Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Research Article

Simultaneous Detection of Dopamine and Serotonin in Real Complex Matrices

Author(s): Florina Truţă, Mihaela Tertis, Cecilia Cristea* and Florin Graur

Volume 17, Issue 3, 2021

Published on: 18 May, 2020

Page: [374 - 384] Pages: 11

DOI: 10.2174/1573411016999200518084746

Price: $65

Abstract

Background: Neurotransmitters are chemical messengers with crucial implication in the human body. Perturbations in the concentration of neurotransmitters can affect a multitude of mental and physical functions such as heart rate, sleep, appetite and mood. Thus, the sensitive detection of these compounds is a real need for a new generation of treatments.

Methods: Simultaneous detection of two important neurotransmitters, namely dopamine and serotonin, was investigated in this study using differential pulse voltammetry. The optimization of several surface parameters was performed in order to choose the best electrode material for electrochemical oxidation of targets. Screen-printed electrodes based on carbon, gold and platinum and modified with different nanomaterials (carbon nanotubes, gold nanoparticles and carbon nanotubes decorated with gold nanoparticles) were tested.

Results: Carbon-based electrodes modified with multiwall carbon nanotubes and gold nanoparticles were chosen after the optimization protocol. Linear correlations between the analytic signals obtained and the concentration of dopamine and serotonin, respectively were obtained with good sensitivity and the detection limits were 0.3 μM for dopamine and 0.8 μM for serotonin with no significant reciprocal influences. Selectivity studies were also performed, as well as tests in real samples (e.g., human serum, tears and saliva) complex matrices for which acceptable recoveries were obtained.

Conclusion: The results obtained in this study can be considered as an important starting point for the development of a fast and simple method for selective and highly sensitive detection of neurotransmitters, with possible applications in the diagnosis of different pathologies and for monitoring the effectiveness of the applied drug treatment.

Keywords: Dopamine, electrochemical detection, neurotransmitters, real samples, serotonin, simultaneous detection.

Graphical Abstract
[1]
Baranwal, A.; Chandra, P. Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens. Bioelectron., 2018, 121, 137-152.
[http://dx.doi.org/10.1016/j.bios.2018.09.002] [PMID: 30212666]
[2]
Huang, Q.; Zhang, H.; Hu, S.; Li, F.; Weng, W.; Chen, J.; Wang, Q.; He, Y.; Zhang, W.; Bao, X. A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots-chitosan composite film. Biosens. Bioelectron., 2014, 52, 277-280.
[http://dx.doi.org/10.1016/j.bios.2013.09.003] [PMID: 24064477]
[3]
Zhang, X.; Chen, X.; Kai, S.; Wang, H.Y.; Yang, J.; Wu, F.G.; Chen, Z. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal. Chem., 2015, 87(6), 3360-3365.
[http://dx.doi.org/10.1021/ac504520g] [PMID: 25671464]
[4]
Pan, X.; Kaminga, A.C.; Wen, S.W.; Wu, X.; Acheampong, K.; Liu, A. Dopamine and dopamine receptors in Alzheimer’s disease: A systematic review and network meta-analysis. Front. Aging Neurosci., 2019, 11, 175.
[http://dx.doi.org/10.3389/fnagi.2019.00175] [PMID: 31354471]
[5]
Meder, D.; Herz, D.M.; Rowe, J.B.; Lehéricy, S.; Siebner, H.R. The role of dopamine in the brain - lessons learned from Parkinson’s disease. Neuroimage, 2019, 190, 79-93.
[http://dx.doi.org/10.1016/j.neuroimage.2018.11.021 PMID: 30465864]
[6]
Wang, Y.; Wang, S.; Tao, L.; Min, Q.; Xiang, J.; Wang, Q.; Xie, J.; Yue, Y.; Wu, S.; Li, X.; Ding, H. A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode. Biosens. Bioelectron., 2015, 65, 31-38.
[http://dx.doi.org/10.1016/j.bios.2014.09.099] [PMID: 25461135]
[7]
Chávez, J.L.; Hagen, J.A.; Kelley-Loughnane, N. Fast and selective plasmonic serotonin detection with aptamer-gold nanoparticle conjugates. Sensors (Basel), 2017, 17(4)E681
[http://dx.doi.org/10.3390/s17040681] [PMID: 28346350]
[8]
Wang, S.; Wang, Y.; Min, Q.; Shu, T.; Zhu, X.; Peng, A.; Ding, H. Simultaneous electrochemical determination of dopamine and serotonin in rat cerebrospinal fluid using screen-printed electrode modified with MWNTs-SiO2-chitosan composites. Int. J. Electrochem. Sci., 2016, 11, 2360-2376.
[9]
Rand, E.; Periyakaruppan, A.; Tanaka, Z.; Zhang, D.A.; Marsh, M.P.; Andrews, R.J.; Lee, K.H.; Chen, B.; Meyyappan, M.; Koehne, J.E. A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbic acid. Biosens. Bioelectron., 2013, 42(1), 434-438.
[http://dx.doi.org/10.1016/j.bios.2012.10.080] [PMID: 23228495]
[10]
Hasanzadeh, M.; Shadjou, N.; Omidinia, E. A novel electroanalytical method for simultaneous detection of two neurotransmitter dopamine and serotonin in human serum. J. Neurosci. Methods, 2013, 219(1), 52-60.
[http://dx.doi.org/10.1016/j.jneumeth.2013.07.007] [PMID: 23872244]
[11]
Huang, Q.; Lin, X.; Tong, L.; Tong, Q-X. Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells. ACS Sustain. Chem.& Eng., 2020, 8(3), 1644-1650.
[http://dx.doi.org/10.1021/acssuschemeng.9b06623]
[12]
Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron., 2018, 103, 113-129.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[13]
Farka, Z.; Juřík, T.; Kovář, D.; Trnková, L.; Skládal, P. Nanoparticle-Based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev., 2017, 117(15), 9973-10042.
[http://dx.doi.org/10.1021/acs.chemrev.7b00037] [PMID: 28753280]
[14]
Durairaj, S.; Sidhureddy, B.; Cirone, J.; Chen, A. Nanomaterials-based electrochemical sensors for in vitro and in vivo analyses of neurotransmitters. Appl. Sci. (Basel), 2018, 8(9), 1504.
[http://dx.doi.org/10.3390/app8091504]
[15]
Ribeiro, J.A.; Fernandes, P.M.V.; Pereira, C.M.; Silva, F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta, 2016, 160, 653-679.
[http://dx.doi.org/10.1016/j.talanta.2016.06.066] [PMID: 27591662]
[16]
Moon, J.M.; Thapliyal, N.; Hussain, K.K.; Goyal, R.N.; Shim, Y.B. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens. Bioelectron., 2018, 102, 540-552.
[http://dx.doi.org/10.1016/j.bios.2017.11.069] [PMID: 29220802]
[17]
Adhikari, B.R.; Govindhan, M.; Chen, A. Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors (Basel), 2015, 15(9), 22490-22508.
[http://dx.doi.org/10.3390/s150922490] [PMID: 26404304]
[18]
Tertiș, M.; Florea, A.; Adumitrăchioaie, A.; Cernat, A.; Bogdan, D.; Barbu-Tudoran, L.; Renault, N.J.; Săndulescu, R.; Cristea, C. Detection of dopamine by a biomimetic electrochemical sensor based on polythioaniline bridged gold nanoparticles. ChemPlusChem, 2016, 13, 287-288.
[PMID: 31961589]
[19]
Tertiș, M.; Cernat, A.; Lacatiș, D.; Florea, A.; Bogdan, D.; Suciu, M.; Săndulescu, R.; Cristea, C. Highly selective electrochemical detection of serotonin on polypyrrole and gold nanoparticles-based 3D architecture. Electrochem. Commun., 2017, 75, 43-47.
[http://dx.doi.org/10.1016/j.elecom.2016.12.015]
[20]
Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Current advancement in electrochemical analysis of neurotransmitters in biological fluids. TrAC -.Trends Analyt. Chem., 2017, 86, 107-121.
[http://dx.doi.org/10.1016/j.trac.2016.11.001]
[21]
Roondhe, B.; Jha, P.K. Neurotransmitter-Functionalized boron nitride nanoribbons as biological cargo carriers: analysis by density functional theory. ACS Appl. Nano Mater., 2019, 2(3), 1552-1561.
[http://dx.doi.org/10.1021/acsanm.9b00028]
[22]
Palanisamy, S.; Huang, S.; Zhao, H.; Zhu, D.; Zhang, X. In situ derivatization of Au nanoclusters via aurophilic interactions of a triphenylphosphine gold(i) salt with neurotransmitters and their rapid MALDI-TOF-MS detection in mice brain tissue extracts. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(1), 38-44.
[http://dx.doi.org/10.1039/C9TB01800J] [PMID: 31763660]
[23]
Steckl, A.J.; Ray, P. Stress biomarkers in biological fluids and their point-of-use detection. ACS Sens., 2018, 3(10), 2025-2044.
[http://dx.doi.org/10.1021/acssensors.8b00726] [PMID: 30264989]
[24]
Sharma, N.S.; Acharya, S.K.; Nair, A.P.; Matalia, J.; Shetty, R.; Ghosh, A.; Sethu, S. Dopamine levels in human tear fluid. Indian J. Ophthalmol., 2019, 67(1), 38-41.
[http://dx.doi.org/10.4103/ijo.IJO_568_18] [PMID: 30574889]
[25]
Yang, C.; Cao, Q.; Puthongkham, P.; Lee, S.T.; Ganesana, M.; Lavrik, N.V.; Venton, B.J. 3D-Printed carbon electrodes for neurotransmitter detection. Angew. Chem. Int. Ed. Engl., 2018, 57(43), 14255-14259.
[http://dx.doi.org/10.1002/anie.201809992] [PMID: 30207021]
[26]
Fayemi, O.E.; Adekunle, A.S.; Ebenso, E.E. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode. Sens. Biosensing Res., 2017, 13, 17-27.
[http://dx.doi.org/10.1016/j.sbsr.2017.01.005]
[27]
Adumitrăchioaie, A.; Tertiș, M.; Suciu, M.; Graur, F.; Cristea, C. A novel immunosensing platform for serotonin detection in complex real samples based on graphene oxide and chitosan. Electrochim. Acta, 2019, 211, 50-61.
[http://dx.doi.org/10.1016/j.electacta.2019.04.128]
[28]
Han, H.S.; Lee, H.K.; You, J.M.; Jeong, H.; Jeon, S. Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GO-porphyrin. Sens. Actuators B Chem., 2014, 190, 886-895.
[http://dx.doi.org/10.1016/j.snb.2013.09.022]
[29]
Sun, D.; Li, H.; Li, M.; Li, C.; Dai, H.; Sun, D.; Yang, B. Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sens. Actuators B Chem., 2018, 259, 433-442.
[http://dx.doi.org/10.1016/j.snb.2017.12.037]
[30]
Babaei, A.; Taheri, A.R. Nafion/Ni(OH)2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. Sens. Actuators B Chem., 2013, 176, 543-551.
[http://dx.doi.org/10.1016/j.snb.2012.09.021]
[31]
Cincotto, F.H.; Canevari, T.C.; Campos, A.M.; Landers, R.; Machado, S.A.S. Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene oxide decorated with Ag nanoparticles. Analyst (Lond.), 2014, 139(18), 4634-4640.
[http://dx.doi.org/10.1039/C4AN00580E] [PMID: 25050410]
[32]
Chitravathi, S.; Munichandraiah, N. Simultaneous Determination of catecholamines in presence of uric acid and ascorbic acid at a highly sensitive electrochemically. J. Electrochem. Soc., 2015, 162, B163-B172.
[http://dx.doi.org/10.1149/2.0661507jes]
[33]
Renedo, O.D.; Alonso-Lomillo, M.A.; Martínez, M.J.A. Recent developments in the field of screen-printed electrodes and their related applications. Talanta, 2007, 73(2), 202-219.
[http://dx.doi.org/10.1016/j.talanta.2007.03.050] [PMID: 19073018]
[34]
Fan, B.; Zhu, Y.; Rechenberg, R.; Becker, M.F.; Li, W. A Flexible, Large-Scale Diamond-Polymer Chemical Sensor for Neurotransmitter Detection. Proceeding of hilton head 2016 solid-state sensors, actuators & microsystems workshop. Hilton Head, 2016, 2016, 320-323..
[35]
Ragupathy, D.; Gopalan, A.I.; Lee, K.P. Electrocatalytic oxidation and determination of ascorbic acid in the presence of dopamine at multiwalled carbon nanotube-silica network-gold nanoparticles based nanohybrid modified electrode. Sens. Actuators B Chem., 2010, 143(2), 696-703.
[http://dx.doi.org/10.1016/j.snb.2009.10.026]
[36]
Komathi, S.; Gopalan, A.I.; Lee, K.P. Nanomolar detection of dopamine at multi-walled carbon nanotube grafted silica network/gold nanoparticle functionalised nanocomposite electrodes. Analyst (Lond.), 2010, 135(2), 397-404.
[http://dx.doi.org/10.1039/B918335C] [PMID: 20098776]
[37]
Patel, A.N.; Unwin, P.R.; Macpherson, J.V. Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond. Phys. Chem. Chem. Phys., 2013, 15(41), 18085-18092.
[http://dx.doi.org/10.1039/c3cp53513d] [PMID: 24060971]
[38]
Cheng, Y.B.J.V.; Denno, M.E.; Pyakurel, P. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Physiol. Behav., 2017, 176(1), 139-148.
[39]
Scholz, F. Voltammetric techniques of analysis: The essentials. ChemTexts, 2015, 2015, 1-17.
[http://dx.doi.org/10.1007/s40828-015-0016-y]
[40]
Calò, G.P.S.; Curulli, A.; Zane, D.; Caschera, D.; Ingo, G.M. Single Walled Carbon Nanotubes (SWCNTs)/Gold nanoparticles (AuNps) nanocomposites for enhancing electrochemical response to detect neurotransmitters. J. Chem. Inf. Model., 2019, 53(9), 1689-1699.
[41]
Yang, C.; Trikantzopoulos, E.; Jacobs, C.B.; Venton, B.J. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties. Anal. Chim. Acta, 2017, 965, 1-8.
[http://dx.doi.org/10.1016/j.aca.2017.01.039] [PMID: 28366206]
[42]
Wang, X.; Li, J.; Dong, G.; Yue, J. The endogenous substrates of brain CYP2D. Eur. J. Pharmacol., 2014, 724, 211-218.
[http://dx.doi.org/10.1016/j.ejphar.2013.12.025] [PMID: 24374199]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy