Generic placeholder image

Combinatorial Chemistry & High Throughput Screening


ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Radix Paeoniae Rubra Ameliorates Lupus Nephritis in Lupus-Like Symptoms of Mrl Mice by Reducing Intercellular Cell Adhesion Molecule-1, Vascular Cell Adhesion Molecule-1, and Platelet Endothelial Cell Adhesion Molecule-1 Expression

Author(s): Weijie Wang*, Lingyong Cao, Xinchang Wang and Yongsheng Fan*

Volume 23, Issue 7, 2020

Page: [675 - 683] Pages: 9

DOI: 10.2174/1386207323666200517114802

Price: $65


Objective: Vasculitis is the basic pathological change of systemic lupus erythematosus (SLE). Radix Paeoniae Rubra (RPR), a traditional Chinese herb with the function of reducing blood stasis, has anti-inflammatory and immunoregulatory properties. This study explored the effects of RPR on the kidneys of lupus-like symptoms of mrl (MRL/lpr) mice from the perspective of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1).

Methods: Eighteen MRL/lpr lupus model mice were randomly divided into three groups, the model control group, prednisone-treated group, and RPR-treated group, and 6 C57BL/ 6 mice were classified as a control group. After the mice had been treated for 12 weeks, the expression of ICAM-1, VCAM-1 and PECAM-1in the kidney was determined by immunohistochemistry and Reverse Transcription-Polymerase Chain Reaction (RT-PCR).

Results: After 12 weeks, there were significant differences in body weight in the model, prednisone and RPR groups compared with the normal group (P <0.05). Pathological observation: Compared with the model group, the proliferation of inflammatory cells infiltrated glomeruli and interstitial cells in prednisone and RPR groups were reduced, and renal pathological damage was reduced. Compared with the model group, urine protein level of prednisone and RPR groups were reduced with no significance (P> 0.05). The mRNA expression levels of ICAM-1 and VCAM-1 were significantly reduced in the prednisone group and RPR group compared with the model group (P <0.05 or P <0.01). Meanwhile, the immunohistochemistry expressions of ICAM-1 and VCAM- 1 expressed in the kidney were significantly reduced in the prednisone group and RPR group (P <0.01 or P <0.05). However, The mRNA expression level and the immunohistochemistry expressions of PECAM-1 expressed in the kidney were reduced in each treatment group (prednisone group and RPR group), but these differences were not significant (P>0.05).

Conclusions: ICAM-1, VCAM-1 and PECAM-1 expression in the model group was found to be significantly increased. In addition, RPR could reduce the expression of ICAM-1, VCAM-1 and PECAM-1 in MRL/lpr lupus mice as effectively as prednisone, which may result in the dosage reduction of prednisone, thus decreasing the toxicity and improving the efficacy of prednisone - based treatment of SLE.

Keywords: Radix Paeoniae Rubra (RPR), MRL/lpr mice, ICAM-1, VCAM-1, PECAM-1, prednisone.

« Previous
Tsokos, G.C.; Lo, M.S.; Costa Reis, P.; Sullivan, K.E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol., 2016, 12(12), 716-730.
[] [PMID: 27872476]
Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell, 1994, 76(2), 301-341.
D’Cruz, D.P.; Khamashta, M.A.; Hughes, G.R. Systemic lupus erythematosus. Lancet, 2007, 369(9561), 587-596.
[] [PMID: 17307106]
Menon, M.; Blair, P.A.; Isenberg, D.A.; Mauri, C. A Regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus. Immunity, 2016, 44(3), 683-697.
[] [PMID: 26968426]
Gearing, A.J.H.; Newman, W. Circulating adhesion molecules in disease. Immunol. Today, 1993, 14(10), 506-512.
[] [PMID: 7506035]
Zonneveld, R.; Martinelli, R.; Shapiro, N.I. Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Critical Care, 2014, 18(1), 204.
Skeoch, S.; Haque, S.; Pemberton, P.; Bruce, I.N. Cell adhesion molecules as potential biomarkers of nephritis, damage and accelerated atherosclerosis in patients with SLE. Lupus, 2014, 23(8), 819-824.
[] [PMID: 24647443]
Lewis, M.J.; Vyse, S.; Shields, A.M.; Zou, L.; Khamashta, M.; Gordon, P.A.; Pitzalis, C.; Vyse, T.J.; D’Cruz, D.P. Improved monitoring of clinical response in systemic lupus erythematosus by longitudinal trend in soluble vascular cell adhesion molecule-1. Arthritis Res. Ther., 2016, 18(1), 5.
[] [PMID: 26746423]
Hejazi, E.Z.; Werth, V.P. Cutaneous lupus erythematosus: an update on pathogenesis, diagnosis and treatment. Am. J. Clin. Dermatol., 2016, 17(2), 135-146.
[] [PMID: 26872954]
Mikdashi, J.A. Altered functional neuronal activity in neuropsychiatric lupus: A systematic review of the fMRI investigations. Semin. Arthritis Rheum., 2016, 45(4), 455-462.
[] [PMID: 26897255]
Madhok, R. Systemic lupus erythematosus: lupus nephritis. BMJ Clin. Evid., 2015, 2015, 1123.
Lalwani, P.; de Souza, G.K.; de Lima, D.S.; Passos, L.F.S.; Boechat, A.L.; Lima, E.S. Serum thiols as a biomarker of disease activity in lupus nephritis. PLoS One, 2015, 10(3), e0119947.
[] [PMID: 25799079]
Soliman, S.; Mohan, C. Lupus nephritis biomarkers. Clin. Immunol., 2017, 185, 10-20.
[] [PMID: 27498110]
Beck, L.H., Jr; Salant, D.J. Treatment of membranous lupus nephritis: where are we now? J. Am. Soc. Nephrol., 2009, 20(4), 690-691.
[] [PMID: 19279123]
Danila, M.I.; Pons-Estel, G.J.; Zhang, J.; Vilá, L.M.; Reveille, J.D.; Alarcón, G.S. Renal damage is the most important predictor of mortality within the damage index: data from LUMINA LXIV, a multiethnic US cohort. Rheumatology (Oxford), 2009, 48(5), 542-545.
[] [PMID: 19233884]
Ruppert, B.L.; Ford, R.J.; Maizel, A.L. T-cell mediated suppression in the MRL mouse. Cell. Immunol., 1981, 61(1), 0-51.
Yin-Qiu, Huang; Xiao, Ma; Jian, Wang Therapeutic Efficacy and Safety of Paeoniae Radix Rubra Formulae in Relieving Hyperbilirubinemia Induced by Viral Hepatitis: A Meta-Analysis. Front. Pharmacol. 2016, 7(63), 1-12.
[] [PMID: 26858644]
Lv, P.; Tong, X.; Peng, Q.; Liu, Y.; Jin, H.; Liu, R.; Sun, W.; Pan, B.; Zheng, L.; Huang, Y. Treatment with the herbal medicine, naoxintong improves the protective effect of high-density lipoproteins on endothelial function in patients with type 2 diabetes. Mol. Med. Rep., 2016, 13(3), 2007-2016.
[] [PMID: 26781332]
Liu, E.H.; Qi, L-W.; Li, B.; Peng, Y-B.; Li, P.; Li, C-Y.; Cao, J. High-speed separation and characterization of major constituents in Radix Paeoniae Rubra by fast high-performance liquid chromatography coupled with diode-array detection and time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 2009, 23(1), 119-130.
[] [PMID: 19065578]
Chu, D.; Du, M.; Hu, X.; Wu, Q.; Shen, J. Paeoniflorin attenuates schistosomiasis japonica-associated liver fibrosis through inhibiting alternative activation of macrophages. Parasitology, 2011, 138(10), 1259-1271.
[] [PMID: 21810309]
Xu, H.Y.; Chen, Z-W.; Wu, Y-M. Antitumor activity of total paeony glycoside against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Med. Oncol., 2012, 29(2), 1137-1147.
[] [PMID: 21452044]
Smith, M.D.; Weedon, H.; Papangelis, V.; Walker, J.; Roberts-Thomson, P.J.; Ahern, M.J. Apoptosis in the rheumatoid arthritis synovial membrane: modulation by disease-modifying anti-rheumatic drug treatment. Rheumatology (Oxford), 2010, 49(5), 862-875.
[] [PMID: 20147446]
Jian, Z.Y.; Yu, J.B.; Wang, W.Q. RP-HPLC determination of main chemical components in different parts and different harvest periods of Paeonia lactiflora. Yao Xue Xue Bao, 2010, 45(4), 489-493.
[PMID: 21355216]
Franco, S.J.; Huttenlocher, A. Regulating cell migration: calpains make the cut. J. Cell Sci., 2005, 118(Pt 17), 3829-3838.
[] [PMID: 16129881]
McHale, J.F.; Harari, O.A.; Marshall, D.; Haskard, D.O. TNF-alpha and IL-1 sequentially induce endothelial ICAM-1 and VCAM-1 expression in MRL/lpr lupus-prone mice. J. Immunol., 1999, 163(7), 3993-4000.
[PMID: 10491002]
Belmont, H.M.; Buyon, J.; Giorno, R.; Abramson, S. Up-regulation of endothelial cell adhesion molecules characterizes disease activity in systemic lupus erythematosus. The Shwartzman phenomenon revisited. Arthritis Rheum., 1994, 37(3), 376-383.
[] [PMID: 7510492]
Ikeda, Y.; Fujimoto, T.; Ameno, M.; Shiiki, H.; Dohi, K. Relationship between lupus nephritis activity and the serum level of soluble VCAM-1. Lupus, 1998, 7(5), 347-354.
[] [PMID: 9696139]
Kong, D.H.; Kim, Y.K.; Kim, M.R.; Jang, J.H.; Lee, S. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer. Int. J. Mol. Sci., 2018, 19(4), 1057.
[] [PMID: 29614819]
Pall, A.A.; Howie, A.J.; Adu, D.; Richards, G.M.; Inward, C.D.; Milford, D.V.; Richards, N.T.; Michael, J.; Taylor, C.M. Glomerular vascular cell adhesion molecule-1 expression in renal vasculitis. J. Clin. Pathol., 1996, 49(3), 238-242.
[] [PMID: 8675737]
Cook-Mills, J.M.; Marchese, M.E.; Abdala-Valencia, H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid. Redox Signal., 2011, 15(6), 1607-1638.
[] [PMID: 21050132]
Pizarro, S.; Monárrez Espino, J.; Ruiz, A.; Jara, L.J.; Nava, A.; Riebeling-Navarro, C. Soluble vascular cell adhesion molecule-1 indicates SLE disease activity and specific organ involvement. Rev. Alerg. Mex., 2007, 54(6), 189-195.
[PMID: 18693542]
Park, S.; DiMaio, T.A.; Scheef, E.A.; Sorenson, C.M.; Sheibani, N. PECAM-1 regulates proangiogenic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions. Am. J. Physiol. Cell Physiol., 2010, 299(6), C1468-C1484.
[] [PMID: 20810911]
Woodfin, A.; Voisin, M.B.; Nourshargh, S. PECAM-1: A multi-functional molecule in inflammation and vascular biology. Arterioscler. Thromb. Vasc. Biol., 2007, 27, 1870-1876.
Cao, G.; O’Brien, C.D.; Zhou, Z.; Sanders, S.M.; Greenbaum, J.N.; Makrigiannakis, A.; DeLisser, H.M. Involvement of human PECAM-1 in angiogenesis and in vitro endothelial cell migration. Am. J. Physiol. Cell Physiol., 2002, 282(5), C1181-C1190.
[] [PMID: 11940533]
Ahmed; Sheriff; and; Udo; Gaipl; and; Reinhard; Voll, Apoptosis and systemic lupus erythematosus. Clin. Rheum. Dis., 2004, 30(3), 505-527.
Pamuk, O.N.; Tozkir, H.; Uyanik, M.S.; Gurkan, H.; Saritas, F.; Duymaz, J.; Donmez, S.; Yazar, M.; Pamuk, G.E. PECAM-1 gene polymorphisms and soluble PECAM-1 level in rheumatoid arthritis and systemic lupus erythematosus patients: any link with clinical atherosclerotic events? Clin. Rheumatol., 2014, 33(12), 1737-1743.
[] [PMID: 25201689]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy