Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Modified Plasma Cytokine Profile in Occupational Dermatitis

Author(s): Alexandra M. Rascu*, Marina R. Otelea, Cristina Mambet, Claudia Handra, Ana I. Neagu, Agripina Rascu, Calin Giurcaneanu and Carmen C. Diaconu

Volume 20, Issue 8, 2020

Page: [1295 - 1302] Pages: 8

DOI: 10.2174/1871530320666200607194021

Price: $65

Abstract

Background: Despite significant progress in the diagnosis of contact dermatitis, the identification by specific tests or biomarkers remains an unsolved issue, particularly when needed for the confirmation of the occupational origin of the disease.

Objective: To characterize the plasma proteome profile in occupational dermatitis in workers of paint industry.

Methods: The study has a case-control design, comparing exposed workers with and without occupational contact dermatitis, matched for age, gender, occupational history, and comorbidities. An immunological assay (Human XL Cytokine Array Kit – ARY022B, R&D Systems) was used to measure the plasma levels of 105 cytokines and chemokines in a pooled sample of the cases and a pooled sample of the controls.

Results: A 1.5-fold increase was noticed for interleukin 3, interleukin 10, and leptin in cases, as compared to controls. Fibroblast growth factor-7 and growth/differentiation factor-15 showed a 1.4-fold increase, while interleukin 19, interleukin 31, and macrophage inflammatory protein 3a had only a 1.3- fold increase. The leukemia inhibitory factor was the only plasma cytokine that showed a 1.3-fold decrease. All other cytokines had a variation of less than 1.2-fold between cases and controls.

Conclusion: The recognition of the molecular signatures is very important for an accurate and indisputable diagnosis of occupational contact dermatitis. In workers from the paint industry, plasma levels of interleukins 3, 10, 13 and 19, fibroblast growth factor-7, and growth/differentiation factor-15, together with leukemia inducible factor, may differentiate subjects with contact dermatitis from those without skin lesions.

Keywords: Occupational dermatitis, proteome profiler, interleukin 3, interleukin 10, leptin, fibroblast growth factor-7, growth factor-15, interleukin 19, interleukin 31, macrophage inflammatory protein 3α, leukemia inhibitory factor.

Graphical Abstract
[1]
Hänel, K.H.; Cornelissen, C.; Lüscher, B.; Baron, J.M. Cytokines and the skin barrier. Int. J. Mol. Sci., 2013, 14(4), 6720-6745.
[http://dx.doi.org/10.3390/ijms14046720] [PMID: 23531535]
[2]
Zinkevičienė, A.; Kainov, D.; Lastauskienė, E.; Kvedarienė, V.; Bychkov, D.; Byrne, M.; Girkontaitė, I. Serum Biomarkers of Allergic Contact Dermatitis: A Pilot Study. Int. Arch. Allergy Immunol., 2015, 168(3), 161-164.
[http://dx.doi.org/10.1159/000442749] [PMID: 26790150]
[3]
Modjtahedi, B.S.; Modjtahedi, S.P.; Maibach, H.I. The sex of the individual as a factor in allergic contact dermatitis. Contact Dermat., 2004, 50(2), 53-59.
[http://dx.doi.org/10.1111/j.0105-1873.2004.00299.x] [PMID: 15128314]
[4]
Raulf, M.; Brüning, T.; Jensen-Jarolim, E.; van Kampen, V. Gender-related aspects in occupational allergies - Secondary publication and update. World Allergy Organ. J., 2017, 10(1), 44.
[http://dx.doi.org/10.1186/s40413-017-0175-y] [PMID: 29308111]
[5]
Reddy, E.P.; Korapati, A.; Chaturvedi, P.; Rane, S. IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene, 2000, 19(21), 2532-2547.
[http://dx.doi.org/10.1038/sj.onc.1203594] [PMID: 10851052]
[6]
de Cássia Campos, M.R.; Toso, V.D.; de Souza, D.A., Jr; Vieira, G.V.; da Silva, E.Z.M.; Oliver, C.; Jamur, M.C. Differential effects of chemoattractants on mast cell recruitment in vivo. Cell. Immunol., 2014, 289(1-2), 86-90.
[http://dx.doi.org/10.1016/j.cellimm.2014.03.013] [PMID: 24736098]
[7]
Miyake, K.; Shiozawa, N.; Nagao, T.; Yoshikawa, S.; Yamanishi, Y.; Karasuyama, H. Trogocytosis of peptide-MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils. Proc. Natl. Acad. Sci. USA, 2017, 114(5), 1111-1116.
[http://dx.doi.org/10.1073/pnas.1615973114] [PMID: 28096423]
[8]
Speiran, K.; Bailey, D.P.; Fernando, J.; Macey, M.; Barnstein, B.; Kolawole, M.; Curley, D.; Watowich, S.S.; Murray, P.J.; Oskeritzian, C.; Ryan, J.J. Endogenous suppression of mast cell development and survival by IL-4 and IL-10. J. Leukoc. Biol., 2009, 85(5), 826-836.
[http://dx.doi.org/10.1189/jlb.0708448] [PMID: 19228815]
[9]
Ouwehand, K.; Oosterhoff, D.; Breetveld, M.; Scheper, R.J.; de Gruijl, T.D.; Gibbs, S. Irritant-induced migration of Langerhans cells coincides with an IL-10-dependent switch to a macrophage-like phenotype. J. Invest. Dermatol., 2011, 131(2), 418-425.
[http://dx.doi.org/10.1038/jid.2010.336] [PMID: 21068755]
[10]
de Gruijl, T.D.; Sombroek, C.C.; Lougheed, S.M.; Oosterhoff, D.; Buter, J.; van den Eertwegh, A.J.; Scheper, R.J.; Pinedo, H.M. A postmigrational switch among skin-derived dendritic cells to a macrophage-like phenotype is predetermined by the intracutaneous cytokine balance. J. Immunol., 2006, 176(12), 7232-7242.
[http://dx.doi.org/10.4049/jimmunol.176.12.7232] [PMID: 16751366]
[11]
Van Belle, A.B.; Cochez, P.M.; de Heusch, M.; Pointner, L.; Opsomer, R.; Raynaud, P.; Achouri, Y.; Hendrickx, E.; Cheou, P.; Warnier, G.; Renauld, J.C.; Baeck, M.; Dumoutier, L. IL-24 contributes to skin inflammation in Para-Phenylenediamine-induced contact hypersensitivity. Sci. Rep., 2019, 9(1), 1852.
[http://dx.doi.org/10.1038/s41598-018-38156-4] [PMID: 30755657]
[12]
Fujimoto, Y.; Fujita, T.; Kuramoto, N.; Kuwamura, M.; Izawa, T.; Nishiyama, K.; Yoshida, N.; Nakajima, H.; Takeuchi, T.; Azuma, Y.T. The role of interleukin-19 in contact hypersensitivity. Biol. Pharm. Bull., 2018, 41(2), 182-189.
[http://dx.doi.org/10.1248/bpb.b17-00594] [PMID: 29386478]
[13]
Konrad, R.J.; Higgs, R.E.; Rodgers, G.H.; Ming, W.; Qian, Y.W.; Bivi, N.; Mack, J.K.; Siegel, R.W.; Nickoloff, B.J. Assessment and Clinical Relevance of Serum IL-19 Levels in Psoriasis and Atopic Dermatitis Using a Sensitive and Specific Novel Immunoassay. Sci. Rep., 2019, 9(1), 5211.
[http://dx.doi.org/10.1038/s41598-019-41609-z] [PMID: 30914699]
[14]
Takamori, A.; Nambu, A.; Sato, K.; Yamaguchi, S.; Matsuda, K.; Numata, T.; Sugawara, T.; Yoshizaki, T.; Arae, K.; Morita, H.; Matsumoto, K.; Sudo, K.; Okumura, K.; Kitaura, J.; Matsuda, H.; Nakae, S. IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity. Sci. Rep., 2018, 8(1), 6639.
[http://dx.doi.org/10.1038/s41598-018-25094-4] [PMID: 29703903]
[15]
Hänel, K.H.; Pfaff, C.M.; Cornelissen, C.; Amann, P.M.; Marquardt, Y.; Czaja, K.; Kim, A.; Lüscher, B.; Baron, J.M. Control of the Physical and Antimicrobial Skin Barrier by an IL-31-IL-1 Signaling Network. J. Immunol., 2016, 196(8), 3233-3244.
[http://dx.doi.org/10.4049/jimmunol.1402943] [PMID: 26944931]
[16]
Huth, S.; Schmitt, L.; Marquardt, Y.; Heise, R.; Lüscher, B.; Amann, P.M.; Baron, J.M. Effects of a ceramide-containing water-in-oil ointment on skin barrier function and allergen penetration in an IL-31 treated 3D model of the disrupted skin barrier. Exp. Dermatol., 2018, 27(9), 1009-1014.
[http://dx.doi.org/10.1111/exd.13697] [PMID: 29851147]
[17]
Schmuth, M.; Neyer, S.; Rainer, C.; Grassegger, A.; Fritsch, P.; Romani, N.; Heufler, C. Expression of the C-C chemokine MIP-3 alpha/CCL20 in human epidermis with impaired permeability barrier function. Exp. Dermatol., 2002, 11(2), 135-142.
[http://dx.doi.org/10.1034/j.1600-0625.2002.110205.x] [PMID: 11994140]
[18]
Meller, S.; Lauerma, A.I.; Kopp, F.M.; Winterberg, F.; Anthoni, M.; Müller, A.; Gombert, M.; Haahtela, A.; Alenius, H.; Rieker, J.; Dieu-Nosjean, M.C.; Kubitza, R.C.; Gleichmann, E.; Ruzicka, T.; Zlotnik, A.; Homey, B. Chemokine responses distinguish chemical-induced allergic from irritant skin inflammation: memory T cells make the difference. J. Allergy Clin. Immunol., 2007, 119(6), 1470-1480.
[http://dx.doi.org/10.1016/j.jaci.2006.12.654] [PMID: 17337293]
[19]
Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol., 2015, 4(3), 215-266.
[http://dx.doi.org/10.1002/wdev.176] [PMID: 25772309]
[20]
Emmerson, P.J.; Duffin, K.L.; Chintharlapalli, S.; Wu, X. GDF15 and Growth Control. Front. Physiol., 2018, 9, 1712.
[http://dx.doi.org/10.3389/fphys.2018.01712] [PMID: 30542297]
[21]
Meyer, M.; Müller, A.K.; Yang, J.; Moik, D.; Ponzio, G.; Ornitz, D.M.; Grose, R.; Werner, S. FGF receptors 1 and 2 are key regulators of keratinocyte migration in vitro and in wounded skin. J. Cell Sci., 2012, 125(Pt 23), 5690-5701.
[http://dx.doi.org/10.1242/jcs.108167] [PMID: 22992463]
[22]
Song, Y.H.; Zhu, Y.T.; Ding, J.; Zhou, F.Y.; Xue, J.X.; Jung, J.H.; Li, Z.J.; Gao, W.Y. Distribution of fibroblast growth factors and their roles in skin fibroblast cell migration. Mol. Med. Rep., 2016, 14(4), 3336-3342.
[http://dx.doi.org/10.3892/mmr.2016.5646] [PMID: 27572477]
[23]
Adela, R.; Banerjee, S.K. GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Prospective. J. Diabetes Res., 2015490842, 1-14.
[24]
Lambert, J.R.; Kelly, J.A.; Shim, M.; Huffer, W.E.; Nordeen, S.K.; Baek, S.J.; Eling, T.E.; Lucia, M.S. Prostate derived factor in human prostate cancer cells: gene induction by vitamin D via a p53-dependent mechanism and inhibition of prostate cancer cell growth. J. Cell. Physiol., 2006, 208(3), 566-574.
[http://dx.doi.org/10.1002/jcp.20692] [PMID: 16741990]
[25]
Fujita, Y.; Taniguchi, Y.; Shinkai, S.; Tanaka, M.; Ito, M. Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatr. Gerontol. Int., 2016, 16(Suppl. 1), 17-29.
[http://dx.doi.org/10.1111/ggi.12724] [PMID: 27018280]
[26]
Ünal, B.; Alan, S.; Başsorgun, C.İ.; Karakaş, A.A.; Elpek, G.Ö.; Çiftçioğlu, M.A. The divergent roles of growth differentiation factor-15 (GDF-15) in benign and malignant skin pathologies. Arch. Dermatol. Res., 2015, 307(7), 551-557.
[http://dx.doi.org/10.1007/s00403-015-1546-2] [PMID: 25690161]
[27]
Akiyama, M.; Okano, K.; Fukada, Y.; Okano, T. Macrophage inhibitory cytokine MIC-1 is upregulated by short-wavelength light in cultured normal human dermal fibroblasts. FEBS Lett., 2009, 583(5), 933-937.
[http://dx.doi.org/10.1016/j.febslet.2009.02.006] [PMID: 19302795]
[28]
Thorne, H.C.; Jones, K.H.; Peters, S.P.; Archer, S.N.; Dijk, D.J. Daily and seasonal variation in the spectral composition of light exposure in humans. Chronobiol. Int., 2009, 26(5), 854-866.
[http://dx.doi.org/10.1080/07420520903044315] [PMID: 19637047]
[29]
La Cava, A. Leptin in inflammation and autoimmunity. Cytokine, 2017, 98, 51-58.
[http://dx.doi.org/10.1016/j.cyto.2016.10.011] [PMID: 27916613]
[30]
Yadav, A.; Kataria, M.A.; Saini, V.; Yadav, A. Role of leptin and adiponectin in insulin resistance. Clin. Chim. Acta, 2013, 417, 80-84.
[http://dx.doi.org/10.1016/j.cca.2012.12.007] [PMID: 23266767]
[31]
Stern, J.H.; Rutkowski, J.M.; Scherer, P.E. Adiponectin, Leptin, and Fatty Acids in the Maintenance of Metabolic Homeostasis through Adipose Tissue Crosstalk. Cell Metab., 2016, 23(5), 770-784.
[http://dx.doi.org/10.1016/j.cmet.2016.04.011] [PMID: 27166942]
[32]
Spofford, C.M.; Mohan, S.; Kang, S.; Jang, J.H.; Brennan, T.J. Evaluation of leukemia inhibitory factor (LIF) in a rat model of postoperative pain. J. Pain, 2011, 12(7), 819-832.
[http://dx.doi.org/10.1016/j.jpain.2011.02.351] [PMID: 21729793]
[33]
Zhu, M.; Oishi, K.; Lee, S.C.; Patterson, P.H. Studies using leukemia inhibitory factor (LIF) knockout mice and a LIF adenoviral vector demonstrate a key anti-inflammatory role for this cytokine in cutaneous inflammation. J. Immunol., 2001, 166(3), 2049-2054.
[http://dx.doi.org/10.4049/jimmunol.166.3.2049] [PMID: 11160255]
[34]
Berroth, A.; Kühnl, J.; Kurschat, N.; Schwarz, A.; Stäb, F.; Schwarz, T.; Wenck, H.; Fölster-Holst, R.; Neufang, G. Role of fibroblasts in the pathogenesis of atopic dermatitis. J. Allergy Clin. Immunol., 2013, 131(6), 1547-1554.
[http://dx.doi.org/10.1016/j.jaci.2013.02.029] [PMID: 23582515]
[35]
Parodi, A.; Sanguineti, R.; Catalano, M.; Penco, S.; Pronzato, M.A.; Scanarotti, C.; Bassi, A.M. A comparative study of leukaemia inhibitory factor and interleukin-1alpha intracellular content in a human keratinocyte cell line after exposure to cosmetic fragrances and sodium dodecyl sulphate. Toxicol. Lett., 2010, 192(2), 101-107.
[http://dx.doi.org/10.1016/j.toxlet.2009.10.013] [PMID: 19878710]
[36]
Akita, S.; Daian, T.; Ishihara, H.; Fujii, T.; Akino, K. Leukemia inhibitory factor-transfected embryonic fibroblasts and vascular endothelial growth factor successfully improve the skin substitute wound healing by increasing angiogenesis and matrix production. J. Dermatol. Sci., 2004, 36(1), 11-23.
[http://dx.doi.org/10.1016/j.jdermsci.2004.05.007] [PMID: 15488701]
[37]
Taniguchi, T.; Miyagawa, T.; Tamaki, Z.; Nakamura, K.; Yamashita, T.; Saigusa, R.; Takahashi, T.; Toyama, T.; Ichimura, Y.; Yoshizaki, A.; Tada, Y.; Sugaya, M.; Kadono, T.; Sato, S.; Asano, Y. A possible implication of reduced levels of LIF, LIFR, and gp130 in vasculopathy related to systemic sclerosis. Arch. Dermatol. Res., 2017, 309(10), 833-842.
[http://dx.doi.org/10.1007/s00403-017-1786-4] [PMID: 29038846]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy