Generic placeholder image

Current Bioinformatics


ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

MK-FSVM-SVDD: A Multiple Kernel-based Fuzzy SVM Model for Predicting DNA-binding Proteins via Support Vector Data Description

Author(s): Yi Zou, Hongjie Wu, Xiaoyi Guo, Li Peng*, Yijie Ding*, Jijun Tang and Fei Guo*

Volume 16 , Issue 2 , 2021

Published on: 07 June, 2020

Page: [274 - 283] Pages: 10

DOI: 10.2174/1574893615999200607173829

Price: $65


Background: Detecting DNA-binding proteins (DBPs) based on biological and chemical methods is time-consuming and expensive.

Objective: In recent years, the rise of computational biology methods based on Machine Learning (ML) has greatly improved the detection efficiency of DBPs.

Methods: In this study, the Multiple Kernel-based Fuzzy SVM Model with Support Vector Data Description (MK-FSVM-SVDD) is proposed to predict DBPs. Firstly, sex features are extracted from the protein sequence. Secondly, multiple kernels are constructed via these sequence features. Then, multiple kernels are integrated by Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL). Next, fuzzy membership scores of training samples are calculated with Support Vector Data Description (SVDD). FSVM is trained and employed to detect new DBPs.

Results: Our model is evaluated on several benchmark datasets. Compared with other methods, MKFSVM- SVDD achieves best Matthew's Correlation Coefficient (MCC) on PDB186 (0.7250) and PDB2272 (0.5476).

Conclusion: We can conclude that MK-FSVM-SVDD is more suitable than common SVM, as the classifier for DNA-binding proteins identification.

Keywords: DNA-binding proteins, fuzzy support vector machine, multiple kernel learning, support vector data description, membership function.

Graphical Abstract

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy