Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Immunoconjugates for Cancer Targeting: A Review of Antibody-Drug Conjugates and Antibody-Functionalized Nanoparticles

Author(s): Raquel Petrilli, Daniel Pascoalino Pinheiro, Fátima de Cássia Evangelista de Oliveira, Gabriela Fávero Galvão, Lana Grasiela Alves Marques, Renata Fonseca Vianna Lopez, Claudia Pessoa and Josimar O. Eloy*

Volume 28 , Issue 13 , 2021

Published on: 25 May, 2020

Page: [2485 - 2520] Pages: 36

DOI: 10.2174/0929867327666200525161359

Price: $65

Abstract

Targeted therapy has been recently highlighted due to the reduction of side effects and improvement in overall efficacy and survival from different types of cancers. Considering the approval of many monoclonal antibodies in the last twenty years, cancer treatment can be accomplished by the combination of monoclonal antibodies and small molecule chemotherapeutics. Thus, strategies to combine both drugs in a single administration system are relevant in the clinic. In this context, two strategies are possible and will be further discussed in this review: antibody-drug conjugates (ADCs) and antibody-functionalized nanoparticles. First, it is important to better understand the possible molecular targets for cancer therapy, addressing different antigens that can selectively bind to antibodies. After selecting the best target, ADCs can be prepared by attaching a cytotoxic drug to an antibody able to target a cancer cell antigen. Briefly, an ADC will be formed by a monoclonal antibody (MAb), a cytotoxic molecule (cytotoxin) and a chemical linker. Usually, surface-exposed lysine or the thiol group of cysteine residues are used as anchor sites for linker-drug molecules. Another strategy that should be considered is antibody-functionalized nanoparticles. Basically, liposomes, polymeric and inorganic nanoparticles can be attached to specific antibodies for targeted therapy. Different conjugation strategies can be used, but nanoparticles coupling between maleimide and thiolated antibodies or activation with the addition of ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/ N-hydroxysuccinimide (NHS) (1:5) and further addition of the antibody are some of the most used strategies. Herein, molecular targets and conjugation strategies will be presented and discussed to better understand the in vitro and in vivo applications presented. Also, the clinical development of ADCs and antibody-conjugated nanoparticles are addressed in the clinical development section. Finally, due to the innovation related to the targeted therapy, it is convenient to analyze the impact on patenting and technology. Information related to the temporal evolution of the number of patents, distribution of patent holders and also the number of patents related to cancer types are presented and discussed. Thus, our aim is to provide an overview of the recent developments in immunoconjugates for cancer targeting and highlight the most important aspects for clinical relevance and innovation.

Keywords: Antibody, drug targeting, cancer, immunoconjugate, nanoparticle, monoclonal antibody.

[1]
Goli, N.; Bolla, P.K.; Talla, V. Antibody-drug conjugates (ADCs): potent biopharmaceuticals to target solid and hematological cancers - an overview. J. Drug Deliv. Sci. Technol., 2018, 48, 106-117.
[http://dx.doi.org/10.1016/j.jddst.2018.08.022]
[2]
Charlton, P.; Spicer, J. Targeted therapy in cancer. Medicine , 2016, 44(1), 34-38.
[http://dx.doi.org/10.1016/j.mpmed.2015.10.012]]
[3]
Godone, R.L.N.; Leitão, G.M.; Araújo, N.B.; Castelletti, C.H.M.; Lima-Filho, J.L.; Martins, D.B.G. Clinical and molecular aspects of breast cancer: targets and therapies. Biomed. Pharmacother., 2018, 106, 14-34.
[http://dx.doi.org/10.1016/j.biopha.2018.06.066] [PMID: 29945114]
[4]
Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83.
[http://dx.doi.org/10.1016/j.imlet.2017.07.015] [PMID: 28760499]
[5]
Asao, T.; Takahashi, F.; Takahashi, K. Resistance to molecularly targeted therapy in non-small-cell lung cancer. Respir. Investig., 2019, 57(1), 20-26.
[http://dx.doi.org/10.1016/j.resinv.2018.09.001] [PMID: 30293943]
[6]
Alibakhshi, A.; Abarghooi Kahaki, F.; Ahangarzadeh, S.; Yaghoobi, H.; Yarian, F.; Arezumand, R.; Ranjbari, J.; Mokhtarzadeh, A.; de la Guardia, M. Targeted cancer therapy through antibody fragments-decorated nanomedicines. J. Control. Release, 2017, 268, 323-334.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.036] [PMID: 29107128]
[7]
Hafeez, U.; Gan, H.K.; Scott, A.M. Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. Curr. Opin. Pharmacol., 2018, 41, 114-121.
[http://dx.doi.org/10.1016/j.coph.2018.05.010] [PMID: 29883853]
[8]
Eloy, J.O.; Petrilli, R.; Trevizan, L.N.F.; Chorilli, M. Immunoliposomes: a review on functionalization strategies and targets for drug delivery. Colloids Surf. B Biointerfaces, 2017, 159, 454-467.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.085] [PMID: 28837895]
[9]
Sau, S.; Alsaab, H.O.; Kashaw, S.K.; Tatiparti, K.; Iyer, A.K. Advances in antibody-drug conjugates: a new era of targeted cancer therapy. Drug Discov. Today, 2017, 22(10), 1547-1556.
[http://dx.doi.org/10.1016/j.drudis.2017.05.011] [PMID: 28627385]
[10]
Richardson, D.L.; Seward, S.M.; Moore, K.N. Antibody drug conjugates in the treatment of epithelial ovarian cancer. Hematol. Oncol. Clin. North Am., 2018, 32(6), 1057-1071.
[http://dx.doi.org/10.1016/j.hoc.2018.07.014] [PMID: 30390760]
[11]
Peters, C.; Brown, S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci. Rep., 2015, 35(4), e00225-e00225.
[http://dx.doi.org/10.1042/BSR20150089] [PMID: 26182432]
[12]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[13]
Torchilin, V.P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev., 2006, 58(14), 1532-1555.
[http://dx.doi.org/10.1016/j.addr.2006.09.009] [PMID: 17092599]
[14]
Petrilli, R.; Eloy, J.O.; Marchetti, J.M.; Lopez, R.F.; Lee, R.J. Targeted lipid nanoparticles for antisense oligonucleotide delivery. Curr. Pharm. Biotechnol., 2014, 15(9), 847-855.
[http://dx.doi.org/10.2174/1389201015666141020155834] [PMID: 25335532]
[15]
Abdelmoez, A. CoraAa-Huber, D.C.; Thurner, G.C.; Debbage, P.; Lukas, P.; Skvortsov, S.; Skvortsova, I.I. Screening and identification of molecular targets for cancer therapy. Cancer Lett., 2017, 387, 3-9.
[http://dx.doi.org/10.1016/j.canlet.2016.03.002] [PMID: 26968248]
[16]
Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: treating cancer with specificity. Eur. J. Pharmacol., 2018, 834, 188-196.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.034] [PMID: 30031797]
[17]
Ke, X.; Shen, L. Molecular targeted therapy of cancer: the progress and future prospect. Front. Lab. Med., 2017, 1, 69-75.
[http://dx.doi.org/10.1016/j.flm.2017.06.001]
[18]
Tan, X.; Lambert, P.F.; Rapraeger, A.C.; Anderson, R.A. Stress-induced EGFR trafficking: mechanisms, functions and therapeutic implications. Trends Cell Biol., 2016, 26(5), 352-366.
[http://dx.doi.org/10.1016/j.tcb.2015.12.006] [PMID: 26827089]
[19]
Wheeler, D.L.; Dunn, E.F.; Harari, P.M. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat. Rev. Clin. Oncol., 2010, 7(9), 493-507.
[http://dx.doi.org/10.1038/nrclinonc.2010.97] [PMID: 20551942]
[20]
Parakh, S.; Gan, H.K.; Parslow, A.C.; Burvenich, I.J.G.; Burgess, A.W.; Scott, A.M. Evolution of anti-HER2 therapies for cancer treatment. Cancer Treat. Rev., 2017, 59, 1-21.
[http://dx.doi.org/10.1016/j.ctrv.2017.06.005] [PMID: 28715775]
[21]
Duchnowska, R.; Loibl, S.; Jassem, J. Tyrosine kinase inhibitors for brain metastases in HER2-positive breast cancer. Cancer Treat. Rev., 2018, 67, 71-77.
[http://dx.doi.org/10.1016/j.ctrv.2018.05.004] [PMID: 29772459]
[22]
Lacal, P.M.; Graziani, G. Therapeutic implication of vascular endothelial growth factor receptor-1 (VEGFR-1) targeting in cancer cells and tumor microenvironment by competitive and non-competitive inhibitors. Pharmacol. Res., 2018, 136, 97-107.
[http://dx.doi.org/10.1016/j.phrs.2018.08.023] [PMID: 30170190]
[23]
Falcon, B.L.; Chintharlapalli, S.; Uhlik, M.T.; Pytowski, B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol. Ther., 2016, 164, 204-225.
[http://dx.doi.org/10.1016/j.pharmthera.2016.06.001] [PMID: 27288725]
[24]
Hassanein, M.; Almahayni, M.H.; Ahmed, S.O.; Gaballa, S.; El Fakih, R. FLT3 inhibitors for treating acute myeloid leukemia. Clin. Lymphoma Myeloma Leuk., 2016, 16(10), 543-549.
[http://dx.doi.org/10.1016/j.clml.2016.06.002] [PMID: 27450971]
[25]
Papadopoulos, N.; Lennartsson, J. The PDGF/PDGFR pathway as a drug target. Mol. Aspects Med., 2018, 62, 75-88.
[http://dx.doi.org/10.1016/j.mam.2017.11.007] [PMID: 29137923]
[26]
Cecchi, F.; Rabe, D.C.; Bottaro, D.P. The hepatocyte growth factor receptor: structure, function and pharmacological targeting in cancer. Curr. Signal Transduct. Ther., 2011, 6(2), 146-151.
[http://dx.doi.org/10.2174/157436211795659955] [PMID: 25197268]
[27]
Barkauskaite, E.; Jankevicius, G.; Ahel, I. Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol. Cell, 2015, 58(6), 935-946.
[http://dx.doi.org/10.1016/j.molcel.2015.05.007] [PMID: 26091342]
[28]
Franzese, E.; Centonze, S.; Diana, A.; Carlino, F.; Guerrera, L.P.; Di Napoli, M.; De Vita, F.; Pignata, S.; Ciardiello, F.; Orditura, M. PARP inhibitors in ovarian cancer. Cancer Treat. Rev., 2019, 73, 1-9.
[http://dx.doi.org/10.1016/j.ctrv.2018.12.002] [PMID: 30543930]
[29]
Barve, A.; Jin, W.; Cheng, K. Prostate cancer relevant antigens and enzymes for targeted drug delivery. J. Control. Release, 2014, 187, 118-132.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.035] [PMID: 24878184]
[30]
Saad, F.; Shore, N.; Zhang, T.; Sharma, S.; Cho, H.K.; Jacobs, I.A. Emerging therapeutic targets for patients with advanced prostate cancer. Cancer Treat. Rev., 2019, 76, 1-9.
[http://dx.doi.org/10.1016/j.ctrv.2019.03.002] [PMID: 30913454]
[31]
Lütje, S.; Heskamp, S.; Cornelissen, A.S.; Poeppel, T.D.; van den Broek, S.A.M.W.; Rosenbaum-Krumme, S.; Bockisch, A.; Gotthardt, M.; Rijpkema, M.; Boerman, O.C. PSMA ligands for radionuclide imaging and therapy of prostate cancer: clinical status. Theranostics, 2015, 5(12), 1388-1401.
[http://dx.doi.org/10.7150/thno.13348] [PMID: 26681984]
[32]
Chari, R.V.J. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc. Chem. Res., 2008, 41(1), 98-107.
[http://dx.doi.org/10.1021/ar700108g] [PMID: 17705444]
[33]
Hamilton, G.S. Antibody-drug conjugates for cancer therapy: the technological and regulatory challenges of developing drug-biologic hybrids. Biologicals, 2015, 43(5), 318-332.
[http://dx.doi.org/10.1016/j.biologicals.2015.05.006] [PMID: 26115630]
[34]
Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov., 2017, 16(5), 315-337.
[http://dx.doi.org/10.1038/nrd.2016.268] [PMID: 28303026]
[35]
Sochaj, A.M.; Świderska, K.W.; Otlewski, J. Current methods for the synthesis of homogeneous antibody-drug conjugates. Biotechnol. Adv., 2015, 33(6 Pt 1), 775-784.
[http://dx.doi.org/10.1016/j.biotechadv.2015.05.001] [PMID: 25981886]
[36]
Bouchard, H.; Viskov, C.; Garcia-Echeverria, C. Antibody-drug conjugates - a new wave of cancer drugs. Bioorg. Med. Chem. Lett., 2014, 24(23), 5357-5363.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.021] [PMID: 25455482]
[37]
Shefet-Carasso, L.; Benhar, I. Antibody-targeted drugs and drug resistance-challenges and solutions. Drug Resist. Updat., 2015, 18, 36-46.
[http://dx.doi.org/10.1016/j.drup.2014.11.001] [PMID: 25476546]
[38]
Teicher, B.A.; Chari, R.V.J. Antibody conjugate therapeutics: challenges and potential. Clin. Cancer Res., 2011, 17(20), 6389-6397.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1417] [PMID: 22003066]
[39]
Alley, S.C.; Zhang, X.; Okeley, N.M.; Anderson, M.; Law, C-L.; Senter, P.D.; Benjamin, D.R. The pharmacologic basis for antibody-auristatin conjugate activity. J. Pharmacol. Exp. Ther., 2009, 330(3), 932-938.
[http://dx.doi.org/10.1124/jpet.109.155549] [PMID: 19498104]
[40]
Junutula, J.R.; Flagella, K.M.; Graham, R.A.; Parsons, K.L.; Ha, E.; Raab, H.; Bhakta, S.; Nguyen, T.; Dugger, D.L.; Li, G.; Mai, E.; Lewis Phillips, G.D.; Hiraragi, H.; Fuji, R.N.; Tibbitts, J.; Vandlen, R.; Spencer, S.D.; Scheller, R.H.; Polakis, P.; Sliwkowski, M.X. Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin. Cancer Res., 2010, 16(19), 4769-4778.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0987] [PMID: 20805300]
[41]
Gébleux, R.; Casi, G. Antibody-drug conjugates: current status and future perspectives. Pharmacol. Ther., 2016, 167, 48-59.
[http://dx.doi.org/10.1016/j.pharmthera.2016.07.012] [PMID: 27492898]
[42]
Alley, S.C.; Benjamin, D.R.; Jeffrey, S.C.; Okeley, N.M.; Meyer, D.L.; Sanderson, R.J.; Senter, P.D. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug. Chem., 2008, 19(3), 759-765.
[http://dx.doi.org/10.1021/bc7004329] [PMID: 18314937]
[43]
Nolting, B. Linker technologies for antibody- drug conjugates. Methods Mol. Biol., 2013, 1045, 71-100.
[http://dx.doi.org/10.1007/978-1-62703-541-5_5]] [PMID: 23913142]
[44]
Lyon, R.P.; Bovee, T.D.; Doronina, S.O.; Burke, P.J.; Hunter, J.H.; Neff-LaFord, H.D.; Jonas, M.; Anderson, M.E.; Setter, J.R.; Senter, P.D. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat. Biotechnol., 2015, 33(7), 733-735.
[http://dx.doi.org/10.1038/nbt.3212] [PMID: 26076429]
[45]
Govindan, S.V.; Goldenberg, D.M. New antibody conjugates in cancer therapy. ScientificWorldJ, 2010, 10, 2070-2089.
[http://dx.doi.org/10.1100/tsw.2010.191] [PMID: 20953556]
[46]
Erickson, H.K.; Park, P.U.; Widdison, W.C.; Kovtun, Y.V.; Garrett, L.M.; Hoffman, K.; Lutz, R.J.; Goldmacher, V.S. BlAttler, W.A. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res., 2006, 66(8), 4426-4433.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4489] [PMID: 16618769]
[47]
Ritter, A. Antibody-drug conjugates: looking ahead to an emerging class of biotherapeutic. Pharm. Technol., 2012, 36(1), 42-47.
[48]
Tsuchikama, K.; An, Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell, 2018, 9(1), 33-46.
[http://dx.doi.org/10.1007/s13238-016-0323-0] [PMID: 27743348]
[49]
Trail, P.A.; Dubowchik, G.M.; Lowinger, T.B. Antibody drug conjugates for treatment of breast cancer: novel targets and diverse approaches in ADC design. Pharmacol. Ther., 2018, 181, 126-142.
[http://dx.doi.org/10.1016/j.pharmthera.2017.07.013] [PMID: 28757155]
[50]
Panowski, S.; Bhakta, S.; Raab, H.; Polakis, P.; Junutula, J.R. Site-specific antibody drug conjugates for cancer therapy. MAbs, 2014, 6(1), 34-45.
[http://dx.doi.org/10.4161/mabs.27022] [PMID: 24423619]
[51]
Zhou, Q. Site-specific antibody conjugation for ADC and beyond. Biomedicines, 2017, 5(4), E64.
[http://dx.doi.org/10.3390/biomedicines5040064] [PMID: 29120405]
[52]
Junutula, J.R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D.D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S.P.; Dennis, M.S.; Lu, Y.; Meng, Y.G.; Ng, C.; Yang, J.; Lee, C.C.; Duenas, E.; Gorrell, J.; Katta, V.; Kim, A.; McDorman, K.; Flagella, K.; Venook, R.; Ross, S.; Spencer, S.D.; Lee Wong, W.; Lowman, H.B.; Vandlen, R.; Sliwkowski, M.X.; Scheller, R.H.; Polakis, P.; Mallet, W. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol., 2008, 26(8), 925-932.
[http://dx.doi.org/10.1038/nbt.1480] [PMID: 18641636]
[53]
Jeffrey, S.C.; Burke, P.J.; Lyon, R.P.; Meyer, D.W.; Sussman, D.; Anderson, M.; Hunter, J.H.; Leiske, C.I.; Miyamoto, J.B.; Nicholas, N.D.; Okeley, N.M.; Sanderson, R.J.; Stone, I.J.; Zeng, W.; Gregson, S.J.; Masterson, L.; Tiberghien, A.C.; Howard, P.W.; Thurston, D.E.; Law, C.L.; Senter, P.D. A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug. Chem., 2013, 24(7), 1256-1263.
[http://dx.doi.org/10.1021/bc400217g] [PMID: 23808985]
[54]
Tian, F.; Lu, Y.; Manibusan, A.; Sellers, A.; Tran, H.; Sun, Y.; Phuong, T.; Barnett, R.; Hehli, B.; Song, F.; DeGuzman, M.J.; Ensari, S.; Pinkstaff, J.K.; Sullivan, L.M.; Biroc, S.L.; Cho, H.; Schultz, P.G.; DiJoseph, J.; Dougher, M.; Ma, D.; Dushin, R.; Leal, M.; Tchistiakova, L.; Feyfant, E.; Gerber, H-P.; Sapra, P. A general approach to site-specific antibody drug conjugates. Proc. Natl. Acad. Sci. USA, 2014, 111(5), 1766-1771.
[http://dx.doi.org/10.1073/pnas.1321237111] [PMID: 24443552]
[55]
Agarwal, P.; Bertozzi, C.R. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem., 2015, 26(2), 176-192.
[http://dx.doi.org/10.1021/bc5004982] [PMID: 25494884]
[56]
Zimmerman, E.S.; Heibeck, T.H.; Gill, A.; Li, X.; Murray, C.J.; Madlansacay, M.R.; Tran, C.; Uter, N.T.; Yin, G.; Rivers, P.J.; Yam, A.Y.; Wang, W.D.; Steiner, A.R.; Bajad, S.U.; Penta, K.; Yang, W.; Hallam, T.J.; Thanos, C.D.; Sato, A.K. Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug. Chem., 2014, 25(2), 351-361.
[http://dx.doi.org/10.1021/bc400490z] [PMID: 24437342]
[57]
Xu, Y.; Jin, S.; Zhao, W.; Liu, W.; Ding, D.; Zhou, J.; Chen, S. A versatile chemo-enzymatic conjugation approach yields homogeneous and highly potent antibody-drug conjugates. Int. J. Mol. Sci., 2017, 18(11), E2284.
[http://dx.doi.org/10.3390/ijms18112284] [PMID: 29088062]
[58]
Ramakrishnan, B.; Qasba, P.K. Structure-based design of Iý 1,4-galactosyltransferase I (Iý 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens Iý 4Gal-T1 donor specificity. J. Biol. Chem., 2002, 277(23), 20833-20839.
[http://dx.doi.org/10.1074/jbc.M111183200] [PMID: 11916963]
[59]
Qasba, P.K.; Ramakrishnan, B.; Boeggeman, E. Substrate-induced conformational changes in glycosyltransferases. Trends Biochem. Sci., 2005, 30(1), 53-62.
[http://dx.doi.org/10.1016/j.tibs.2004.11.005] [PMID: 15653326]
[60]
Boeggeman, E.; Ramakrishnan, B.; Pasek, M.; Manzoni, M.; Puri, A.; Loomis, K.H.; Waybright, T.J.; Qasba, P.K. Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug. Chem., 2009, 20(6), 1228-1236.
[http://dx.doi.org/10.1021/bc900103p] [PMID: 19425533]
[61]
Dennler, P.; Chiotellis, A.; Fischer, E.; Brégeon, D.; Belmant, C.; Gauthier, L.; Lhospice, F.; Romagne, F.; Schibli, R. Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug. Chem., 2014, 25(3), 569-578.
[http://dx.doi.org/10.1021/bc400574z] [PMID: 24483299]
[62]
Anami, Y.; Xiong, W.; Gui, X.; Deng, M.; Zhang, C.C.; Zhang, N.; An, Z.; Tsuchikama, K. Enzymatic conjugation using branched linkers for constructing homogeneous antibody-drug conjugates with high potency. Org. Biomol. Chem., 2017, 15(26), 5635-5642.
[http://dx.doi.org/10.1039/C7OB01027C] [PMID: 28649690]
[63]
Lu, J.; Jiang, F.; Lu, A.; Zhang, G. Linkers having a crucial role in antibody-drug conjugates. Int. J. Mol. Sci., 2016, 17(4), 561.
[http://dx.doi.org/10.3390/ijms17040561] [PMID: 27089329]
[64]
Sun, X.; Ponte, J.F.; Yoder, N.C.; Laleau, R.; Coccia, J.; Lanieri, L.; Qiu, Q.; Wu, R.; Hong, E.; Bogalhas, M.; Wang, L.; Dong, L.; Setiady, Y.; Maloney, E.K.; Ab, O.; Zhang, X.; Pinkas, J.; Keating, T.A.; Chari, R.; Erickson, H.K.; Lambert, J.M. Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy and tolerability of antibody-maytansinoid conjugates. Bioconjug. Chem., 2017, 28(5), 1371-1381.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00062] [PMID: 28388844]
[65]
Dan, N.; Setua, S.; Kashyap, V.K.; Khan, S.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. Antibody-drug conjugates for cancer therapy: chemistry to clinical implications. Pharmaceuticals (Basel), 2018, 11(2), 32.
[http://dx.doi.org/10.3390/ph11020032] [PMID: 29642542]
[66]
Wakankar, A.; Chen, Y.; Gokarn, Y.; Jacobson, F.S. Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs, 2011, 3(2), 161-172.
[http://dx.doi.org/10.4161/mabs.3.2.14960] [PMID: 21441786]
[67]
Arakawa, T.; Kurosawa, Y.; Storms, M.; Maruyama, T.; Okumura, C.J.; Maluf, N.K. Biophysical characterization of a model antibody drug conjugate. Drug Discov. Ther., 2016, 10(4), 211-217.
[http://dx.doi.org/10.5582/ddt.2016.01042] [PMID: 27534450]
[68]
Huang, C.Y.; Hsieh, M.C.; Zhou, Q. Application of tryptophan fluorescence bandwidth-maximum plot in analysis of monoclonal antibody structure. AAPS Pharm. Sci. Tech.,, 2017, 18(3), 838-845.
[http://dx.doi.org/10.1208/s12249-016-0568-1] [PMID: 27357422]
[69]
Birdsall, R.E.; McCarthy, S.M.; Janin-Bussat, M.C.; Perez, M.; Haeuw, J.F.; Chen, W.; Beck, A. A sensitive multidimensional method for the detection, characterization, and quantification of trace free drug species in antibody-drug conjugate samples using mass spectral detection. MAbs, 2016, 8(2), 306-317.
[http://dx.doi.org/10.1080/19420862.2015.1116659] [PMID: 26651262]
[70]
Xu, L.; Zhang, Z.; Xu, S.; Xu, J.; Lin, Z.J.; Lee, D.H. Simultaneous quantification of total antibody and antibody-conjugated drug for XMT-1522 in human plasma using immunocapture-liquid chromatography/mass spectrometry. J. Pharm. Biomed. Anal., 2019, 174, 441-449.
[http://dx.doi.org/10.1016/j.jpba.2019.06.017] [PMID: 31220702]
[71]
Howes, A.L.; Richardson, R.D.; Finlay, D.; Vuori, K. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems. PLoS One, 2014, 9(9), e108283.
[http://dx.doi.org/10.1371/journal.pone.0108283] [PMID: 25247711]
[72]
Lucas, A.T.; Price, L.S.L.; Schorzman, A.N.; Storrie, M.; Piscitelli, J.A.; Razo, J.; Zamboni, W.C. Factors affecting the pharmacology of antibody-drug conjugates. Antibodies (Basel), 2018, 7(1), 10.
[http://dx.doi.org/10.3390/antib7010010] [PMID: 31544862]
[73]
Singh, S.K.; Luisi, D.L.; Pak, R.H. Antibody-drug conjugates: design, formulation and physicochemical stability. Pharm. Res., 2015, 32(11), 3541-3571.
[http://dx.doi.org/10.1007/s11095-015-1704-4] [PMID: 25986175]
[74]
Adem, Y.T.; Schwarz, K.A.; Duenas, E.; Patapoff, T.W.; Galush, W.J.; Esue, O. Auristatin antibody drug conjugate physical instability and the role of drug payload. Bioconjug. Chem., 2014, 25(4), 656-664.
[http://dx.doi.org/10.1021/bc400439x] [PMID: 24559399]
[75]
Jaracz, S.; Chen, J.; Kuznetsova, L.V.; Ojima, I. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg. Med. Chem., 2005, 13(17), 5043-5054.
[http://dx.doi.org/10.1016/j.bmc.2005.04.084] [PMID: 15955702]
[76]
Lambert, J.M.; Morris, C.Q. Antibody-drug conjugates (ADCs) for personalized treatment of solid tumors: a review. Adv. Ther., 2017, 34(5), 1015-1035.
[http://dx.doi.org/10.1007/s12325-017-0519-6] [PMID: 28361465]
[77]
Thomas, A.; Teicher, B.A.; Hassan, R. Antibody-drug conjugates for cancer therapy. Lancet Oncol., 2016, 17(6), e254-e262.
[http://dx.doi.org/10.1016/S1470-2045(16)30030-4] [PMID: 27299281]
[78]
Trail, P.A. Antibody drug conjugates as cancer therapeutics. Antibodies , 2013, 2(1), 113-129.
[http://dx.doi.org/10.3390/antib2010113]
[79]
Kung Sutherland, M.S.; Walter, R.B.; Jeffrey, S.C.; Burke, P.J.; Yu, C.; Kostner, H.; Stone, I.; Ryan, M.C.; Sussman, D.; Lyon, R.P.; Zeng, W.; Harrington, K.H.; Klussman, K.; Westendorf, L.; Meyer, D.; Bernstein, I.D.; Senter, P.D.; Benjamin, D.R.; Drachman, J.G.; McEarchern, J.A. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood, 2013, 122(8), 1455-1463.
[http://dx.doi.org/10.1182/blood-2013-03-491506] [PMID: 23770776]
[80]
Junutula, J.R.; Gerber, H-P. Next-generation antibody-drug conjugates (ADCs) for cancer therapy. ACS Med. Chem. Lett., 2016, 7(11), 972-973.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00421] [PMID: 27882192]
[81]
Merlino, G.; Fiascarelli, A.; Bigioni, M.; Bressan, A.; Carrisi, C.; Bellarosa, D.; Salerno, M.; Bugianesi, R.; Manno, R. BernadA3 Morales, C.; Arribas, J.; Dusek, R.L.; Ackroyd, J.E.; Pham, P.H.; Awdew, R.; Aud, D.; Trang, M.; Lynch, C.M.; Terrett, J.; Wilson, K.E.; Rohlff, C.; Manzini, S.; Pellacani, A.; Binaschi, M. MEN1309/OBT076, a first-in-class antibody-drug conjugate targeting CD205 in solid tumors. Mol. Cancer Ther., 2019, 18(9), 1533-1543.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0624] [PMID: 31227646]
[82]
Rather, G.M.; Lin, S-Y.; Lin, H.; Banach-Petrosky, W.; Hirshfield, K.M.; Lin, C-Y.; Johnson, M.D.; Szekely, Z.; Bertino, J.R. Activated matriptase as a target to treat breast cancer with a drug conjugate. Oncotarget, 2018, 9(40), 25983-25992.
[http://dx.doi.org/10.18632/oncotarget.25414] [PMID: 29899836]
[83]
Rather, G.M.; Lin, S-Y.; Lin, H.; Szekely, Z.; Bertino, J.R. A novel antibody-toxin conjugate to treat mantle cell lymphoma. Front. Oncol., 2019, 9, 258.
[http://dx.doi.org/10.3389/fonc.2019.00258] [PMID: 31024856]
[84]
Willuda, J.; Linden, L.; Lerchen, H-G.; Kopitz, C.; Stelte-Ludwig, B.; Pena, C.; Lange, C.; Golfier, S.; Kneip, C.; Carrigan, P.E.; Mclean, K.; Schuhmacher, J.; von Ahsen, O. MA1/4ller, J.; Dittmer, F.; Beier, R.; El Sheikh, S.; Tebbe, J.; Leder, G.; Apeler, H.; Jautelat, R.; Ziegelbauer, K.; Kreft, B. Preclinical antitumor efficacy of BAY 1129980-a novel auristatin-based anti-C4.4A (LYPD3) antibody-drug conjugate for the treatment of non-small cell lung cancer. Mol. Cancer Ther., 2017, 16(5), 893-904.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0474] [PMID: 28292941]
[85]
Shen, Y.; Yang, T.; Cao, X.; Zhang, Y.; Zhao, L.; Li, H.; Zhao, T.; Xu, J.; Zhang, H.; Guo, Q.; Cai, J.; Gao, B.; Yu, H.; Yin, S.; Song, R.; Wu, J.; Guan, L.; Wu, G.; Jin, L.; Su, Y.; Liu, Y. Conjugation of DM1 to anti-CD30 antibody has potential antitumor activity in CD30-positive hematological malignancies with lower systemic toxicity. MAbs, 2019, 11(6), 1149-1161.
[http://dx.doi.org/10.1080/19420862.2019.1618674] [PMID: 31161871]
[86]
He, K.; Xu, J.; Liang, J.; Jiang, J.; Tang, M.; Ye, X.; Zhang, Z.; Zhang, L.; Fu, B.; Li, Y.; Bai, C.; Zhang, L.; Tao, W. Discovery of a novel EGFR-targeting antibody-drug conjugate, SHR-A1307, for the treatment of solid tumors resistant or refractory to anti-EGFR therapies. Mol. Cancer Ther., 2019, 18(6), 1104-1114.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0854] [PMID: 30962319]
[87]
Thorén, M.M.; Masoumi, K.C.; Krona, C.; Huang, X.; Kundu, S.; Schmidt, L.; Forsberg-Nilsson, K.; Keep, M.F.; Englund, E.; Nelander, S.; Holmqvist, B.; Lundgren-Åkerlund, E. Integrin Iñ10, a novel therapeutic target in glioblastoma, regulates cell migration, proliferation and survival. Cancers (Basel), 2019, 11(4), 587.
[http://dx.doi.org/10.3390/cancers11040587] [PMID: 31027305]
[88]
Eloy, J.O.; Claro de Souza, M.; Petrilli, R.; Barcellos, J.P.A.; Lee, R.J.; Marchetti, J.M. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf. B Biointerfaces, 2014, 123, 345-363.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.029] [PMID: 25280609]
[89]
Montenegro, J.M.; Grazu, V.; Sukhanova, A.; Agarwal, S.; de la Fuente, J.M.; Nabiev, I.; Greiner, A.; Parak, W.J. Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv. Drug Deliv. Rev., 2013, 65(5), 677-688.
[http://dx.doi.org/10.1016/j.addr.2012.12.003] [PMID: 23280372]
[90]
Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul., 2001, 41, 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[91]
Petrilli, R.; Eloy, J.O.; Saggioro, F.P.; Chesca, D.L.; de Souza, M.C.; Dias, M.V.S.; daSilva, L.L.P.; Lee, R.J.; Lopez, R.F.V. Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous injection. J. Control. Release, 2018, 283, 151-162.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.038] [PMID: 29864476]
[92]
Mamot, C.; Ritschard, R.; Wicki, A.; Stehle, G.; Dieterle, T.; Bubendorf, L.; Hilker, C.; Deuster, S.; Herrmann, R.; Rochlitz, C. Tolerability, safety, pharmacokinetics and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol., 2012, 13(12), 1234-1241.
[http://dx.doi.org/10.1016/S1470-2045(12)70476-X] [PMID: 23153506]
[93]
Manjappa, A.S.; Chaudhari, K.R.; Venkataraju, M.P.; Dantuluri, P.; Nanda, B.; Sidda, C.; Sawant, K.K.; Murthy, R.S. Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. J. Control. Release, 2011, 150(1), 2-22.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.002] [PMID: 21095210]
[94]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-252.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[95]
Sapra, P.; Shor, B. Monoclonal antibody-based therapies in cancer: advances and challenges. Pharmacol. Ther., 2013, 138(3), 452-469.
[http://dx.doi.org/10.1016/j.pharmthera.2013.03.004] [PMID: 23507041]
[96]
Paszko, E.; Senge, M.O. Immunoliposomes. Curr. Med. Chem., 2012, 19(31), 5239-5277.
[http://dx.doi.org/10.2174/092986712803833362] [PMID: 22934774]
[97]
Merino, M.; Zalba, S.; Garrido, M.J. Immunoliposomes in clinical oncology: state of the art and future perspectives. J. Control. Release, 2018, 275, 162-176.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.015] [PMID: 29448116]
[98]
Kennedy, P.J.; Oliveira, C.; Granja, P.L.; Sarmento, B. Antibodies and associates: partners in targeted drug delivery. Pharmacol. Ther., 2017, 177, 129-145.
[http://dx.doi.org/10.1016/j.pharmthera.2017.03.004] [PMID: 28315359]
[99]
Koning, G.A.; Kamps, J.A.A.M.; Scherphof, G.L. Efficient intracellular delivery of 5-fluorodeoxyuridine into colon cancer cells by targeted immunoliposomes. Cancer Detect. Prev., 2002, 26(4), 299-307.
[http://dx.doi.org/10.1016/S0361-090X(02)00087-9] [PMID: 12430634]
[100]
Eloy, J.O.; Petrilli, R.; Chesca, D.L.; Saggioro, F.P.; Lee, R.J.; Marchetti, J.M. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur. J. Pharm. Biopharm., 2017, 115, 159-167.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.020] [PMID: 28257810]
[101]
Laginha, K.; Mumbengegwi, D.; Allen, T. Liposomes targeted via two different antibodies: assay, B-cell binding and cytotoxicity. Biochim. Biophys. Acta, 2005, 1711(1), 25-32.
[http://dx.doi.org/10.1016/j.bbamem.2005.02.007] [PMID: 15904660]
[102]
Petrilli, R.; Eloy, J.O.; Lopez, R.F.V.; Lee, R.J. Cetuximab immunoliposomes enhance delivery of 5-FU to skin squamous carcinoma cells. Anticancer. Agents Med. Chem., 2017, 17(2), 301-308.
[http://dx.doi.org/10.2174/1871520616666160526110913] [PMID: 27225449]
[103]
Gao, J.; Chen, H.; Yu, Y.; Song, J.; Song, H.; Su, X.; Li, W.; Tong, X.; Qian, W.; Wang, H.; Dai, J.; Guo, Y. Inhibition of hepatocellular carcinoma growth using immunoliposomes for co-delivery of adriamycin and ribonucleotide reductase M2 siRNA. Biomaterials, 2013, 34(38), 10084-10098.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.088] [PMID: 24060417]
[104]
Hatakeyama, H.; Akita, H.; Ishida, E.; Hashimoto, K.; Kobayashi, H.; Aoki, T.; Yasuda, J.; Obata, K.; Kikuchi, H.; Ishida, T.; Kiwada, H.; Harashima, H. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int. J. Pharm., 2007, 342(1-2), 194-200.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.037] [PMID: 17583453]
[105]
Gao, J.; Yu, Y.; Zhang, Y.; Song, J.; Chen, H.; Li, W.; Qian, W.; Deng, L.; Kou, G.; Chen, J.; Guo, Y. EGFR-specific PEGylated immunoliposomes for active siRNA delivery in hepatocellular carcinoma. Biomaterials, 2012, 33(1), 270-282.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.035] [PMID: 21963149]
[106]
Pan, X.; Wu, G.; Yang, W.; Barth, R.F.; Tjarks, W.; Lee, R.J. Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeted delivery of a neutron capture therapy (NCT) agent to glioma cells. Bioconjug. Chem., 2007, 18, 101-108.
[http://dx.doi.org/10.1021/bc060174r] [PMID: 17226962]
[107]
Eloy, J.O.; Petrilli, R.; Brueggemeier, R.W.; Marchetti, J.M.; Lee, R.J. Rapamycin loaded immunoliposomes functionalized with trastuzumab: a strategy to enhance cytotoxicity to HER2 positive breast cancer cells. Anticancer. Agents Med. Chem., 2017, 17(1), 48-56.
[http://dx.doi.org/10.2174/18715206166661605261034] [PMID: 27225450]
[108]
Zalba, S.; Contreras, A.M.; Haeri, A.; Ten Hagen, T.L.M.; Navarro, I.; Koning, G.; Garrido, M.J. Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J. Control. Release, 2015, 210, 26-38.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.271] [PMID: 25998052]
[109]
Gao, J.; Zhong, W.; He, J.; Li, H.; Zhang, H.; Zhou, G.; Li, B.; Lu, Y.; Zou, H.; Kou, G.; Zhang, D.; Wang, H.; Guo, Y.; Zhong, Y. Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes. Int. J. Pharm., 2009, 374(1-2), 145-152.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.018] [PMID: 19446771]
[110]
Mortensen, J.H.; Jeppesen, M.; Pilgaard, L.; Agger, R.; Duroux, M.; Zachar, V.; Moos, T. Targeted antiepidermal growth factor receptor (cetuximab) immunoliposomes enhance cellular uptake in vitro and exhibit increased accumulation in an intracranial model of glioblastoma multiforme. J. Drug Deliv., 2013, 2013, 209205.
[http://dx.doi.org/10.1155/2013/209205] [PMID: 24175095]
[111]
Kennedy, P.J.; Perreira, I.; Ferreira, D.; Nestor, M.; Oliveira, C.; Granja, P.L.; Sarmento, B. Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles. Eur. J. Pharm. Biopharm., 2018, 127, 366-370.
[http://dx.doi.org/10.1016/j.ejpb.2018.03.005] [PMID: 29549023]
[112]
Kennedy, P.J.; Sousa, F.; Ferreira, D.; Pereira, C.; Nestor, M.; Oliveira, C.; Granja, P.L.; Sarmento, B. Fab-conjugated PLGA nanoparticles effectively target cancer cells expressing human CD44v6. Acta Biomater., 2018, 81, 208-218.
[http://dx.doi.org/10.1016/j.actbio.2018.09.043] [PMID: 30267881]
[113]
Kumar Mehata, A.; Bharti, S.; Singh, P.; Viswanadh, M.K.; Kumari, L.; Agrawal, P.; Singh, S.; Koch, B.; Muthu, M.S. Trastuzumab decorated TPGS-g-chitosan nanoparticles for targeted breast cancer therapy. Colloids Surf. B Biointerfaces, 2019, 173, 366-377.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.007] [PMID: 30316083]
[114]
Hamaly, M.A.; Abulateefeh, S.R.; Al-Qaoud, K.M.; Alkilany, A.M. Freeze-drying of monoclonal antibody-conjugated gold nanorods: colloidal stability and biological activity. Int. J. Pharm., 2018, 550(1-2), 269-277.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.045] [PMID: 30145244]
[115]
Liu, S.; Li, H.; Xia, L.; Xu, P.; Ding, Y.; Huo, D.; Hu, Y. Anti-RhoJ antibody functionalized Au@I nanoparticles as CT-guided tumor vessel-targeting radiosensitizers in patient-derived tumor xenograft model. Biomaterials, 2017, 141, 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.036] [PMID: 28666098]
[116]
Abakumov, M.A.; Nukolova, N.V.; Sokolsky-Papkov, M.; Shein, S.A.; Sandalova, T.O.; Vishwasrao, H.M.; Grinenko, N.F.; Gubsky, I.L.; Abakumov, A.M.; Kabanov, A.V.; Chekhonin, V.P. VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine (Lond.), 2015, 11(4), 825-833.
[http://dx.doi.org/10.1016/j.nano.2014.12.011] [PMID: 25652902]
[117]
Kanazaki, K.; Sano, K.; Makino, A.; Shimizu, Y.; Yamauchi, F.; Ogawa, S.; Ding, N.; Yano, T.; Temma, T.; Ono, M.; Saji, H. Development of anti-HER2 fragment antibody conjugated to iron oxide nanoparticles for in vivo HER2-targeted photoacoustic tumor imaging. Nanomedicine (Lond.), 2015, 11(8), 2051-2060.
[http://dx.doi.org/10.1016/j.nano.2015.07.007] [PMID: 26238078]
[118]
Jee, H.G.; Ban, H.S.; Lee, J.H.; Lee, S.H.; Kwon, O.S.; Choe, J.H. Thermotherapy for Na+/I− symporter-expressing cancer using anti- Na+/I− symporter antibody-conjugated magnetite nanoparticles. J. Ind. Eng. Chem., 2018, 63, 359-365.
[http://dx.doi.org/10.1016/j.jiec.2018.02.036]
[119]
Jiang, W.; He, X.; Fang, H.; Zhou, X.; Ran, H.; Guo, D. Novel gadopentetic acid-doped silica nanoparticles conjugated with YPSMA-1 targeting prostate cancer for MR imaging: an in vitro study. Biochem. Biophys. Res. Commun., 2018, 499(2), 202-208.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.124] [PMID: 29555471]
[120]
Jazayeri, M.H.; Amani, H.; Pourfatollah, A.A.; Pazoki-Toroudi, H.; Sedighimoghaddam, B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Biosensing Res., 2016, 9, 17-22.
[http://dx.doi.org/10.1016/j.sbsr.2016.04.002]
[121]
Feng, B.; Tomizawa, K.; Michiue, H.; Miyatake, S.; Han, X.J.; Fujimura, A.; Seno, M.; Kirihata, M.; Matsui, H. Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials, 2009, 30(9), 1746-1755.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.010] [PMID: 19121537]
[122]
Nishikawa, K.; Asai, T.; Shigematsu, H.; Shimizu, K.; Kato, H.; Asano, Y.; Takashima, S.; Mekada, E.; Oku, N.; Minamino, T. Development of anti-HB-EGF immunoliposomes for the treatment of breast cancer. J. Control. Release, 2012, 160(2), 274-280.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.010] [PMID: 22020380]
[123]
Yue, P.J.; He, L.; Qiu, S.W.; Li, Y.; Liao, Y.J.; Li, X.P.; Xie, D.; Peng, Y. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol. Cancer, 2014, 13, 191.
[http://dx.doi.org/10.1186/1476-4598-13-191] [PMID: 25128329]
[124]
Shin, D.H.; Lee, S.J.; Kim, J.S.; Ryu, J.H.; Kim, J.S. Synergistic effect of immunoliposomal gemcitabine and bevacizumab in glioblastoma stem cell-targeted therapy. J. Biomed. Nanotechnol., 2015, 11(11), 1989-2002.
[http://dx.doi.org/10.1166/jbn.2015.2146] [PMID: 26554157]
[125]
Kim, J.S.; Shin, D.H.; Kim, J.S. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells. J. Control. Release, 2018, 269, 245-257.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.026] [PMID: 29162480]
[126]
Wang, J.; Wu, Z.; Pan, G.; Ni, J.; Xie, F.; Jiang, B.; Wei, L.; Gao, J.; Zhou, W. Enhanced doxorubicin delivery to hepatocellular carcinoma cells via CD147 antibody-conjugated immunoliposomes. Nanomedicine (Lond.), 2018, 14(6), 1949-1961.
[http://dx.doi.org/10.1016/j.nano.2017.09.012] [PMID: 29045824]
[127]
Monterrubio, C.; Paco, S.; Olaciregui, N.G.; Pascual-Pasto, G.; Vila-Ubach, M.; Cuadrado-Vilanova, M.; Ferrandiz, M.M.; Castillo-Ecija, H.; Glisoni, R.; Kuplennik, N.; Jungbluth, A.; de Torres, C.; Lavarino, C.; Cheung, N.K.V.; Mora, J.; Sosnik, A.; Carcaboso, A.M. Targeted drug distribution in tumor extracellular fluid of GD2-expressing neuroblastoma patient-derived xenografts using SN-38-loaded nanoparticles conjugated to the monoclonal antibody 3F8. J. Control. Release, 2017, 255, 108-119.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.016] [PMID: 28412222]
[128]
Gan, H.; Chen, L.; Sui, X.; Wu, B.; Zou, S.; Li, A.; Zhang, Y.; Liu, X.; Wang, D.; Cai, S.; Liu, X.; Liang, Y.; Tang, X. Enhanced delivery of sorafenib with anti-GPC3 antibodyconjugated TPGS-b-PCL/pluronic P123 polymeric nanoparticles for targeted therapy of hepatocellular carcinoma. Mater. Sci. Eng. C, 2018, 91, 395-403.
[http://dx.doi.org/10.1016/j.msec.2018.05.011] [PMID: 30033270]
[129]
Kubota, T.; Kuroda, S.; Kanaya, N.; Morihiro, T.; Aoyama, K.; Kakiuchi, Y.; Kikuchi, S.; Nishizaki, M.; Kagawa, S.; Tazawa, H.; Fujiwara, T. HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. Nanomedicine (Lond.), 2018, 14(6), 1919-1929.
[http://dx.doi.org/10.1016/j.nano.2018.05.019] [PMID: 29885899]
[130]
Semkina, A.S.; Abakumov, M.A.; Skorikov, A.S.; Abakumova, T.O.; Melnikov, P.A.; Grinenko, N.F.; Cherepanov, S.A.; Vishnevskiy, D.A.; Naumenko, V.A.; Ionova, K.P.; Majouga, A.G.; Chekhonin, V.P. Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer. Nanomedicine (Lond.), 2018, 14(5), 1733-1742.
[http://dx.doi.org/10.1016/j.nano.2018.04.019] [PMID: 29730399]
[131]
Hedrich, W.D.; Fandy, T.E.; Ashour, H.M.; Wang, H.; Hassan, H.E. Antibody-drug conjugates: pharmacokinetic/pharmacodynamic modeling, preclinical characterization, clinical studies, and lessons learned. Clin. Pharmacokinet., 2018, 57(6), 687-703.
[http://dx.doi.org/10.1007/s40262-017-0619]] [PMID: 29188435]
[132]
Rowe, J.M.; Löwenberg, B. Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable saga about an active drug. Blood, 121(24), 4838-4841.
[http://dx.doi.org/10.1182/blood-2013-03-490482]] [PMID: 23591788]
[133]
Petersdorf, S.H.; Kopecky, K.J.; Slovak, M.; Willman, C.; Nevill, T.; Brandwein, J.; Larson, R.A.; Erba, H.P.; Stiff, P.J.; Stuart, R.K.; Walter, R.B.; Tallman, M.S.; Stenke, L.; Appelbaum, F.R. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood, 2013, 121(24), 4854-4860.
[http://dx.doi.org/10.1182/blood-2013-01-466706] [PMID: 23591789]
[134]
Ducry, L.; Stump, B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem., 2010, 21(1), 5-13.
[http://dx.doi.org/10.1021/bc9002019] [PMID: 19769391]
[135]
Laszlo, G.S.; Estey, E.H.; Walter, R.B. The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev., 2014, 28(4), 143-153.
[http://dx.doi.org/10.1016/j.blre.2014.04.001] [PMID: 24809231]
[136]
Egan, P.C.; Reagan, J.L. The return of gemtuzumab ozogamicin: a humanized anti-CD33 monoclonal antibody-drug conjugate for the treatment of newly diagnosed acute myeloid leukemia. OncoTargets Ther., 2018, 11, 8265-8272.
[http://dx.doi.org/10.2147/OTT.S150807] [PMID: 30538495]
[137]
Younes, A.; Gopal, A.K.; Smith, S.E.; Ansell, S.M.; Rosenblatt, J.D.; Savage, K.J.; Ramchandren, R.; Bartlett, N.L.; Cheson, B.D.; de Vos, S.; Forero-Torres, A.; Moskowitz, C.H.; Connors, J.M.; Engert, A.; Larsen, E.K.; Kennedy, D.A.; Sievers, E.L.; Chen, R. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J. Clin. Oncol., 2012, 30(18), 2183-2189.
[http://dx.doi.org/10.1200/JCO.2011.38.0410] [PMID: 22454421]
[138]
Pro, B.; Advani, R.; Brice, P.; Bartlett, N.L.; Rosenblatt, J.D.; Illidge, T.; Matous, J.; Ramchandren, R.; Fanale, M.; Connors, J.M.; Yang, Y.; Sievers, E.L.; Kennedy, D.A.; Shustov, A. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J. Clin. Oncol., 2012, 30(18), 2190-2196.
[http://dx.doi.org/10.1200/JCO.2011.38.0402] [PMID: 22614995]
[139]
Senter, P.D.; Sievers, E.L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol., 2012, 30(7), 631-637.
[http://dx.doi.org/10.1038/nbt.2289] [PMID: 22781692]
[140]
Connors, J.M.; Jurczak, W.; Straus, D.J.; Ansell, S.M.; Kim, W.S.; Gallamini, A.; Younes, A.; Picardi, M.; Oki, Y.; Feldman, T.; Smolewski, P.; Bartlett, N.L.; Walewski, J.; Chen, R.; Ramchandren, R.; Zinzani, P.L.; Cunningham, D.; Rosta, A.; Josephson, N.C.; Song, E.; Sachs, J.; Liu, R.; Jolin, H.A.; Huebner, D.; Radford, J. ECHELON-1 Study Group. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N. Engl. J. Med., 2018, 378(4), 331-344.
[http://dx.doi.org/10.1056/NEJMoa1708984] [PMID: 29224502]
[141]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D-Y. DiA(c)ras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[http://dx.doi.org/10.1056/NEJMoa1209124] [PMID: 23020162]
[142]
Peddi, P.F.; Hurvitz, S.A. Ado-trastuzumab emtansine (T-DM1) in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer: latest evidence and clinical potential. Ther. Adv. Med. Oncol., 2014, 6(5), 202-209.
[http://dx.doi.org/10.1177/1758834014539183] [PMID: 25342987]
[143]
Hurvitz, S.A.; Martin, M.; Symmans, W.F.; Jung, K.H.; Huang, C.S.; Thompson, A.M.; Harbeck, N.; Valero, V.; Stroyakovskiy, D.; Wildiers, H.; Campone, M.; Boileau, J.F.; Beckmann, M.W.; Afenjar, K.; Fresco, R.; Helms, H.J.; Xu, J.; Lin, Y.G.; Sparano, J.; Slamon, D. Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine plus pertuzumab in patients with HER2-positive breast cancer (KRISTINE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol., 2018, 19(1), 115-126.
[http://dx.doi.org/10.1016/S1470-2045(17)30716-7] [PMID: 29175149]
[144]
Kantarjian, H.M.; Deangelo, D.J.; Stelljes, M.; Martinelli, G.; Liedtke, M.; Stock, W.; Gökbuget, N.; O’Brien, S.; Wang, K.; Wang, T.; Paccagnella, M.L.; Sleight, B.; Vandendries, E.; Advani, A.S. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N. Engl. J. Med., 2016, 375(8), 740-753.
[http://dx.doi.org/10.1056/NEJMoa1509277]] [PMID: 27292104]
[145]
Tvito, A.; Rowe, J.M.; Tvito, A.; Rowe, J.M. Inotuzumab ozogamicin for the treatment of acute lymphoblastic leukemia. Expert Opin. Biol. Ther., 2017, 17(12), 1557-1564.
[http://dx.doi.org/10.1080/14712598.2017.1387244] [PMID: 29092647]
[146]
Delaunay, J. Efficacy of gemtuzumab ozogamycin for patients presenting an acute myeloid leukemia (AML) with intermediate risk (LAM2006IR). NCT No. NCT00860639. Available at:. https://clinicaltrials.gov/ct2/show/NCT0086-0639 (Accessed: January 15, 2020).
[147]
Doehner, H. Study of chemotherapy in combination with all-trans retinoic acid (ATRA) with or without gemtuzumab ozogamicin in patients with acute myeloid leukemia (AML) and mutant nucleophosmin-1 (NPM1) gene mutation. NCT No. NCT00893399. Available at:. https://clinicaltrials.gov/ct2/show/NCT00893399 (Accessed: January 15, 2020).
[148]
Sylvie, C. A randomized study of gemtuzumab ozogamicin (GO) with daunorubicine and cytarabine in untreated acute myeloid leukemia (AML) aged of 50-70 years old. NCT No. NCT00927498. Available at: . https://clinicaltrials.gov/ct2/show/NCT00927498 (Accessed: September 25, 2019).
[149]
Gibson, B. International randomised phase III clinical trial in children with acute myeloid leukaemia (Myechild01). NCT No. NCT02724163. Available at: . https://clinical-trials.gov/ct2/show/NCT02724163 (Accessed: September 25, 2019).)
[150]
Lambert, J. . Gemtuzumab ozogamicin + cytarabine vs. idarubicin + cytarabine in elderly patients with AML. mylofrance 4 (ALFA1401). NCT No. NCT02473146. Available at:. https://clinicaltrials.gov/ct2/show/NCT02473146 (Accessed: January 15, 2020).
[151]
Russell, N. Trial to test the effects of adding 1 of 2 new treatment agents to commonly used chemotherapy combinations (AML18). NCT No. NCT02272478. Available at:. https://clinicaltrials.gov/ct2/show/record/NCT02272478 (Accessed: September 13, 2019).
[152]
Berger, M. Study of iomab-B vs. conventional care in older subjects with active, relapsed or refractory acute myeloid leukemia (SIERRA). NCT No. NCT02665065. Available at:. https://clinicaltrials.gov/ct2/show/record/NCT02665065 (Accessed: September 13, 2019)
[153]
Pfizer. Evaluating QTc, PK, safety of gemtuzumab ozogamicin (GO) in patients with CD33+ R/R AML. NCT No. NCT03727750. Available at:; https://clinicaltrials.gov/ct2/show/NCT03727750 (Accessed: September 13, 2019)..
[154]
Ellis, L. Gemtuzumab ozogamicin in treating patients with relapsed or refractory acute myeloid leukemia or acute promyelocytic leukemia., NCT No. NCT01869803. Available at:; https://clinicaltrials.gov/ct2/show/record/NCT018-69803(Accessed: September 13, 2019)..
[155]
Prince, H.M.; Kim, Y.H.; Horwitz, S.M.; Dummer, R.; Scarisbrick, J.; Quaglino, P.; Zinzani, P.L.; Wolter, P.; Sanches, J.A.; Ortiz-Romero, P.L.; Akilov, O.E.; Geskin, L.; Trotman, J.; Taylor, K.; Dalle, S.; Weichenthal, M.; Walewski, J.; Fisher, D.; Dréno, B.; Stadler, R.; Feldman, T.; Kuzel, T.M.; Wang, Y.; Palanca-Wessels, M.C.; Zagadailov, E.; Trepicchio, W.L.; Zhang, W.; Lin, H-M.; Liu, Y.; Huebner, D.; Little, M.; Whittaker, S.; Duvic, M. ALCANZA study group. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet, 2017, 390(10094), 555-566.
[http://dx.doi.org/10.1016/S0140-6736(17)31266-7] [PMID: 28600132]
[156]
Lisano, J. . A Phase 3 study of brentuximab vedotin (SGN- 35) in patients at high risk of residual hodgkin lymphoma following stem cell transplant (the AETHERA trial). NCT No. NCT01100502. Available at: ; https://clinicaltrials.gov/ct2/show/record/NCT01100502 (Accessed: September 13, 2019)...
[157]
Merck Sharp & Dohme Corp. Study of pembrolizumab (MK-3475) vs. brentuximab vedotin in participants with relapsed or refractory classical hodgkin lymphoma (MK- 3475-204/KEYNOTE-204). NCT No. NCT02684292. Available at: ; https://clinicaltrials.gov/ct2/show/NCT026-84292 (Accessed: September 13, 2019)..
[158]
Squibb, B.-M. A Study of nivolumab plus brentuximab vedotin versus brentuximab vedotin alone in patients with advanced stage classical hodgkin lymphoma, who are relapsed/ refractory or who are not eligible for autologous stem cell transplant (checkmate 812). NCT No. NCT03138499. Available at:; https://clinicaltrials.gov/ct2/show/record/NCT03138499(Accessed: September 13,2019)..
[159]
Manley, T. ECHELON-2: a comparison of brentuximab vedotin and CHP with standard-of-care CHOP in the treatment of patients with CD30-positive mature T-cell lymphomas (ECHELON-2). NCT No. NCT01777152. Available at:; https://clinicaltrials.gov/ct2/show/record/NCT01777152 (Accessed: September 13, 2019)..
[160]
Castellino, S.M. Brentuximab vedotin and combination chemotherapy in treating children and young adults with stage IIB or stage IIIB-IVB hodgkin lymphoma., , NCT No. NCT02166463. Available at:. https://clinicaltrials.gov/ct2/show/record/NCT02166463 (Accessed: September 13, 2019)..
[161]
Millennium Pharmaceuticals, Inc. A frontline therapy trial in participants with advanced classical Hodgkin lymphoma. NCT No. NCT01712490. Available at:, https://clinicaltrials.gov/ct2/show/record/NCT01712490(Accessed: September 13, 2019)..
[162]
Borchmann, P. HD21 for advanced stages. NCT No. NCT02661503. Available at: , https://clinicaltrials.gov/ct2/show/NCT02661503(Accessed: September 13, 2019)..
[163]
Millennium Pharmaceuticals, Inc.; A study of brentuximab vedotin in participants with relapsed or refractory Hodgkin lymphoma. NCT No. NCT01990534. Available at:, https://clinicaltrials.gov/ct2/show/record/NCT01990534(Accessed: September 13, 2019)..
[164]
Millennium Pharmaceuticals, Inc.; Study of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma.NCT No. NCT01909934. Available at:, https://clinicaltrials.gov/ct2/show/record/NCT01909934 (Accessed: September 13, 2019)..
[165]
Ho, L. Clinical trial of brentuximab vedotin in classical Hodgkin lymphoma. NCT No. NCT03646123. Available at:, https://clinicaltrials.gov/ct2/show/record/NCT03646123(Accessed: September 13, 2019)..
[166]
Sankyo, D. DS-8201a versus T-DM1 for human epidermal growth factor receptor 2 (HER2)-positive, unresectable and/or metastatic breast cancer previously treated with trastuzumab and taxane [DESTINY-Breast03]. NCT No. NCT03529110. Available at:; https://clinicaltrials.gov/ct2/show/NCT03529110(Accessed: September 13, 2019)..
[167]
Roche, H-L. A study of trastuzumab emtansine in participants with human epidermal growth factor receptor 2 (HER2)-positive breast cancer who have received prior anti-HER2 and chemotherapy-based treatment. NCT No. NCT01702571. Available at:; https://clinicaltrials.gov/ct2/show/record/NCT01702571(Accessed: September 13, 2019)..
[168]
Roche, H-L. Efficacy and safety of trastuzumab emtansine in chinese participants with human epidermal growth factor receptor 2 (HER2)-positive locally advanced or metastatic breast cancer. NCT No. NCT03084939. Available at:; https://clinicaltrials.gov/ct2/show/record/NCT03084939(Accessed: September 13, 2019)..
[169]
Roche, H-L. A study evaluating trastuzumab emtansine plus pertuzumab compared with chemotherapy plus trastuzumab and pertuzumab for participants with human epidermal growth factor receptor 2 (HER2)-positive breast cancer. NCT No. NCT02131064. Available at:; https://clinicaltrials.gov/ct2/show/record/NCT02131064(Accessed: September 13, 2019)..
[170]
Roche, H-L. A study of trastuzumab emtansine (Kadcyla) plus pertuzumab (Perjeta) following anthracyclines in comparison with trastuzumab (Herceptin) plus pertuzumab and a taxane following anthracyclines as adjuvant therapy in participants with operable HER2-positive primary breast cancer. NCT No. NCT01966471. Available at:; https://clinicaltrials.gov/ct2/show/record/NCT01966471(Accessed: September 13, 2019)..
[171]
Roche, H-L. A study of trastuzumab emtansine versus trastuzumab as adjuvant therapy in patients with HER2- positive breast cancer who have residual tumor in the breast or axillary lymph nodes following preoperative therapy (KATHERINE). NCT No. NCT01772472. Available at:; https://clinicaltrials.gov/ct2/show/record/NCT01772472(Accessed: September 13, 2019)..
[172]
Roche, H-L. A study of trastuzumab emtansine (T-DM1) plus pertuzumab/pertuzumab placebo versus trastuzumab (Herceptin) plus a taxane in participants with metastatic breast cancer (MARIANNE). NCT No. NCT01120184. Available at:; https://clinicaltrials.gov/ct2/show/NCT0112-0184(Accessed: September 13, 2019)..
[173]
Roche, H-L. A study of trastuzumab emtansine versus taxane in participants with human epidermal growth factor receptor 2 (HER2)-positive advanced gastric cancer. NCT No. NCT01641939. Available at: ; https://clinicaltrials.gov/ct2/show/NCT01641939(Accessed: September 13, 2019)..
[174]
Sankyo, D. DS-8201a in pre-treated HER2 breast cancer that cannot be surgically removed or has spread [DESTINY-Breast02]. NCT No. NCT03523585. Available at:; https://www.clinicaltrials.gov/ct2/show/record/NCT03523585 (Accessed: January 17, 2020).
[175]
Roche, H.-L. Study of trastuzumab emtansine in indian patients with human epidermal growth factor receptor 2 (HER2)-positive unresectable locally advanced or metastatic breast cancer who have received prior treatment with trastuzumab and a taxane. NCT No. NCT02658734. Available at: ; https://clinicaltrials.gov/ct2/show/NCT02658734(Accessed: April 21, 2020)..
[176]
Pfizer. A study of inotuzumab ozogamicin plus rituximab for relapsed/refractory aggressive non-Hodgkin lymphoma patients who are not candidates for intensive high-dose chemotherapy. NCT No. NCT01232556. Available at:; https://clinicaltrials.gov/ct2/show/NCT01232556(Accessed: September 13, 2019)..
[177]
DeAngelo, J. Inotuzumab ozogamicin and frontline chemotherapy in treating young adults with newly diagnosed b acute lymphoblastic leukemia. NCT No. NCT03150693. Available at:, https://clinicaltrials.gov/ct2/show/ NCT0315- 0693 (Accessed: September 13, 2019)..
[178]
Pfizer. A study of inotuzumab ozogamicin versus investigator’s choice of chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia. NCT No. NCT01564784. Available at: ; https://clinicaltrials.gov/ct2/show/NCT01564784 (Accessed: September 13, 2019)..
[179]
Pfizer. Study comparing inotuzumab ozogamicin in combination with rituximab versus defined investigator’s choice in follicular non-Hodgkin’s lymphoma (NHL). NCT No. NCT00562965. Available at: ; https://clinical-trials.gov/ct2/show/NCT00562965 (Accessed: September 13, 2019)..
[180]
Novartis Pharmaceuticals. Tisagenlecleucel vs. blinatumomab or inotuzumab for patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia (OBERON). NCT No. NCT03628053. Available at:; https://clinicaltrials.gov/ct2/show/NCT03628053 (Accessed: September 13, 2019)..
[181]
Pfizer. A study of two inotuzumab ozogamicin doses in relapsed/refractory acute lymphoblastic leukemia transplant eligible patients. NCT No. NCT03677596. Available at: ; https://clinicaltrials.gov/ct2/show/NCT03677596(Accessed: September 13, 2019)..
[182]
Lyon, R. Drawing lessons from the clinical development of antibody-drug conjugates. Drug Discov. Today. Technol., 2018, 30, 105-109.
[http://dx.doi.org/10.1016/j.ddtec.2018.10.001] [PMID: 30553514]
[183]
Bardia, A.; Mayer, I.A.; Diamond, J.R.; Moroose, R.L.; Isakoff, S.J.; Alexander, N.; Shah, N.C.; Shaughnessy, J.O.; Kalinsky, K.; Guarino, M.; Abramson, V.; Tolaney, S.M.; Berlin, J.; Messersmith, W.A.; Ocean, A.J.; Wegener, W.A.; Maliakal, P.; Sharkey, R.M.; Govindan, S.V.; Goldenberg, D.M.; Vahdat, L.T. Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative. J. Clin. Oncol., 2017, 35(19), 2141-2148.
[http://dx.doi.org/10.1200/jco.2016.70.8297]] [PMID: 28291390]
[184]
Bardia, A. ASCENT-study of sacituzumab govitecan in refractory/relapsed triple-negative breast cancer. NCT No. NCT02574455. Available at:; https://clinicaltrials.gov/ct2/show/NCT02574455(Accessed: September 27, 2019)..
[185]
Roos, A.; Dhruv, H.D.; Peng, S.; Inge, L.J.; Tuncali, S.; Pineda, M.; Millard, N.; Mayo, Z.; Eschbacher, J.M.; Loftus, J.C.; Winkles, J.A.; Tran, N.L. EGFRvIII-Stat5 signaling enhances glioblastoma cell migration and survival. Mol. Cancer Res., 2018, 16(7), 1185-1195.
[http://dx.doi.org/10.1158/1541-7786.mcr-18-0125]] [PMID: 29724813]
[186]
van den Bent, M.; Gan, H.K.; Lassman, A.B.; Kumthekar, P.; Merrell, R.; Butowski, N.; Lwin, Z.; Mikkelsen, T.; Nabors, L.B.; Papadopoulos, K.P.; Penas-Prado, M.; Simes, J.; Wheeler, H.; Walbert, T.; Scott, A.M.; Gomez, E.; Lee, H.J.; Roberts-Rapp, L.; Xiong, H.; Bain, E.; Ansell, P.J.; Holen, K.D.; Maag, D.; Reardon, D.A. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multi-center, international study. Cancer Chemother. Pharmacol., 2017, 80(6), 1209-1217.
[http://dx.doi.org/10.1007/s00280-017-3451-1] [PMID: 29075855]
[187]
AbbVie Inc; UNITE study: understanding new interventions with GBM therapy. NCT No. NCT03419403. Available at: , https://clinicaltrials.gov/ct2/show/NCT03419403(Accessed: September 28, 2019)..
[188]
Wicki, A.; Ritschard, R.; Loesch, U.; Deuster, S.; Rochlitz, C.; Mamot, C. Large-scale manufacturing of GMP-compliant anti-EGFR targeted nanocarriers: production of doxorubicin-loaded anti-EGFR-immunoliposomes for a first-in-man clinical trial. Int. J. Pharm., 2015, 484(1-2), 8-15.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.034] [PMID: 25701632]
[189]
Winterhalder, R. Anti-EGFR-immunoliposomes loaded with doxorubicin in patients with advanced triple negative EGFR positive breast cancer. NCT No. NCT02833766. Available at: , https://clinicaltrials.gov/ct2/show/ NCT0283- 3766 (Accessed: September 27, 2019)..
[190]
Laeubli, H. Doxorubicin-loaded anti-EGFR-immunoliposomes (C225-ILs-dox) in high-grade gliomas (GBMLIPO). NCT No. NCT03603379. Available at:; https://clinicaltrials.gov/ct2/show/record/NCT03603379(Accessed: September 27, 2019.)..
[191]
Munster, P.; Krop, I.E.; LoRusso, P.; Ma, C.; Siegel, B.A.; Shields, A.F.; Moln, Ar, I.; Wickham, T.J.; Reynolds, J.; Campbell, K.; Hendriks, B.S.; Adiwijaya, B.S.; Geretti, E.; Moyo, V.; Miller, K.D. Safety and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: a phase 1 dose-escalation study. Br. J. Cancer, 2018, 119(9), 1086-1093.
[http://dx.doi.org/10.1038/s41416-018-0235-2] [PMID: 30361524]
[192]
Miller, K.; Cortes, J.; Hurvitz, S.A.; Krop, I.E.; Tripathy, D.; Verma, S.; Riahi, K.; Reynolds, J.G.; Wickham, T.J.; Molnar, I.; Yardley, D.A. HERMIONE: a randomized Phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician’s choice plus trastuzumab in patients with previously treated, anthracycline-naïve, HER2-positive, locally advanced/metastatic breast cancer. BMC Cancer, 2016, 16(1), 352.
[http://dx.doi.org/10.1186/s12885-016-2385-z] [PMID: 27259714]
[193]
Senzer, N.; Nemunaitis, J.; Nemunaitis, D.; Bedell, C.; Edelman, G.; Barve, M.; Nunan, R.; Pirollo, K.F.; Rait, A.; Chang, E.H. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol. Ther., 2013, 21(5), 1096-1103.
[http://dx.doi.org/10.1038/mt.2013.32] [PMID: 23609015]
[194]
Pirollo, K.F.; Nemunaitis, J.; Leung, P.K.; Nunan, R.; Adams, J.; Chang, E.H. Safety and efficacy in advanced solid tumors of a targeted nanocomplex carrying the p53 gene used in combination with docetaxel: a phase 1b study. Mol. Ther., 2016, 24(9), 1697-1706.
[http://dx.doi.org/10.1038/mt.2016.135]] [PMID: 27357628]
[195]
deGroot, J. Phase II study of combined temozolomide and SGT-53 for treatment of recurrent glioblastoma. NCT No. NCT02340156. Available at:; https://clinicaltrials.gov/ct2/show/NCT02340156(Accessed: September 28, 2019)..
[196]
Barve, M. Study of combined SGT-53 plus gemcitabine/ nab-paclitaxel for metastatic pancreatic cancer. NCT No. NCT02340117. Available at:; https://clinicaltrials.gov/ct2/show/NCT02340117(Accessed: September 27, 2019)..
[197]
Siefker-Radtke, A.; Zhang, X.-Q.; Guo, C.C.; Shen, Y.; Pirollo, K.F.; Sabir, S.; Leung, C.; Leong-Wu, C.; Ling, C.-M.; Chang, E.H.; Millikan, R.E.; Benedict, W.F. A Phase l study of a tumor-targeted systemic nanodelivery system, SGT-94, in genitourinary cancers, 2016, 24(8), 1484-1491..
[http://dx.doi.org/10.1038/mt.2016.118] [PMID: 27480598]
[198]
Peng, Q.; Chen, L.; Wu, W.; Wang, J.; Zheng, X.; Chen, Z.; Jiang, Q.; Han, J.; Wei, L.; Wang, L.; Huang, J.; Ma, J. EPH receptor A2 governs a feedback loop that activates Wnt/Iý-catenin signaling in gastric cancer. Cell Death Dis., 2018, 9(12), 1146.
[http://dx.doi.org/10.1038/s41419-018-1164-y] [PMID: 30451837]
[199]
Huang, Z.R.; Tipparaju, S.K.; Kirpotin, D.B.; Pien, C.; Kornaga, T.; Noble, C.O.; Koshkaryev, A.; Tran, J.; Kamoun, W.S.; Drummond, D.C. Formulation optimization of an ephrin A2 targeted immunoliposome encapsulating reversibly modified taxane prodrugs. J. Control. Release, 2019, 310, 47-57.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.006] [PMID: 31400383]
[200]
Immunomedics. ADC Linker, 2019. Available at:; https://www.immunomedics.com/our-science/research/adc-linker/(Accessed: September 27, 2019)..
[201]
Morrison, C.; Lähteenmäki, R. Public biotech 2018-the numbers. Nat. Biotechnol., 2019, 37(7), 714-721.
[http://dx.doi.org/10.1038/s41587-019-0170-7] [PMID: 31227821]
[202]
Nevala, W.K.; Buhrow, S.A.; Knauer, D.J.; Reid, J.M.; Atanasova, E.A.; Markovic, S.N. Antibody-targeted chemotherapy for the treatment of melanoma. Cancer Res., 76(13), 3954-3964.
[http://dx.doi.org/10.1158/0008-5472.can-15-3131]] [PMID: 27197186]
[203]
Interfarma (Pharmaceutical Research Industry Association). Understanding Biological Medicines, 2002. Available at: ; https://www.interfarma.org.br/public/files/biblio-teca/34-biologicos-site.pdf (Accessed: September 27, 2019)..
[204]
Abreu, J.C. Technological prospection applied to optimize the granting of patents in Brazil: a case study in patents for immunosuppressive drugs. Rio de Janeiro, 2017 (Accessed: January 17, 2020.).,
[205]
Jannuzzi, A.H.L.; Vasconcellos, A.G.; de Souza, C.G. Especificidades do patenteamento no setor farmaceutico: modalidades e aspectos da proteção intelectual. Cad. Saude Publica, 2008, 24(6), 1205-1218.
[http://dx.doi.org/10.1590/S0102-311X2008000600002] [PMID: 18545747]
[206]
Doronina, S.; Senter, P.D.; Toki, B.E. Pentapeptide compounds and uses related thereto., Patent No. WO2002088172A2, 2002.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy