Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Faecal Microbiota Transplantation in Inflammatory Bowel Disease: Current Concepts and Future Challenges

Author(s): Hubert Zatorski and Radislav Nakov*

Volume 21 , Issue 14 , 2020

Page: [1440 - 1447] Pages: 8

DOI: 10.2174/1389450121666200602125507

Price: $65

Abstract

Dysbiosis has been repeatedly observed in inflammatory bowel disease (IBD) and is now recognized as an essential factor in the gut inflammatory process. IBD is a significant burden to health-care systems, mainly due to treatment-related costs. Available treatments have several limitations: up to 30% of patients are primary non-responders, and between 10 and 20% lose response per year, requiring a dose-escalation or a switch to another biologic. Hence, the current IBD treatment is not sufficient, and there is an urgent need to introduce new therapies in the management of these patients. Recently, the correction of dysbiosis has become an attractive approach from a therapeutic point of view. Faecal microbiota transplantation (FMT) appears as a reliable and potentially beneficial therapy in IBD patients. There is developing data that FMT for mild-to-moderately active UC is a safe and efficient therapy for the induction of remission. However, the current studies have different designs and have a short follow up, which makes clinical interpretation significantly difficult. There is a need for RCTs with a well-defined study cohort using FMT for the therapy of CD patients. The location, behavior, and severity of the disease should be taken into account. The goal of this manuscript is to review the data currently available on FMT and IBD, to explain FMT principles and methodology in IBD patients and to discuss some unresolved issues.

Keywords: Crohn's disease, inflammatory bowel disease, faecal microbiota transplantation, gut microbiota, ulcerative colitis, dysbiosis.

Graphical Abstract
[1]
Feuerstein JD, Cheifetz AS. Ulcerative colitis: Epidemiology, diagnosis, and management. Mayo Clinic Proceedings . Elsevier Ltd 2014; Vol. 89: pp. 1553-1563..
[2]
Knights D, Lassen KG, Xavier RJ. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut 2013; 62(10): 1505-10.
[http://dx.doi.org/10.1136/gutjnl-2012-303954 ] [PMID: 24037875]
[3]
Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 2007; 369(9573): 1641-57.
[http://dx.doi.org/10.1016/S0140-6736(07)60751-X ] [PMID: 17499606]
[4]
Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012; 13(9): R79.
[http://dx.doi.org/10.1186/gb-2012-13-9-r79 ] [PMID: 23013615]
[5]
Sokol H, Seksik P. The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr Opin Gastroenterol 2010; 26(4): 327-31.
[http://dx.doi.org/10.1097/MOG.0b013e328339536b ] [PMID: 20445446]
[6]
Sokol H, Seksik P, Furet JP, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 2009; 15(8): 1183-9.
[http://dx.doi.org/10.1002/ibd.20903 ] [PMID: 19235886]
[7]
Burger D, Travis S. Conventional medical management of inflammatory bowel disease. Gastroenterology 2011; 140(6): 1827-1837.e2.
[http://dx.doi.org/10.1053/j.gastro.2011.02.045 ] [PMID: 21530749]
[8]
Olivera P, Danese S, Peyrin-Biroulet L. Next generation of small molecules in inflammatory bowel disease. In: Gut. BMJ Publishing Group 2017; Vol. 66: pp. 199-209.
[http://dx.doi.org/10.1136/gutjnl-2016-312912]
[9]
Allez M, Karmiris K, Louis E, Van Assche G, Ben-Horin S, Klein A, et al. Report of the ECCO pathogenesis workshop on anti-TNF therapy failures in inflammatory bowel diseases: Definitions, frequency and pharmacological aspects. Vol. 4. J Crohn’s Colitis 2010; 355-66.
[http://dx.doi.org/10.1016/j.crohns.2010.04.004]
[10]
Baert F, Noman M, Vermeire S, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 2003; 348(7): 601-8.
[http://dx.doi.org/10.1056/NEJMoa020888 ] [PMID: 12584368]
[11]
Roda G, Jharap B, Neeraj N, Colombel JF. Loss of response to anti-tnfs: definition, epidemiology, and management. clinical and translational gastroenterology. Nature Publishing Group 2016; Vol. 7: p.e135
[12]
van der Valk ME, Mangen MJJ, Leenders M, et al. COIN study group and the Dutch Initiative on Crohn and Colitis. Healthcare costs of inflammatory bowel disease have shifted from hospitalisation and surgery towards anti-TNFα therapy: results from the COIN study. Gut 2014; 63(1): 72-9.
[http://dx.doi.org/10.1136/gutjnl-2012-303376 ] [PMID: 23135759]
[13]
Cammarota G, Ianiro G, Tilg H, Rajilić-Stojanović M, Kump P, Satokari R, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 569-580.
[http://dx.doi.org/10.1136/gutjnl-2016-313017]
[14]
Khan I, Ullah N, Zha L, et al. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens 2019; 8(3): 126.
[http://dx.doi.org/10.3390/pathogens8030126 ] [PMID: 31412603]
[15]
Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007; 104(34): 13780-5.
[http://dx.doi.org/10.1073/pnas.0706625104 ] [PMID: 17699621]
[16]
Miquel S, Martín R, Rossi O, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 2013; 16(3): 255-61.
[http://dx.doi.org/10.1016/j.mib.2013.06.003 ] [PMID: 23831042]
[17]
Abu-Sbeih H, Ali FS, Wang Y. Clinical review on the utility of fecal microbiota transplantation in immunocompromised patients. Curr Gastroenterol Rep 2019; 21(4): 8.
[http://dx.doi.org/10.1007/s11894-019-0677-6 ] [PMID: 30815766]
[18]
Martinez-Medina M, Aldeguer X, Lopez-Siles M, et al. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn’s disease. Inflamm Bowel Dis 2009; 15(6): 872-82.
[http://dx.doi.org/10.1002/ibd.20860 ] [PMID: 19235912]
[19]
Darfeuille-Michaud A, Neut C, Barnich N, et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology 1998; 115(6): 1405-13.
[http://dx.doi.org/10.1016/S0016-5085(98)70019-8 ] [PMID: 9834268]
[20]
Günther C, Martini E, Wittkopf N, et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 2011; 477(7364): 335-9.
[http://dx.doi.org/10.1038/nature10400 ] [PMID: 21921917]
[21]
Momozawa Y, Dmitrieva J, Théâtre E, et al. International IBD Genetics Consortium. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat Commun 2018; 9(1): 2427.
[http://dx.doi.org/10.1038/s41467-018-04365-8 ] [PMID: 29930244]
[22]
Wehkamp J, Salzman NH, Porter E, et al. Reduced Paneth cell α-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 2005; 102(50): 18129-34.
[http://dx.doi.org/10.1073/pnas.0505256102 ] [PMID: 16330776]
[23]
Li E, Hamm CM, Gulati AS, Sartor RB, Chen H, Wu X, et al. nflammatory bowel diseases phenotype, C.difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition.PLoS One. 2012; 7: p. 13(6)e26284...
[24]
Frank DN, Robertson CE, Hamm CM, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 2011; 17(1): 179-84.
[http://dx.doi.org/10.1002/ibd.21339 ] [PMID: 20839241]
[25]
Petnicki-Ocwieja T, Hrncir T, Liu YJ, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA 2009; 106(37): 15813-8.
[http://dx.doi.org/10.1073/pnas.0907722106 ] [PMID: 19805227]
[26]
DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant e. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med 2019; 381(21): 2043-50.
[http://dx.doi.org/10.1056/NEJMoa1910437 ] [PMID: 31665575]
[27]
Blaser MJ. Fecal microbiota transplantation for dysbiosis-predictable risks. New England Journal of Medicine Massachussetts Medical Society 2019. Vol. 381: 2064-2066..
[http://dx.doi.org/10.1056/NEJMe1913807]
[28]
US Food and Drug Administration. Safety alert regarding use of fecal microbiota for transplantation and risk of serious adverse events likely due to transmission of pathogenic organisms [Internet] 2020. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/safety-alert-regarding-use-fecal-microbiota-transplantation-and-risk-serious-adverse-events-likely [cited 2020 Apr 7]. Available from:
[29]
Kassam Z, Dubois N, Ramakrishna B, Ling K, Qazi T, Smith M, et al. Donor screening for fecal microbiota transplantation. New England Journal of Medicine Massachussetts Medical Society 2019; Vol. 381: 2070-2072...
[http://dx.doi.org/10.1056/NEJMc1913670]
[30]
Khoruts A, Rank KM, Newman KM, et al. Inflammatory bowel disease affects the outcome of fecal microbiota transplantation for recurrent clostridium difficile infection. Clin Gastroenterol Hepatol 2016; 14(10): 1433-8.
[http://dx.doi.org/10.1016/j.cgh.2016.02.018 ] [PMID: 26905904]
[31]
De Leon LM, Watson JB, Kelly CR. Transient flare of ulcerative colitis after fecal microbiota transplantation for recurrent Clostridium difficile infection. Clin Gastroenterol Hepatol 2013; 11(8): 1036-8.
[http://dx.doi.org/10.1016/j.cgh.2013.04.045 ] [PMID: 23669309]
[32]
Baxter M, Ahmad T, Colville A, Sheridan R. Fatal aspiration pneumonia as a complication of fecal microbiota transplant. Clin Infect Dis 2015; 61(1): 136-7.
[http://dx.doi.org/10.1093/cid/civ247 ] [PMID: 25805303]
[33]
Vermeire S, Joossens M, Verbeke K, et al. Donor species richness determines faecal microbiota transplantation success in inflammatory bowel disease. J Crohn’s Colitis 2016; 10(4): 387-94.
[http://dx.doi.org/10.1093/ecco-jcc/jjv203 ] [PMID: 26519463]
[34]
Moayyedi P, Surette MG, Kim PT, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 2015; 149(1): 102-109.e6.
[http://dx.doi.org/10.1053/j.gastro.2015.04.001 ] [PMID: 25857665]
[35]
Kelly CR, Kahn S, Kashyap P, et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 2015; 149(1): 223-37.
[http://dx.doi.org/10.1053/j.gastro.2015.05.008 ] [PMID: 25982290]
[36]
Grinspan AM, Kelly CR. Fecal microbiota transplantation for ulcerative colitis: not just yetgastroenterology. W.B. Saunders 2015; Vol. 149: pp. 15-8.
[37]
Heneghan AF, Pierre JF, Kudsk KA. JAK-STAT and intestinal mucosal immunology. Gut Microbes. Landes Bioscience 2014; p. 5.
[38]
Mudter J, Neurath MF. Il-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm Bowel Dis 2007; 13(8): 1016-23.
[http://dx.doi.org/10.1002/ibd.20148 ] [PMID: 17476678]
[39]
Lee CH, Steiner T, Petrof EO, et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent clostridium difficile infection a randomized clinical trial. JAMA 2016; 315(2): 142-9.
[http://dx.doi.org/10.1001/jama.2015.18098 ] [PMID: 26757463]
[40]
Cammarota G, Ianiro G, Kelly CR, Mullish BH, Allegretti JR, Kassam Z, et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut. gutjnl-2019-319548.
[http://dx.doi.org/10.1136/gutjnl-2019-319548]
[41]
Petrof EO, Khoruts A. From stool transplants to next-generation microbiota therapeutics. Gastroenterology 2014; 146(6): 1573-82.
[http://dx.doi.org/10.1053/j.gastro.2014.01.004 ] [PMID: 24412527]
[42]
Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science (80- ) 2013 Feb; 8339(6120): 708-711.
[43]
Rossen NG, Fuentes S, van der Spek MJ, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 2015; 149(1): 110-118.e4.
[http://dx.doi.org/10.1053/j.gastro.2015.03.045 ] [PMID: 25836986]
[44]
Paramsothy S, Kamm MA, Kaakoush NO, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 2017; 389(10075): 1218-28.
[http://dx.doi.org/10.1016/S0140-6736(17)30182-4 ] [PMID: 28214091]
[45]
Wei Y, Gong J, Zhu W, et al. Pectin enhances the effect of fecal microbiota transplantation in ulcerative colitis by delaying the loss of diversity of gut flora. BMC Microbiol 2016; 16(1): 255.
[http://dx.doi.org/10.1186/s12866-016-0869-2 ] [PMID: 27809778]
[46]
Costello SP, Hughes PA, Waters O, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA 2019; 321(2): 156-64.
[http://dx.doi.org/10.1001/jama.2018.20046 ] [PMID: 30644982]
[47]
Paramsothy S, Paramsothy R, Rubin DT, et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J Crohn’s Colitis 2017; 11(10): 1180-99.
[http://dx.doi.org/10.1093/ecco-jcc/jjx063 ] [PMID: 28486648]
[48]
Angelberger S, Reinisch W, Makristathis A, et al. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol 2013; 108(10): 1620-30.
[http://dx.doi.org/10.1038/ajg.2013.257 ] [PMID: 24060759]
[49]
Vaughn BP, Vatanen T, Allegretti JR, et al. Increased intestinal microbial diversity following fecal microbiota transplant for active crohn’s disease. Inflamm Bowel Dis 2016; 22(9): 2182-90.
[http://dx.doi.org/10.1097/MIB.0000000000000893 ] [PMID: 27542133]
[50]
Nishida A, Imaeda H, Ohno M, et al. Efficacy and safety of single fecal microbiota transplantation for Japanese patients with mild to moderately active ulcerative colitis. J Gastroenterol 2017; 52(4): 476-82.
[http://dx.doi.org/10.1007/s00535-016-1271-4 ] [PMID: 27730312]
[51]
Kump PK, Gröchenig H-P, Lackner S, et al. Alteration of intestinal dysbiosis by fecal microbiota transplantation does not induce remission in patients with chronic active ulcerative colitis. Inflamm Bowel Dis 2013; 19(10): 2155-65.
[http://dx.doi.org/10.1097/MIB.0b013e31829ea325 ] [PMID: 23899544]
[52]
Weingarden AR, Vaughn BP. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes 2017; 8(3): 238-52.
[http://dx.doi.org/10.1080/19490976.2017.1290757 ] [PMID: 28609251]
[53]
Rehman A, Sina C, Gavrilova O, et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut 2011; 60(10): 1354-62.
[http://dx.doi.org/10.1136/gut.2010.216259 ] [PMID: 21421666]
[54]
Mondot S, Barreau F, Al Nabhani Z, et al. Altered gut microbiota composition in immune-impaired Nod2(-/-) mice. Gut 2012; 61(4): 634-5.
[http://dx.doi.org/10.1136/gutjnl-2011-300478 ] [PMID: 21868489]
[55]
Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nuñez G, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract Science (80- ) 2005 Feb; 4307(5710): 731-734..
[http://dx.doi.org/10.1126/science.1104911]
[56]
Goloshchapov OV, Olekhnovich EI, Sidorenko SV, et al. Long-term impact of fecal transplantation in healthy volunteers. BMC Microbiol 2019; 19(1): 312.
[http://dx.doi.org/10.1186/s12866-019-1689-y ] [PMID: 31888470]
[57]
Qazi T, Amaratunga T, Barnes EL, Fischer M, Kassam Z, Allegretti JR. The risk of inflammatory bowel disease flares after fecal microbiota transplantation: Systematic review and meta-analysis. Gut Microbes 2017; 8(6): 574-88.
[http://dx.doi.org/10.1080/19490976.2017.1353848 ] [PMID: 28723262]
[58]
Petrof EO, Gloor GB, Vanner SJ, et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome 2013; 1(1): 3.
[http://dx.doi.org/10.1186/2049-2618-1-3 ] [PMID: 24467987]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy