014, 52(6), 775-781.
[http://dx.doi.org/10.3109/13880209.2013.868493] [PMID: 24405079]
[68]
Koca, U.; Toker, G.; Kupeli-Akkol, E. Assessment of the extracts of Centaurea tchihatcheffii Fischer for anti-inflammatory and analgesic activities in animal models. Trop. J. Pharm. Res., 2009, 8(3), 193-200.
[http://dx.doi.org/10.4314/tjpr.v8i3.44532]
[69]
Gurbuz, I.; Yesilada, E. Evaluation of the anti-ulcerogenic effect of sesquiterpene lactones from Centaurea solstitialis L. ssp. solstitialis by using various in vivo and biochemical techniques. J. Ethnopharmacol., 2007, 112(2), 284-291.
[http://dx.doi.org/10.1016/j.jep.2007.03.009] [PMID: 17418988]
[70]
Storniolo, C.E.; Moreno, J.J. Resveratrol analogs with antioxidant activity inhibit intestinal epithelial cancer CaCO2 cell growth by modulating arachidonic acid cascade. J. Agric. Food Chem., 2019, 67(3), 819-828.
[http://dx.doi.org/10.1021/acs.jafc.8b05982] [PMID: 30575383]
[71]
Walle, T.; Ta, N.; Kawamori, T.; Wen, X.; Tsuji, P.A.; Walle, U.K. Cancer chemopreventive properties of orally bioavailable flavonoids--methylated versus unmethylated flavones. Biochem. Pharmacol., 2007, 73(9), 1288-1296.
[http://dx.doi.org/10.1016/j.bcp.2006.12.028] [PMID: 17250812]
[72]
Sary, H.G.; Ayoub, N.A.; Singab, A.N.B.; Vinodh, M.; Orabi, K.Y. Isolation of bioactive compounds from Centaurea aegyptiaca. Int. J. Pharm. Pharm. Sci., 2018, 10, 1-6.
[http://dx.doi.org/10.22159/ijpps.2018v10i4.17528]
[73]
Medjroubi, K.; Benayache, F.; Bermejo, J. Sesquiterpene lactones from Centaurea musimomum. Antiplasmodial and cytotoxic activities. Fitoterapia, 2005, 76(7-8), 744-746.
[http://dx.doi.org/10.1016/j.fitote.2005.08.005] [PMID: 16233959]
[74]
El-Najjar, N.; Dakdouki, S.; Darwiche, N.; El-Sabban, M.; Saliba, N.A.; Gali-Muhtasib, H. Anti-colon cancer effects of Salograviolide A isolated from Centaurea ainetensis. Oncol. Rep., 2008, 19(4), 897-904.
[http://dx.doi.org/10.3892/or.19.4.897] [PMID: 18357373]
[75]
Bach, S.M.; Fortuna, M.A.; Attarian, R.; de Trimarco, J.T.; Catalán, C.A.; Av-Gay, Y.; Bach, H. Antibacterial and cytotoxic activities of the sesquiterpene lactones cnicin and onopordopicrin. Nat. Prod. Commun., 2011, 6(2), 163-166.
[http://dx.doi.org/10.1177/1934578X1100600202] [PMID: 21425665]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy