Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

The Application of Nucleic Acids and Nucleic Acid Materials in Antimicrobial Research

Author(s): Yue Sun, Lingxian Meng, Yuxin Zhang, Dan Zhao and Yunfeng Lin*

Volume 16, Issue 1, 2021

Published on: 21 May, 2020

Page: [66 - 73] Pages: 8

DOI: 10.2174/1574888X15666200521084417

Price: $65

Abstract

Due to the misuse of antibiotics, multiple drug-resistant pathogenic bacteria have increasingly emerged. This has increased the difficulty of treatment as these bacteria directly affect public health by diminishing the potency of existing antibiotics. Developing alternative therapeutic strategies is the urgent need to reduce the mortality and morbidity related to drug-resistant bacterial infections. In the past 10 to 20 years, nanomedicines have been widely studied and applied as an antibacterial agent. They have become a novel tool for fighting resistant bacteria. The most common innovative substances, metal and metal oxide nanoparticles (NPs), have been widely reported. Until recently, DNA nanostructures were used alone or functionalized with specific DNA sequences by many scholars for antimicrobial purposes which were alternatively selected as therapy for severe bacterial infections. These are a potential candidate for treatments and have a considerable role in killing antibiotic-resistant bacteria. This review involves the dimensions of multidrug resistance and the mechanism of bacteria developing drug resistance. The importance of this article is that we summarized the current study of nano-materials based on nucleic acids in antimicrobial use. Meanwhile, the current progress and the present obstacles for their antibacterial and therapeutic use and special function of stem cells in this field are also discussed.

Keywords: Antibiotic resistance, antibacterial, nucleic acid aptamers, antisense oligonucleotides (ASOs), antimicrobial peptides (AMP), DNA nanostructures, metallic nanoparticles.

[1]
Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 2010; 1: 134.
[http://dx.doi.org/10.3389/fmicb.2010.00134] [PMID: 21687759]
[2]
Veerapandian M, Yun K. Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl Microbiol Biotechnol 2011; 90(5): 1655-67.
[http://dx.doi.org/10.1007/s00253-011-3291-6] [PMID: 21523475]
[3]
Bassetti M, Merelli M, Temperoni C, Astilean A. New antibiotics for bad bugs: Where are we? Ann Clin Microbiol Antimicrob 2013; 12: 22.
[http://dx.doi.org/10.1186/1476-0711-12-22] [PMID: 23984642]
[4]
Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis 2013; 13(12): 1057-98.
[http://dx.doi.org/10.1016/S1473-3099(13)70318-9] [PMID: 24252483]
[5]
Fernandes P. Antibacterial discovery and development--the failure of success? Nat Biotechnol 2006; 24(12): 1497-503.
[http://dx.doi.org/10.1038/nbt1206-1497] [PMID: 17160049]
[6]
Papich MG. Selection of antibiotics for meticillin-resistant Staphylococcus pseudintermedius: Time to revisit some old drugs? Vet Dermatol 2012; 23(4): 352-60.e64.
[http://dx.doi.org/10.1111/j.1365-3164.2011.01030.x]
[7]
Filice GA, Nyman JA, Lexau C, et al. Excess costs and utilization associated with methicillin resistance for patients with Staphylococcus aureus infection. Infect Control Hosp Epidemiol 2010; 31(4): 365-73.
[http://dx.doi.org/10.1086/651094] [PMID: 20184420]
[8]
Kim T, Oh PI, Simor AE. The economic impact of methicillin-resistant Staphylococcus aureus in Canadian hospitals. Infect Control Hosp Epidemiol 2001; 22(2): 99-104.
[http://dx.doi.org/10.1086/501871] [PMID: 11232886]
[9]
Fan Q, Ming WK, Yip WY, You JHS. Cost-effectiveness of bedaquiline or delamanid plus background regimen for multidrug-resistant tuberculosis in a high-income intermediate burden city of China. Int J Infect Dis 2019; 78: 44-9.
[http://dx.doi.org/10.1016/j.ijid.2018.10.007] [PMID: 30342251]
[10]
Zhen X, Li Y, Chen Y, Dong P, Liu S, Dong H. Effect of multiple drug resistance on total medical costs among patients with intra-abdominal infections in China. PLoS One 2018; 13(3)e0193977
[http://dx.doi.org/10.1371/journal.pone.0193977] [PMID: 29590138]
[11]
Kalan L, Wright GD. Antibiotic adjuvants: Multicomponent anti-infective strategies. Expert Rev Mol Med 2011; 13e5
[http://dx.doi.org/10.1017/S1462399410001766] [PMID: 21342612]
[12]
Hadiya S, Liu X, Abd El-Hammed W, Elsabahy M, Aly SA. Levofloxacin-loaded nanoparticles decrease emergence of fluoroquinolone resistance in Escherichia coli. Microb Drug Resist 2018; 24(8): 1098-107.
[http://dx.doi.org/10.1089/mdr.2017.0304] [PMID: 29431570]
[13]
Bush K, Courvalin P, Dantas G, et al. Tackling antibiotic resistance. Nat Rev Microbiol 2011; 9(12): 894-6.
[http://dx.doi.org/10.1038/nrmicro2693] [PMID: 22048738]
[14]
Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov 2013; 12(5): 371-87.
[http://dx.doi.org/10.1038/nrd3975] [PMID: 23629505]
[15]
Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 2017; 12: 8211-25.
[http://dx.doi.org/10.2147/IJN.S132163] [PMID: 29184409]
[16]
Tan W, Donovan MJ, Jiang J. Aptamers from cell-based selection for bioanalytical applications. Chem Rev 2013; 113(4): 2842-62.
[http://dx.doi.org/10.1021/cr300468w] [PMID: 23509854]
[17]
Chan H, Ho J, Liu X, et al. Potential and use of bacterial small RNAs to combat drug resistance: A systematic review. Infect Drug Resist 2017; 10: 521-32.
[http://dx.doi.org/10.2147/IDR.S148444] [PMID: 29290689]
[18]
Kwenda S, Gorshkov V, Ramesh AM, et al. Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen Pectobacterium atrosepticum. BMC Genomics 2016; 17: 47.
[http://dx.doi.org/10.1186/s12864-016-2376-0] [PMID: 26753530]
[19]
Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol 2011; 9(8): 578-89.
[http://dx.doi.org/10.1038/nrmicro2615] [PMID: 21760622]
[20]
Zhou Y, Xie J. The roles of pathogen small RNAs. J Cell Physiol 2011; 226(4): 968-73.
[http://dx.doi.org/10.1002/jcp.22483] [PMID: 20945366]
[21]
Morita T, Maki K, Aiba H. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 2005; 19(18): 2176-86.
[http://dx.doi.org/10.1101/gad.1330405] [PMID: 16166379]
[22]
Bouvier M, Sharma CM, Mika F, Nierhaus KH, Vogel J. Small RNA binding to 5′ mRNA coding region inhibits translational initiation. Mol Cell 2008; 32(6): 827-37.
[http://dx.doi.org/10.1016/j.molcel.2008.10.027] [PMID: 19111662]
[23]
Nithya R, Ahmed SA, Hoe CH, et al. Non-protein coding RNA genes as the novel diagnostic markers for the discrimination of Salmonella species using PCR. PLoS One 2015; 10(3)e0118668
[http://dx.doi.org/10.1371/journal.pone.0118668] [PMID: 25774907]
[24]
Song J, Lays C, Vandenesch F, et al. The expression of small regulatory RNAs in clinical samples reflects the different life styles of Staphylococcus aureus in colonization vs. infection. PLoS One 2012; 7(5)e37294
[http://dx.doi.org/10.1371/journal.pone.0037294] [PMID: 22629378]
[25]
Xia L, Xia W, Li S, et al. Identification and expression of small non-coding RNA, L10-Leader, in different growth phases of Streptococcus mutans. Nucleic Acid Ther 2012; 22(3): 177-86.
[http://dx.doi.org/10.1089/nat.2011.0339] [PMID: 22468692]
[26]
Molina-Santiago C, Daddaoua A, Gómez-Lozano M, Udaondo Z, Molin S, Ramos JL. Differential transcriptional response to antibiotics by Pseudomonas putida DOT-T1E. Environ Microbiol 2015; 17(9): 3251-62.
[http://dx.doi.org/10.1111/1462-2920.12775] [PMID: 25581266]
[27]
Howden BP, Beaume M, Harrison PF, et al. Analysis of the small RNA transcriptional response in multidrug-resistant Staphylococcus aureus after antimicrobial exposure. Antimicrob Agents Chemother 2013; 57(8): 3864-74.
[http://dx.doi.org/10.1128/AAC.00263-13] [PMID: 23733475]
[28]
Yu J, Schneiders T. Tigecycline challenge triggers sRNA production in Salmonella enterica Aerovar Typhimurium. BMC Microbiol 2012; 12: 195.
[http://dx.doi.org/10.1186/1471-2180-12-195] [PMID: 22958399]
[29]
Chen Y, Indurthi DC, Jones SW, Papoutsakis ET. Small RNAs in the genus Clostridium. MBio 2011; 2(1): e00340-10.
[http://dx.doi.org/10.1128/mBio.00340-10] [PMID: 21264064]
[30]
Vogel J, Wagner EG. Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol 2007; 10(3): 262-70.
[http://dx.doi.org/10.1016/j.mib.2007.06.001] [PMID: 17574901]
[31]
Waters LS, Storz G. Regulatory RNAs in bacteria. Cell 2009; 136(4): 615-28.
[http://dx.doi.org/10.1016/j.cell.2009.01.043] [PMID: 19239884]
[32]
Enkin N, Wang F, Sharon E, Albada HB, Willner I. Multiplexed analysis of genes using nucleic acid-stabilized silver-nanocluster quantum dots. ACS Nano 2014; 8(11): 11666-73.
[http://dx.doi.org/10.1021/nn504983j] [PMID: 25327411]
[33]
Hiramatsu K. Vancomycin-resistant Staphylococcus aureus: A new model of antibiotic resistance. Lancet Infect Dis 2001; 1(3): 147-55.
[http://dx.doi.org/10.1016/S1473-3099(01)00091-3] [PMID: 11871491]
[34]
Kim T, Bak G, Lee J, Kim KS. Systematic analysis of the role of bacterial Hfq-interacting sRNAs in the response to antibiotics. J Antimicrob Chemother 2015; 70(6): 1659-68.
[http://dx.doi.org/10.1093/jac/dkv042] [PMID: 25724987]
[35]
Ramos CG, Grilo AM, Sousa SA, Feliciano JR, da Costa PJ, Leitão JH. Regulation of Hfq mRNA and protein levels in Escherichia coli and Pseudomonas aeruginosa by the Burkholderia cenocepacia MtvR sRNA. PLoS One 2014; 9(6)e98813
[http://dx.doi.org/10.1371/journal.pone.0098813] [PMID: 24901988]
[36]
Hegarty JP, Stewart DB Sr. Advances in therapeutic bacterial antisense biotechnology. Appl Microbiol Biotechnol 2018; 102(3): 1055-65.
[http://dx.doi.org/10.1007/s00253-017-8671-0] [PMID: 29209794]
[37]
Lin JT, Zou Y, Wang C, et al. Cationic micellar nanoparticles for DNA and doxorubicin co-delivery. Mater Sci Eng C 2014; 44: 430-9.
[http://dx.doi.org/10.1016/j.msec.2014.07.049] [PMID: 25280725]
[38]
Kurreck J, Wyszko E, Gillen C, Erdmann VA. Design of Antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 2002; 30(9): 1911-8.
[http://dx.doi.org/10.1093/nar/30.9.1911] [PMID: 11972327]
[39]
Toulmé JJ. New candidates for true antisense. Nat Biotechnol 2001; 19(1): 17-8.
[http://dx.doi.org/10.1038/83451] [PMID: 11135542]
[40]
Zamaratski E, Pradeepkumar PI, Chattopadhyaya J. A critical survey of the structure-function of the antisense oligo/RNA heteroduplex as substrate for RNase H. J Biochem Biophys Methods 2001; 48(3): 189-208.
[http://dx.doi.org/10.1016/S0165-022X(01)00149-X] [PMID: 11384757]
[41]
Kurupati P, Tan KS, Kumarasinghe G, Poh CL. Inhibition of gene expression and growth by antisense peptide nucleic acids in a multiresistant beta-lactamase-producing Klebsiella pneumoniae strain. Antimicrob Agents Chemother 2007; 51(3): 805-11.
[http://dx.doi.org/10.1128/AAC.00709-06] [PMID: 17158940]
[42]
Dryselius R, Nekhotiaeva N, Good L. Antimicrobial synergy between mRNA- and protein-level inhibitors. J Antimicrob Chemother 2005; 56(1): 97-103.
[http://dx.doi.org/10.1093/jac/dki173] [PMID: 15914490]
[43]
Liang S, He Y, Xia Y, et al. Inhibiting the growth of methicillin-resistant Staphylococcus aureus in vitro with antisense peptide nucleic acid conjugates targeting the ftsZ gene. Int J Infect Dis 2015; 30: 1-6.
[http://dx.doi.org/10.1016/j.ijid.2014.09.015] [PMID: 25447735]
[44]
Good L, Sandberg R, Larsson O, Nielsen PE, Wahlestedt C. Antisense PNA effects in Escherichia coli are limited by the outer-membrane LPS layer. Microbiology 2000; 146(Pt 10): 2665-70.
[http://dx.doi.org/10.1099/00221287-146-10-2665] [PMID: 11021941]
[45]
Nekhotiaeva N, Awasthi SK, Nielsen PE, Good L. Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol Ther 2004; 10(4): 652-9.
[http://dx.doi.org/10.1016/j.ymthe.2004.07.006] [PMID: 15451449]
[46]
Rajasekaran P, Alexander JC, Seleem MN, et al. Peptide nucleic acids inhibit growth of Brucella suis in pure culture and in infected murine macrophages. Int J Antimicrob Agents 2013; 41(4): 358-62.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.11.017] [PMID: 23305655]
[47]
Kulyté A, Nekhotiaeva N, Awasthi SK, Good L. Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids. J Mol Microbiol Biotechnol 2005; 9(2): 101-9.
[http://dx.doi.org/10.1159/000088840] [PMID: 16319499]
[48]
Patel RR, Sundin GW, Yang CH, et al. Exploration of using antisense peptide nucleic acid (PNA)-cell penetrating peptide (CPP) as a novel bactericide against fire blight pathogen Erwinia amylovora. Front Microbiol 2017; 8: 687.
[http://dx.doi.org/10.3389/fmicb.2017.00687] [PMID: 28469617]
[49]
Meng J, Wang H, Hou Z, et al. Novel anion liposome-encapsulated Antisense oligonucleotide restores susceptibility of methicillin-resistant Staphylococcus aureus and rescues mice from lethal sepsis by targeting mecA. Antimicrob Agents Chemother 2009; 53(7): 2871-8.
[http://dx.doi.org/10.1128/AAC.01542-08] [PMID: 19433567]
[50]
Harth G, Zamecnik PC, Tabatadze D, Pierson K, Horwitz MA. Hairpin extensions enhance the efficacy of mycolyl transferase-specific antisense oligonucleotides targeting Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2007; 104(17): 7199-204.
[http://dx.doi.org/10.1073/pnas.0701725104] [PMID: 17438292]
[51]
Bai H, Sang G, You Y, et al. Targeting RNA polymerase primary σ70 as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide nucleic acid. PLoS One 2012; 7(1)e29886
[http://dx.doi.org/10.1371/journal.pone.0029886] [PMID: 22253815]
[52]
Chen Z, Hu Y, Meng J, et al. Efficient Transfection of phosphorothioate oligodeoxyribonucleotides by lipofectamine 2000 into different bacteria. Curr Drug Deliv 2016; 13(5): 784-93.
[http://dx.doi.org/10.2174/1567201812666150817123528] [PMID: 26279118]
[53]
Hegarty JP, Krzeminski J, Sharma AK, Guzman-Villanueva D, Weissig V, Stewart DB Sr. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile. Int J Nanomedicine 2016; 11: 3607-19.
[http://dx.doi.org/10.2147/IJN.S109600] [PMID: 27536102]
[54]
Courtney CM, Chatterjee A. sequence-specific peptide nucleic acid-based antisense inhibitors of TEM-1 β-Lactamase and Mechanism of adaptive resistance. ACS Infect Dis 2015; 1(6): 253-63.
[http://dx.doi.org/10.1021/acsinfecdis.5b00042] [PMID: 27622741]
[55]
Równicki M, Pieńko T, Czarnecki J, Kolanowska M, Bartosik D, Trylska J. Artificial Activation of Escherichia coli mazEF and hipBA toxin-antitoxin systems by antisense peptide nucleic acids as an antibacterial strategy. Front Microbiol 2018; 9: 2870.
[http://dx.doi.org/10.3389/fmicb.2018.02870] [PMID: 30534121]
[56]
Perche F, Le Gall T, Montier T, Pichon C, Malinge JM. Cardiolipin-based lipopolyplex platform for the delivery of diverse nucleic acids into gram-negative bacteria. Pharmaceuticals (Basel) 2019; 12(2)E81
[http://dx.doi.org/10.3390/ph12020081] [PMID: 31141930]
[57]
Eriksson M, Nielsen PE, Good L. Cell permeabilization and uptake of antisense peptide-peptide nucleic acid (PNA) into Escherichia coli. J Biol Chem 2002; 277(9): 7144-7.
[http://dx.doi.org/10.1074/jbc.M106624200] [PMID: 11739379]
[58]
McClorey G, Banerjee S. Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines 2018; 6(2)E51
[http://dx.doi.org/10.3390/biomedicines6020051] [PMID: 29734750]
[59]
Lehto T, Ezzat K, Wood M J A, et al. Peptides for nucleic acid delivery Adv Drug Deliv Rev 2016.; 106(Pt A): 172-82.
[http://dx.doi.org/10.1016/j.addr.2016.06.008]
[60]
Xue XY, Mao XG, Zhou Y, et al. Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. Nanomedicine (Lond) 2018; 14(3): 745-58.
[http://dx.doi.org/10.1016/j.nano.2017.12.026] [PMID: 29341934]
[61]
Vaseghi G, Rafiee L, Javanmard SH. Non-viral delivery systems for breast cancer gene therapy. Curr Gene Ther 2017; 17(2): 147-53.
[http://dx.doi.org/10.2174/1566523217666170606124131] [PMID: 28595562]
[62]
Puckett SE, Reese KA, Mitev GM, et al. Bacterial resistance to antisense peptide phosphorodiamidate morpholino oligomers. Antimicrob Agents Chemother 2012; 56(12): 6147-53.
[http://dx.doi.org/10.1128/AAC.00850-12] [PMID: 22985881]
[63]
Readman JB, Dickson G, Coldham NG. Tetrahedral DNA nanoparticle vector for intracellular delivery of targeted peptide nucleic acid antisense agents to restore antibiotic sensitivity in cefotaxime-resistant Escherichia coli. Nucleic Acid Ther 2017; 27(3): 176-81.
[http://dx.doi.org/10.1089/nat.2016.0644] [PMID: 28080251]
[64]
Zhang Y, Ma W, Zhu Y, et al. Inhibiting Methicillin-Resistant Staphylococcus aureus by Tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett 2018; 18(9): 5652-9.
[http://dx.doi.org/10.1021/acs.nanolett.8b02166] [PMID: 30088771]
[65]
Hecker M, Wagner AH. Transcription factor decoy technology: A therapeutic update. Biochem Pharmacol 2017; 144: 29-34.
[http://dx.doi.org/10.1016/j.bcp.2017.06.122] [PMID: 28642036]
[66]
González-Paredes A, Sitia L, Ruyra A, et al. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides. Eur J Pharm Biopharm 2019; 134: 166-77.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.017] [PMID: 30468838]
[67]
Salamanca CH, Yarce CJ, Roman Y, Davalos AF, Rivera GR. Application of nanoparticle technology to reduce the anti-microbial resistance through β-Lactam antibiotic-polymer inclusion nano-complex. Pharmaceuticals (Basel) 2018; 11(1)E19
[http://dx.doi.org/10.3390/ph11010019] [PMID: 29439391]
[68]
Chakraborty SP, Kar Mahapatra S, Sahu SK, et al. Internalization of Staphylococcus aureus in lymphocytes induces oxidative stress and DNA fragmentation: Possible ameliorative role of nanoconjugated vancomycin. Oxid Med Cell Longev 2011; 2011942123
[http://dx.doi.org/10.1155/2011/942123] [PMID: 21941607]
[69]
Xing K, Chen XG, Liu CS, Cha DS, Park HJ. Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. Int J Food Microbiol 2009; 132(2-3): 127-33.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.04.013] [PMID: 19439383]
[70]
Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie J, Leong DT. Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS Appl Mater Interfaces 2014; 6(24): 21822-31.
[http://dx.doi.org/10.1021/am502591c] [PMID: 24941440]
[71]
Baelo A, Levato R, Julián E, et al. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release 2015; 209: 150-8.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.028] [PMID: 25913364]
[72]
Han B, Wang E. DNA-templated fluorescent silver nanoclusters. Anal Bioanal Chem 2012; 402(1): 129-38.
[http://dx.doi.org/10.1007/s00216-011-5307-6] [PMID: 21858647]
[73]
Latorre A, Somoza A. DNA-mediated silver nanoclusters: Synthesis, properties and applications. ChemBioChem 2012; 13(7): 951-8.
[http://dx.doi.org/10.1002/cbic.201200053] [PMID: 22508551]
[74]
Yuan Z, Chen YC, Li HW, Chang HT. Fluorescent silver nanoclusters stabilized by DNA scaffolds. Chem Commun (Camb) 2014; 50(69): 9800-15.
[http://dx.doi.org/10.1039/C4CC02981J] [PMID: 24901353]
[75]
Shah P, Rørvig-Lund A, Chaabane SB, et al. Design aspects of bright red emissive silver nanoclusters/DNA probes for microRNA detection. ACS Nano 2012; 6(10): 8803-14.
[http://dx.doi.org/10.1021/nn302633q] [PMID: 22947065]
[76]
Lim YH, Tiemann KM, Hunstad DA, Elsabahy M, Wooley KL. Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(6): 842-71.
[http://dx.doi.org/10.1002/wnan.1401] [PMID: 27016134]
[77]
Mekkawy AI, El-Mokhtar MA, Nafady NA, et al. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: Effect of surface coating and loading into hydrogels. Int J Nanomedicine 2017; 12: 759-77.
[http://dx.doi.org/10.2147/IJN.S124294] [PMID: 28176951]
[78]
Abdelkader A, El-Mokhtar MA, Abdelkader O, Hamad MA, Elsabahy M, El-Gazayerly ON. Ultrahigh antibacterial efficacy of meropenem-loaded chitosan nanoparticles in a septic animal model. Carbohydr Polym 2017; 174: 1041-50.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.030] [PMID: 28821026]
[79]
Armentano I, Arciola CR, Fortunati E, et al. The interaction of bacteria with engineered nanostructured polymeric materials: A review. ScientificWorldJournal 2014; 2014410423
[http://dx.doi.org/10.1155/2014/410423] [PMID: 25025086]
[80]
Almaaytah A, Mohammed GK, Abualhaijaa A, Al-Balas Q. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des Devel Ther 2017; 11: 3159-70.
[http://dx.doi.org/10.2147/DDDT.S147450] [PMID: 29138537]
[81]
Yeom JH, Lee B, Kim D, et al. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar. Typhimurium. Biomaterials 2016; 104: 43-51.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.009] [PMID: 27424215]
[82]
Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M. Coping with antibiotic resistance: Combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther 2011; 9(11): 1035-52.
[http://dx.doi.org/10.1586/eri.11.121] [PMID: 22029522]
[83]
Javani S, Lorca R, Latorre A, Flors C, Cortajarena AL, Somoza Á. Antibacterial activity of DNA-stabilized silver nanoclusters tuned by oligonucleotide sequence. ACS Appl Mater Interfaces 2016; 8(16): 10147-54.
[http://dx.doi.org/10.1021/acsami.6b00670] [PMID: 27058628]
[84]
Sigal M, Reinés MDM, Müllerke S, et al. R-spondin-3 induces secretory, antimicrobial Lgr5+ cells in the stomach. J Nat Cell Biol 2019; 21(7): 812-23.
[http://dx.doi.org/10.1038/s41556-019-0339-9] [PMID: 31235935]
[85]
Basu S, Alkiswani AR, Pacelli S, Paul A. Nucleic acid-based dual cross-linked hydrogels for in situ tissue repair via directional stem cell migration. J ACS Appl Mater Interfaces 2019; 11(38): 34621-33.
[http://dx.doi.org/10.1021/acsami.9b10074] [PMID: 31483598]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy