Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

A Review on the Role of Nanosensors in Detecting Cellular miRNA Expression in Colorectal Cancer

Author(s): Koyeli Girigoswami and Agnishwar Girigoswami*

Volume 21, Issue 1, 2021

Published on: 15 May, 2020

Page: [12 - 26] Pages: 15

DOI: 10.2174/1871530320666200515115723

Price: $65

conference banner
Abstract

Background: Colorectal cancer (CRC) is one of the leading causes of death across the globe. Early diagnosis with high sensitivity can prevent CRC progression, thereby reducing the condition of metastasis.

Objective: The purpose of this review is (i) to discuss miRNA based biomarkers responsible for CRC, (ii) to brief on the different methods used for the detection of miRNA in CRC, (iii) to discuss different nanobiosensors so far found for the accurate detection of miRNAs in CRC using spectrophotometric detection, piezoelectric detection.

Methods: The keywords for the review like micro RNA detection in inflammation, colorectal cancer, nanotechnology, were searched in PubMed and the relevant papers on the topics of miRNA related to CRC, nanotechnology-based biosensors for miRNA detection were then sorted and used appropriately for writing the review.

Results: The review comprises a general introduction explaining the current scenario of CRC, the biomarkers used for the detection of different cancers, especially CRC and the importance of nanotechnology and a general scheme of a biosensor. The further subsections discuss the mechanism of CRC progression, the role of miRNA in CRC progression and different nanotechnology-based biosensors so far investigated for miRNA detection in other diseases, cancer and CRC. A scheme depicting miRNA detection using gold nanoparticles (AuNPs) is also illustrated.

Conclusion: This review may give insight into the different nanostructures, like AuNPs, quantum dots, silver nanoparticles, MoS2derived nanoparticles, etc., based approaches for miRNA detection using biosensors.

Keywords: microRNA detection in inflammation, gold nanoparticles, colorectal cancer, biosensors, nanotechnology, nanosensors.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primers, 2015, 1, 15065.
[http://dx.doi.org/10.1038/nrdp.2015.65] [PMID: 27189416]
[4]
Warthin, A.S. Heredity with reference to carcinoma: as shown by the study of the cases examined in the pathological laboratory of the University of Michigan. Arch. Intern. Med. (Chic.), 1913, 12, 546-555.
[http://dx.doi.org/10.1001/archinte.1913.00070050063006]
[5]
Capelle, L.G.; Van Grieken, N.C.; Lingsma, H.F.; Steyerberg, E.W.; Klokman, W.J.; Bruno, M.J.; Vasen, H.F.; Kuipers, E.J. Risk and epidemiological time trends of gastric cancer in Lynch syndrome carriers in the Netherlands. Gastroenterology, 2010, 138(2), 487-492.
[http://dx.doi.org/10.1053/j.gastro.2009.10.051] [PMID: 19900449]
[6]
Vasen, H.F.A.; Tomlinson, I.; Castells, A. Clinical management of hereditary colorectal cancer syndromes. Nat. Rev. Gastroenterol. Hepatol., 2015, 12(2), 88-97.
[http://dx.doi.org/10.1038/nrgastro.2014.229] [PMID: 25582351]
[7]
Xu, P.; Zhu, Y.; Sun, B.; Xiao, Z. Colorectal cancer characterization and therapeutic target prediction based on microRNA expression profile. Sci. Rep., 2016, 9(6), 20616.
[http://dx.doi.org/10.1038/srep20616]
[8]
Shah, P.; Cho, S.K.; Thulstrup, P.W.; Bjerrum, M.J.; Lee, P.H.; Kang, J.H.; Bhang, Y.J.; Yang, S.W. MicroRNA Biomarkers in Neurodegenerative Diseases and Emerging Nano-Sensors Technology. J. Mov. Disord., 2017, 10(1), 18-28.
[http://dx.doi.org/10.14802/jmd.16037] [PMID: 28122423]
[9]
Cappelletti, V.; Appierto, V.; Tiberio, P.; Fina, E.; Callari, M.; Daidone, M.G. Circulating biomarkers for prediction of treatment response. J. Natl. Cancer Inst. Monogr., 2015, 2015(51), 60-63.
[http://dx.doi.org/10.1093/jncimonographs/lgv006] [PMID: 26063889]
[10]
Madic, J.; Kiialainen, A.; Bidard, F.C.; Birzele, F.; Ramey, G.; Leroy, Q.; Rio Frio, T.; Vaucher, I.; Raynal, V.; Bernard, V.; Lermine, A.; Clausen, I.; Giroud, N.; Schmucki, R.; Milder, M.; Horn, C.; Spleiss, O.; Lantz, O.; Stern, M.H.; Pierga, J.Y.; Weisser, M.; Lebofsky, R. Circulating tumor DNA and circulating tumor cells in metastatic triple negative breast cancer patients. Int. J. Cancer, 2015, 136(9), 2158-2165.
[http://dx.doi.org/10.1002/ijc.29265] [PMID: 25307450]
[11]
Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 2006, 6(11), 857-866.
[http://dx.doi.org/10.1038/nrc1997] [PMID: 17060945]
[12]
Chen, R.; Lai, L.A.; Brentnall, T.A.; Pan, S. Biomarkers for colitis-associated colorectal cancer. World J. Gastroenterol., 2016, 22(35), 7882-7891.
[http://dx.doi.org/10.3748/wjg.v22.i35.7882] [PMID: 27672285]
[13]
Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; Lin, D.W.; Urban, N.; Drescher, C.W.; Knudsen, B.S.; Stirewalt, D.L.; Gentleman, R.; Vessella, R.L.; Nelson, P.S.; Martin, D.B.; Tewari, M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA, 2008, 105(30), 10513-10518.
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219]
[14]
Kong, Y.W.; Ferland-McCollough, D.; Jackson, T.J.; Bushell, M. microRNAs in cancer management. Lancet Oncol., 2012, 13(6), e249-e258.
[http://dx.doi.org/10.1016/S1470-2045(12)70073-6] [PMID: 22652233]
[15]
Jansson, M.D.; Lund, A.H. MicroRNA and cancer. Mol. Oncol., 2012, 6(6), 590-610.
[http://dx.doi.org/10.1016/j.molonc.2012.09.006] [PMID: 23102669]
[16]
Christopher, A.F.; Kaur, R.P.; Kaur, G.; Kaur, A.; Gupta, V.; Bansal, P. MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect. Clin. Res., 2016, 7(2), 68-74.
[http://dx.doi.org/10.4103/2229-3485.179431] [PMID: 27141472]
[17]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[18]
Cissell, K.A.; Rahimi, Y.; Shrestha, S.; Hunt, E.A.; Deo, S.K. Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal. Chem., 2008, 80(7), 2319-2325.
[http://dx.doi.org/10.1021/ac702577a] [PMID: 18302417]
[19]
Liu, C.G.; Calin, G.A.; Volinia, S.; Croce, C.M. MicroRNA expression profiling using microarrays. Nat. Protoc., 2008, 3(4), 563-578.
[http://dx.doi.org/10.1038/nprot.2008.14] [PMID: 18388938]
[20]
Seton-Rogers, S. Non-coding RNAs: The cancer X factor. Nat. Rev. Cancer, 2013, 13(4), 224-225.
[http://dx.doi.org/10.1038/nrc3489] [PMID: 23446546]
[21]
Orang, A.V.; Barzegari, A. MicroRNAs in colorectal cancer: From diagnosis to targeted therapy. Asian Pac. J. Cancer Prev., 2014, 15(17), 6989-6999.
[http://dx.doi.org/10.7314/APJCP.2014.15.17.6989] [PMID: 25227782]
[22]
Matsumura, T.; Sugimachi, K.; Iinuma, H.; Takahashi, Y.; Kurashige, J.; Sawada, G.; Ueda, M.; Uchi, R.; Ueo, H.; Takano, Y.; Shinden, Y.; Eguchi, H.; Yamamoto, H.; Doki, Y.; Mori, M.; Ochiya, T.; Mimori, K. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br. J. Cancer, 2015, 113(2), 275-281.
[http://dx.doi.org/10.1038/bjc.2015.201] [PMID: 26057451]
[23]
Kuo, Y-B.; Chan, E-C.; Chen, J-S.; Shieh, F-K. Fecal miRNAS as Biomarkers for the Detection of Colorectal Cancer J. Gastroint. Dig. Syst.,, 2013, S12-S016.
[24]
Van der Goten, J.; Vanhove, W.; Lemaire, K.; Van Lommel, L.; Machiels, K.; Wollants, W.J.; De Preter, V.; De Hertogh, G.; Ferrante, M.; Van Assche, G.; Rutgeerts, P.; Schuit, F.; Vermeire, S.; Arijs, I. Integrated miRNA and mRNA expression profiling in inflamed colon of patients with ulcerative colitis. PLoS One, 2014, 9(12)e116117
[http://dx.doi.org/10.1371/journal.pone.0116117] [PMID: 25546151]
[25]
Ding, L.; Lan, Z.; Xiong, X.; Ao, H.; Feng, Y.; Gu, H.; Yu, M.; Cui, Q. The Dual Role of MicroRNAs in Colorectal Cancer Progression. Int. J. Mol. Sci., 2018, 19(9)E2791
[http://dx.doi.org/10.3390/ijms19092791] [PMID: 30227605]
[26]
Danese, E.; Minicozzi, A.M.; Benati, M.; Paviati, E.; Lima-Oliveira, G.; Gusella, M.; Pasini, F.; Salvagno, G.L.; Montagnana, M.; Lippi, G. Reference miRNAs for colorectal cancer: analysis and verification of current data. Sci. Rep., 2017, 7(1), 8413.
[http://dx.doi.org/10.1038/s41598-017-08784-3] [PMID: 28827728]
[27]
Chen, B.; Xia, Z.; Deng, Y.N.; Yang, Y.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. Emerging microRNA biomarkers for colorectal cancer diagnosis and prognosis. Open Biol., 2019, 9(1)180212
[http://dx.doi.org/10.1098/rsob.180212] [PMID: 30958116]
[28]
Michael, M.Z.; O’ Connor, S.M.; van Holst Pellekaan, N.G.; Young, G.P.; James, R.J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res., 2003, 1(12), 882-891.
[PMID: 14573789]
[29]
Akao, Y.; Nakagawa, Y.; Naoe, T. MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol. Rep., 2006, 16(4), 845-850.
[http://dx.doi.org/10.3892/or.16.4.845] [PMID: 16969504]
[30]
Li, N.; Li, X.; Huang, S.; Shen, S.; Wang, X. miR-126 inhibits colon cancer proliferation and invasion through targeting IRS1, SLC7A5 and TOM1 gene. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2013, 38(8), 809-817.
[31]
Jurj, A.; Braicu, C.; Pop, L.A.; Tomuleasa, C.; Gherman, C.D.; Berindan-Neagoe, I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Devel. Ther., 2017, 11, 2871-2890.
[http://dx.doi.org/10.2147/DDDT.S142337] [PMID: 29033548]
[32]
Metkar, S.K.; Girigoswami, K. Diagnostic Biosensors in Medicine a Review. Biocatal. Agric. Biotechnol., 2019, 17, 271-283.
[http://dx.doi.org/10.1016/j.bcab.2018.11.029]
[33]
Girigoswami, K.; Akhtar, N. Nanobiosensors and fluorescence based biosensors: An overview. Int. J. Nanodimens., 2019, 10(1), 1-17.
[34]
Thendral, V.; Dharshni, T.; Ramalakshmi, M.; Girigoswami, A.; Girigoswami, K. Cerium Oxide Nanocluster Based Nanobiosensor for ROS Detection. Biocatal. Agric. Biotechnol., 2019.19101124
[http://dx.doi.org/10.1016/j.bcab.2019.101124]
[35]
Akhtar, N.; Metkar, S.K.; Girigoswami, A.; Girigoswami, K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater. Sci. Eng. C, 2017, 78, 960-968.
[http://dx.doi.org/10.1016/j.msec.2017.04.118] [PMID: 28576073]
[36]
Mehrotra, P. Biosensors and their applications - A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.002] [PMID: 27195214]
[37]
Kazemi-Darsanaki, R.; Azizzadeh, A.; Nourbakhsh, M.; Raeisi, G.; Aliabadi, M.A. Biosensors: functions and applications. J. Biol. Todays World, 2012, 2(1), 20-23.
[38]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[39]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[40]
Colussi, D.; Brandi, G.; Bazzoli, F.; Ricciardiello, L. Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int. J. Mol. Sci., 2013, 14(8), 16365-16385.
[http://dx.doi.org/10.3390/ijms140816365] [PMID: 23965959]
[41]
Grady, W.M.; Carethers, J.M. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology, 2008, 135(4), 1079-1099.
[http://dx.doi.org/10.1053/j.gastro.2008.07.076] [PMID: 18773902]
[42]
Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell, 1990, 61(5), 759-767.
[http://dx.doi.org/10.1016/0092-8674(90)90186-I] [PMID: 2188735]
[43]
Lengauer, C.; Kinzler, K.W.; Vogelstein, B. Genetic instabilities in human cancers. Nature, 1998, 396(6712), 643-649.
[http://dx.doi.org/10.1038/25292] [PMID: 9872311]
[44]
Kinzler, K.W.; Vogelstein, B. Lessons from hereditary colorectal cancer. Cell, 1996, 87(2), 159-170.
[http://dx.doi.org/10.1016/S0092-8674(00)81333-1] [PMID: 8861899]
[45]
Zeki, S.S.; Graham, T.A.; Wright, N.A. Stem cells and their implications for colorectal cancer. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(2), 90-100.
[http://dx.doi.org/10.1038/nrgastro.2010.211] [PMID: 21293509]
[46]
Davies, R.J.; Miller, R.; Coleman, N. Colorectal cancer screening: Prospects for molecular stool analysis. Nat. Rev. Cancer, 2005, 5(3), 199-209.
[http://dx.doi.org/10.1038/nrc1569] [PMID: 15738983]
[47]
Dong, H.; Lei, J.; Ding, L.; Wen, Y.; Ju, H.; Zhang, X.; Micro, R.N.A. MicroRNA: function, detection, and bioanalysis. Chem. Rev., 2013, 113(8), 6207-6233.
[http://dx.doi.org/10.1021/cr300362f] [PMID: 23697835]
[48]
Lee, Y.S.; Dutta, A. MicroRNAs in cancer. Annu. Rev. Pathol., 2009, 4, 199-227.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092222] [PMID: 18817506]
[49]
Li, C.; Feng, Y.; Coukos, G.; Zhang, L. Therapeutic microRNA strategies in human cancer. AAPS J., 2009, 11(4), 747-757.
[http://dx.doi.org/10.1208/s12248-009-9145-9] [PMID: 19876744]
[50]
Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; Downing, J.R.; Jacks, T.; Horvitz, H.R.; Golub, T.R. MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043), 834-838.
[http://dx.doi.org/10.1038/nature03702] [PMID: 15944708]
[51]
Volinia, S.; Calin, G.A.; Liu, C-G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; Prueitt, R.L.; Yanaihara, N.; Lanza, G.; Scarpa, A.; Vecchione, A.; Negrini, M.; Harris, C.C.; Croce, C.M. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA, 2006, 103(7), 2257-2261.
[http://dx.doi.org/10.1073/pnas.0510565103] [PMID: 16461460]
[52]
Porkka, K.P.; Pfeiffer, M.J.; Waltering, K.K.; Vessella, R.L.; Tammela, T.L.; Visakorpi, T. MicroRNA expression profiling in prostate cancer. Cancer Res., 2007, 67(13), 6130-6135.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0533] [PMID: 17616669]
[53]
Kumar, M.S.; Lu, J.; Mercer, K.L.; Golub, T.R.; Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet., 2007, 39(5), 673-677.
[http://dx.doi.org/10.1038/ng2003] [PMID: 17401365]
[54]
Wienholds, E.; Kloosterman, W.P.; Miska, E.; Alvarez-Saavedra, E.; Berezikov, E.; de Bruijn, E.; Horvitz, H.R.; Kauppinen, S.; Plasterk, R.H. MicroRNA expression in zebrafish embryonic development. Science, 2005, 309(5732), 310-311.
[http://dx.doi.org/10.1126/science.1114519] [PMID: 15919954]
[55]
Fish, J.E.; Santoro, M.M.; Morton, S.U.; Yu, S.; Yeh, R.F.; Wythe, J.D.; Ivey, K.N.; Bruneau, B.G.; Stainier, D.Y.; Srivastava, D. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell, 2008, 15(2), 272-284.
[http://dx.doi.org/10.1016/j.devcel.2008.07.008] [PMID: 18694566]
[56]
Kuehbacher, A.; Urbich, C.; Zeiher, A.M.; Dimmeler, S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ. Res., 2007, 101(1), 59-68.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.153916] [PMID: 17540974]
[57]
Wang, S.; Aurora, A.B.; Johnson, B.A.; Qi, X.; McAnally, J.; Hill, J.A.; Richardson, J.A.; Bassel-Duby, R.; Olson, E.N. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell, 2008, 15(2), 261-271.
[http://dx.doi.org/10.1016/j.devcel.2008.07.002] [PMID: 18694565]
[58]
Nicoli, S.; Standley, C.; Walker, P.; Hurlstone, A.; Fogarty, K.E.; Lawson, N.D. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature, 2010, 464(7292), 1196-1200.
[http://dx.doi.org/10.1038/nature08889] [PMID: 20364122]
[59]
Guo, C.; Sah, J.F.; Beard, L.; Willson, J.K.; Markowitz, S.D.; Guda, K. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer, 2008, 47(11), 939-946.
[http://dx.doi.org/10.1002/gcc.20596] [PMID: 18663744]
[60]
Tavazoie, S.F.; Alarcón, C.; Oskarsson, T.; Padua, D.; Wang, Q.; Bos, P.D.; Gerald, W.L.; Massagué, J. Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 2008, 451(7175), 147-152.
[http://dx.doi.org/10.1038/nature06487] [PMID: 18185580]
[61]
Crawford, M.; Brawner, E.; Batte, K.; Yu, L.; Hunter, M.G.; Otterson, G.A.; Nuovo, G.; Marsh, C.B.; Nana-Sinkam, S.P. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem. Biophys. Res. Commun., 2008, 373(4), 607-612.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.090] [PMID: 18602365]
[62]
Zhong, M.; Ma, X.; Sun, C.; Chen, L. MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer. Chem. Biol. Interact., 2010, 184(3), 431-438.
[http://dx.doi.org/10.1016/j.cbi.2010.01.025] [PMID: 20097187]
[63]
Musiyenko, A.; Bitko, V.; Barik, S. Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells. J. Mol. Med. (Berl.), 2008, 86(3), 313-322.
[http://dx.doi.org/10.1007/s00109-007-0296-9] [PMID: 18193184]
[64]
Li, X.M.; Wang, A.M.; Zhang, J.; Yi, H. Down-regulation of miR-126 expression in colorectal cancer and its clinical significance. Med. Oncol., 2011, 28(4), 1054-1057.
[http://dx.doi.org/10.1007/s12032-010-9637-6] [PMID: 20680522]
[65]
Yamaguchi, T.; Iijima, T.; Wakaume, R.; Takahashi, K.; Matsumoto, H.; Nakano, D.; Nakayama, Y.; Mori, T.; Horiguchi, S.; Miyaki, M. Underexpression of miR-126 and miR-20b in hereditary and nonhereditary colorectal tumors. Oncology, 2014, 87(1), 58-66.
[http://dx.doi.org/10.1159/000363303] [PMID: 24994098]
[66]
Liu, B.; Peng, X.C.; Zheng, X.L.; Wang, J.; Qin, Y.W. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer, 2009, 66(2), 169-175.
[http://dx.doi.org/10.1016/j.lungcan.2009.01.010] [PMID: 19223090]
[67]
Hansen, T.F.; Sørensen, F.B.; Lindebjerg, J.; Jakobsen, A. The predictive value of microRNA-126 in relation to first line treatment with capecitabine and oxaliplatin in patients with metastatic colorectal cancer. BMC Cancer, 2012, 12, 83.
[http://dx.doi.org/10.1186/1471-2407-12-83] [PMID: 22397399]
[68]
Hansen, T.F.; Nielsen, B.S.; Jakobsen, A.; Sørensen, F.B. Visualising and quantifying angiogenesis in metastatic colorectal cancer: A comparison of methods and their predictive value for chemotherapy response. Cell Oncol. (Dordr.), 2013, 36(4), 341-350.
[69]
Hansen, T.F.; Kjær-Frifeldt, S.; Morgenthaler, S.; Blondal, T.; Lindebjerg, J.; Jakobsen, A.; Sørensen, F.B. The prognostic value of microRNA-126 and microvessel density in patients with stage II colon cancer: Results from a population cohort. J. Transl. Med., 2014, 12, 254.
[http://dx.doi.org/10.1186/s12967-014-0254-6]
[70]
Hansen, T.F.; Christensen, R.D.; Andersen, R.F.; Sørensen, F.B.; Johnsson, A.; Jakobsen, A. MicroRNA-126 and epidermal growth factor-like domain 7-an angiogenic couple of importance in metastatic colorectal cancer. Results from the Nordic ACT trial. Br. J. Cancer, 2013, 109(5), 1243-1251.
[71]
Hansen, T.F.; Nielsen, B.S.; Sørensen, F.B.; Johnsson, A.; Jakobsen, A. Epidermal growth factor-like domain 7 predicts response to first-line chemotherapy and bevacizumab in patients with metastatic colorectal cancer. Mol. Cancer Ther., 2014, 13(9), 2238-2245.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0131]
[72]
Hansen, T.F.; Nielsen, B.S.; Jakobsen, A.; Sørensen, F.B. Intra-tumoural vessel area estimated by expression of epidermal growth factor-like domain 7 and microRNA-126 in primary tumours and metastases of patients with colorectal cancer: A descriptive study. J. Transl. Med., 2015, 13, 10.
[http://dx.doi.org/10.1186/s12967-014-0359-y]
[73]
Hansen, T.F.; Carlsen, A.L.; Heegaard, N.H.; Sørensen, F.B.; Jakobsen, A. Changes in circulating microRNA-126 during treatment with chemotherapy and bevacizumab predicts treatment response in patients with metastatic colorectal cancer. Br. J. Cancer, 2015, 112(4), 624-629.
[http://dx.doi.org/10.1038/bjc.2014.652]
[74]
Almeida, A.L.; Bernardes, M.V.; Feitosa, M.R.; Peria, F.M.; Tirapelli, D.P.; Rocha, J.J.; Feres, O. Serological under expression of microRNA-21, microRNA-34a and microRNA-126 in colorectal cancer. Acta Cir. Bras., 2016, 31(Suppl. 1), 13-18.
[http://dx.doi.org/10.1590/S0102-86502016001300004] [PMID: 27142899]
[75]
Xu, L.; Li, M.; Wang, M.; Yan, D.; Feng, G.; An, G. The expression of microRNA-375 in plasma and tissue is matched in human colorectal cancer. BMC Cancer, 2014, 14, 714.
[http://dx.doi.org/10.1186/1471-2407-14-714] [PMID: 25255814]
[76]
Yau, T.O.; Tang, C.M.; Harriss, E.K.; Dickins, B.; Polytarchou, C. Faecal microRNAs as a non-invasive tool in the diagnosis of colonic adenomas and colorectal cancer: A meta-analysis. Sci. Rep., 2019, 9(1), 9491.
[http://dx.doi.org/10.1038/s41598-019-45570-9] [PMID: 31263200]
[77]
Zhang, Y.; Wang, X.; Xu, B.; Wang, B.; Wang, Z.; Liang, Y.; Zhou, J.; Hu, J.; Jiang, B. Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol. Rep., 2013, 30(4), 1976-1984.
[http://dx.doi.org/10.3892/or.2013.2633] [PMID: 23900443]
[78]
Ebrahimi, F.; Gopalan, V.; Wahab, R.; Lu, C.T.; Smith, R.A.; Lam, A.K. Deregulation of miR-126 expression in colorectal cancer pathogenesis and its clinical significance. Exp. Cell Res., 2015, 339(2), 333-341.
[http://dx.doi.org/10.1016/j.yexcr.2015.10.004] [PMID: 26455548]
[79]
Liu, Y.; Zhou, Y.; Feng, X.; An, P.; Quan, X.; Wang, H.; Ye, S.; Yu, C.; He, Y.; Luo, H. MicroRNA-126 functions as a tumor suppressor in colorectal cancer cells by targeting CXCR4 via the AKT and ERK1/2 signaling pathways. Int. J. Oncol., 2014, 44(1), 203-210.
[http://dx.doi.org/10.3892/ijo.2013.2168] [PMID: 24189753]
[80]
Li, Z.; Li, N.; Wu, M.; Li, X.; Luo, Z.; Wang, X. Expression of miR-126 suppresses migration and invasion of colon cancer cells by targeting CXCR4. Mol. Cell. Biochem., 2013, 381(1-2), 233-242.
[http://dx.doi.org/10.1007/s11010-013-1707-6] [PMID: 23744532]
[81]
Li, N.; Tang, A.; Huang, S.; Li, Z.; Li, X.; Shen, S.; Ma, J.; Wang, X. MiR-126 suppresses colon cancer cell proliferation and invasion via inhibiting RhoA/ROCK signaling pathway. Mol. Cell. Biochem., 2013, 380(1-2), 107-119.
[82]
Yuan, W.; Guo, Y.Q.; Li, X.Y.; Deng, M.Z.; Shen, Z.H.; Bo, C.B.; Dai, Y.F.; Huang, M.Y.; Yang, Z.Y.; Quan, Y.S.; Tian, L.; Wang, X. MicroRNA-126 inhibits colon cancer cell proliferation and invasion by targeting the chemokine (C-X-C motif) receptor 4 and Ras homolog gene family, member A, signaling pathway. Oncotarget, 2016, 7(37), 60230-60244.
[http://dx.doi.org/10.18632/oncotarget.11176] [PMID: 27517626]
[83]
Zhou, Y.; Feng, X.; Liu, Y.L.; Ye, S.C.; Wang, H.; Tan, W.K.; Tian, T.; Qiu, Y.M.; Luo, H.S. Down-regulation of miR-126 is associated with colorectal cancer cells proliferation, migration and invasion by targeting IRS-1 via the AKT and ERK1/2 signaling pathways. PLoS One, 2013, 8(11)e81203
[http://dx.doi.org/10.1371/journal.pone.0081203] [PMID: 24312276]
[84]
Moridikia, A.; Mirzaei, H.; Sahebkar, A.; Salimian, J. MicroRNAs: Potential candidates for diagnosis and treatment of colorectal cancer. J. Cell. Physiol., 2018, 233(2), 901-913.
[http://dx.doi.org/10.1002/jcp.25801] [PMID: 28092102]
[85]
Hibner, G.; Kimsa-Furdzik, M.; Francuz, T. Relevance of MicroRNAs as potential diagnostic and prognostic markers in colorectal cancer. Int. J. Mol. Sci., 2018, 19(10)E2944
[http://dx.doi.org/10.3390/ijms19102944] [PMID: 30262723]
[86]
Chaubey, A.; Malhotra, B.D. Mediated biosensors. Biosens. Bioelectron., 2002, 17(6-7), 441-456.
[http://dx.doi.org/10.1016/S0956-5663(01)00313-X] [PMID: 11959464]
[87]
Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors-sensor principles and architectures. Sensors (Basel), 2008, 8(3), 1400-1458.
[http://dx.doi.org/10.3390/s80314000] [PMID: 27879772]
[88]
Mirsky, V.M.; Riepl, M.; Wolfbeis, O.S. Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosens. Bioelectron., 1997, 12(9-10), 977-989.
[http://dx.doi.org/10.1016/S0956-5663(97)00053-5] [PMID: 9451789]
[89]
Guiseppi-Elie, A. Lingerfelt, L. Immobilisation of DNA on Chips I; Springer, 2005, pp. 161-186.
[http://dx.doi.org/10.1007/128_006]
[90]
Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron., 2001, 16(1-2), 121-131.
[PMID: 11261847]
[91]
Ben Ali, M.; Korpan, Y.; Gonchar, M.; El’skaya, A.; Maaref, M.A.; Jaffrezic-Renault, N.; Martelet, C. Formaldehyde assay by capacitance versus voltage and impedance measurements using bi-layer bio-recognition membrane. Biosens. Bioelectron., 2006, 22(5), 575-581.
[http://dx.doi.org/10.1016/j.bios.2006.01.019] [PMID: 16516460]
[92]
Damborský, P.; Švitel, J. Katrlík, J. Optical biosensors. Essays Biochem., 2016, 60(1), 91-100.
[http://dx.doi.org/10.1042/EBC20150010] [PMID: 27365039]
[93]
Cao, J.; Sun, T.; Grattan, K.T. Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sens. Actuators B Chem., 2014, 195, 332-351.
[http://dx.doi.org/10.1016/j.snb.2014.01.056]
[94]
Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev., 2011, 111(6), 3828-3857.
[http://dx.doi.org/10.1021/cr100313v] [PMID: 21648956]
[95]
Xiao-Hong, Z.; Lan-Hua, L.; Wei-Qi, X.; Bao-Dong, S.; Jian-Wu, S.; Miao, H.; Han-Chang, S. A reusable evanescent wave immunosensor for highly sensitive detection of bisphenol A in water samples. Sci. Rep., 2014, 4, 4572.
[http://dx.doi.org/10.1038/srep04572] [PMID: 24699239]
[96]
Kozma, P.; Kehl, F.; Ehrentreich-Förster, E.; Stamm, C.; Bier, F.F. Integrated planar optical waveguide interferometer biosensors: a comparative review. Biosens. Bioelectron., 2014, 58, 287-307.
[http://dx.doi.org/10.1016/j.bios.2014.02.049] [PMID: 24658026]
[97]
Zaytseva, N.; Miller, W.; Goral, V.; Hepburn, J.; Fang, Y. Microfluidic resonant waveguide grating biosensor system for whole cell sensing. Appl. Phys. Lett., 2011, 98(16)163703
[http://dx.doi.org/10.1063/1.3582611]
[98]
Spink, C.; Wadsö, I. Calorimetry as an analytical tool in biochemistry and biology. Methods Biochem. Anal., 1976, 23(0), 1-159.
[http://dx.doi.org/10.1002/9780470110430.ch1] [PMID: 12445]
[99]
Ramanathan, K. Khayyami, M.; Danielsson, B.Enzyme and Microbial Biosensors; Springer, 1998, pp. 175-186.
[http://dx.doi.org/10.1385/0-89603-410-0:175]
[100]
Ramanathan, K.; Danielsson, B. Principles and applications of thermal biosensors. Biosens. Bioelectron., 2001, 16(6), 417-423.
[http://dx.doi.org/10.1016/S0956-5663(01)00124-5] [PMID: 11672656]
[101]
Pohanka, M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials (Basel), 2018, 11(3), 448.
[http://dx.doi.org/10.3390/ma11030448] [PMID: 29562700]
[102]
Zu, H.; Wu, H.; Wang, Q-M. High-temperature piezoelectric crystals for acoustic wave sensor applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2016, 63(3), 486-505.
[http://dx.doi.org/10.1109/TUFFC.2016.2527599] [PMID: 26886982]
[103]
Hagood, N.W.; von Flotow, A. Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vibrat., 1991, 146(2), 243-268.
[http://dx.doi.org/10.1016/0022-460X(91)90762-9]
[104]
Hees, J.; Heidrich, N.; Pletschen, W.; Sah, R.E.; Wolfer, M.; Williams, O.A.; Lebedev, V.; Nebel, C.E.; Ambacher, O. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films. Nanotechnology, 2013, 24(2)025601
[http://dx.doi.org/10.1088/0957-4484/24/2/025601] [PMID: 23220817]
[105]
Meyers, F.N.; Loh, K.J.; Dodds, J.S.; Baltazar, A. Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites. Nanotechnology, 2013, 24(18)185501
[http://dx.doi.org/10.1088/0957-4484/24/18/185501] [PMID: 23579369]
[106]
Ferreira, P.; Hou, R.Z.; Wu, A.; Willinger, M-G.; Vilarinho, P.M.; Mosa, J.; Laberty-Robert, C.; Boissière, C.; Grosso, D.; Sanchez, C. Nanoporous piezo- and ferroelectric thin films. Langmuir, 2012, 28(5), 2944-2949.
[http://dx.doi.org/10.1021/la204168w] [PMID: 22206407]
[107]
Wang, H.; Wereszczak, A.A. Effects of electric field and biaxial flexure on the failure of poled lead zirconate titanate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2008, 55(12), 2559-2570.
[http://dx.doi.org/10.1109/TUFFC.2008.972] [PMID: 19126481]
[108]
Struth, B.; Decher, G.; Schmitt, J.; Hofmeister, W.; Neißendorfer, F.; Pietsch, U.; Brezesinski, G.; Möhwald, H. Chemical modification of Topaz surfaces. Mater. Sci. Eng. C, 1999, 10(1-2), 97-101.
[http://dx.doi.org/10.1016/S0928-4931(99)00094-6]
[109]
Levitskii, R.; Zachek, I.; Verkholyak, T.; Moina, A. Dielectric, piezoelectric, and elastic properties of the Rochelle salt NaKC 4 H 4 O 6⋅ 4 H 2 O: A theory. Phys. Rev. B Condens. Matter Mater. Phys., 2003, 67(17)174112
[http://dx.doi.org/10.1103/PhysRevB.67.174112]
[110]
Sawyer, C.B.; Tower, C. Rochelle salt as a dielectric. Phys. Rev., 1930, 35(3), 269.
[http://dx.doi.org/10.1103/PhysRev.35.269]
[111]
Fukada, E. History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2000, 47(6), 1277-1290.
[http://dx.doi.org/10.1109/58.883516] [PMID: 18238673]
[112]
Sinha, T.K.; Ghosh, S.K.; Maiti, R.; Jana, S.; Adhikari, B.; Mandal, D.; Ray, S.K. Graphene-silver-induced self-polarized PVDF-based flexible plasmonic nanogenerator toward the realization for new class of self powered optical sensor. ACS Appl. Mater. Interfaces, 2016, 8(24), 14986-14993.
[http://dx.doi.org/10.1021/acsami.6b01547] [PMID: 27266368]
[113]
García-Martinez, G.; Bustabad, E.A.; Perrot, H.; Gabrielli, C.; Bucur, B.; Lazerges, M.; Rose, D.; Rodriguez-Pardo, L.; Fariña, J.; Compère, C.; Vives, A.A. Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit. Sensors (Basel), 2011, 11(8), 7656-7664.
[http://dx.doi.org/10.3390/s110807656] [PMID: 22164037]
[114]
Pohanka, M. The piezoelectric biosensors: Principles and applications. Int. J. Electrochem. Sci., 2017, 12, 496-506.
[http://dx.doi.org/10.20964/2017.01.44]
[115]
Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys., 1959, 155(2), 206-222.
[http://dx.doi.org/10.1007/BF01337937]
[116]
Zhang, C.; Liu, N.; Yang, J.; Chen, W. Thickness-shear vibration of AT-cut quartz plates carrying finite-size particles with rotational degree of freedom and rotatory inertia IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2011, 58(3), 666-670. [Correspondence].
[http://dx.doi.org/10.1109/TUFFC.2011.1851] [PMID: 21429859]
[117]
Kanazawa, K.K.; Gordon, J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem., 1985, 57(8), 1770-1771.
[http://dx.doi.org/10.1021/ac00285a062]
[118]
Shana, Z.; Radtke, D.; Kelkar, U.; Josse, F.; Haworth, D. Theory and application of a quartz resonator as a sensor for viscous liquids. Anal. Chim. Acta, 1990, 231, 317-320.
[http://dx.doi.org/10.1016/S0003-2670(00)86434-X]
[119]
Haun, J.B.; Yoon, T.J.; Lee, H.; Weissleder, R. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(3), 291-304.
[http://dx.doi.org/10.1002/wnan.84] [PMID: 20336708]
[120]
Tamanaha, C.R.; Mulvaney, S.P.; Rife, J.C.; Whitman, L.J. Magnetic labeling, detection, and system integration. Biosens. Bioelectron., 2008, 24(1), 1-13.
[http://dx.doi.org/10.1016/j.bios.2008.02.009] [PMID: 18374556]
[121]
Kotitz, R.; Matz, H.; Trahms, L.; Koch, H.; Weitschies, W.; Rheinlander, T.; Semmler, W.; Bunte, T. SQUID based remanence measurements for immunoassays. IEEE Trans. Appl. Supercond., 1997, 7(2), 3678-3681.
[http://dx.doi.org/10.1109/77.622216]
[122]
Chemla, Y.R.; Grossman, H.L.; Poon, Y.; McDermott, R.; Stevens, R.; Alper, M.D.; Clarke, J. Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc. Natl. Acad. Sci. USA, 2000, 97(26), 14268-14272.
[http://dx.doi.org/10.1073/pnas.97.26.14268] [PMID: 11121032]
[123]
Aytur, T.; Foley, J.; Anwar, M.; Boser, B.; Harris, E.; Beatty, P.R. A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis. J. Immunol. Methods, 2006, 314(1-2), 21-29.
[http://dx.doi.org/10.1016/j.jim.2006.05.006] [PMID: 16842813]
[124]
Baselt, D.R.; Lee, G.U.; Natesan, M.; Metzger, S.W.; Sheehan, P.E.; Colton, R.J. A biosensor based on magnetoresistance technology. Biosens. Bioelectron., 1998, 13(7-8), 731-739.
[http://dx.doi.org/10.1016/S0956-5663(98)00037-2] [PMID: 9828367]
[125]
Graham, D.L.; Ferreira, H.A.; Freitas, P.P.; Cabral, J.M. High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors. Biosens. Bioelectron., 2003, 18(4), 483-488.
[http://dx.doi.org/10.1016/S0956-5663(02)00205-1] [PMID: 12604266]
[126]
Li, G.; Sun, S.; Wilson, R.J.; White, R.L.; Pourmand, N.; Wang, S.X. Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications. Sens. Actuators A Phys., 2006, 126(1), 98-106.
[http://dx.doi.org/10.1016/j.sna.2005.10.001] [PMID: 18414592]
[127]
Parkin, S.S.; Kaiser, C.; Panchula, A.; Rice, P.M.; Hughes, B.; Samant, M.; Yang, S-H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater., 2004, 3(12), 862-867.
[http://dx.doi.org/10.1038/nmat1256] [PMID: 15516928]
[128]
Brzeska, M.; Panhorst, M.; Kamp, P-B.; Schotter, J.; Reiss, G.; Pühler, A.; Becker, A.; Brückl, H. Detection and manipulation of biomolecules by magnetic carriers. J. Biotechnol., 2004, 112(1-2), 25-33.
[http://dx.doi.org/10.1016/j.jbiotec.2004.04.018] [PMID: 15288938]
[129]
Osterfeld, S.J.; Yu, H.; Gaster, R.S.; Caramuta, S.; Xu, L.; Han, S-J.; Hall, D.A.; Wilson, R.J.; Sun, S.; White, R.L.; Davis, R.W.; Pourmand, N.; Wang, S.X. Multiplex protein assays based on real-time magnetic nanotag sensing. Proc. Natl. Acad. Sci. USA, 2008, 105(52), 20637-20640.
[http://dx.doi.org/10.1073/pnas.0810822105] [PMID: 19074273]
[130]
Graham, D.; Ferreira, H.; Bernardo, J.; Freitas, P.; Cabral, J. Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors: Biotechnological applications. J. Appl. Phys., 2002, 91(10), 7786-7788.
[http://dx.doi.org/10.1063/1.1451898]
[131]
Wang, S.X.; Bae, S-Y.; Li, G.; Sun, S.; White, R.L.; Kemp, J.T.; Webb, C.D. Towards a magnetic microarray for sensitive diagnostics. J. Magn. Magn. Mater., 2005, 293(1), 731-736.
[http://dx.doi.org/10.1016/j.jmmm.2005.02.054]
[132]
Perez, J.M.; Josephson, L.; O’Loughlin, T.; Högemann, D.; Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol., 2002, 20(8), 816-820.
[http://dx.doi.org/10.1038/nbt720] [PMID: 12134166]
[133]
Josephson, L.; Perez, J.M.; Weissleder, R. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. Int. Ed. Engl., 2001, 40(17), 3204-3206.
[http://dx.doi.org/10.1002/1521-3773(20010903)40:17<3204:AID-ANIE3204>3.0.CO;2-H] [PMID: 29712059]
[134]
Chen, C.; Ridzon, D.A.; Broomer, A.J.; Zhou, Z.; Lee, D.H.; Nguyen, J.T.; Barbisin, M.; Xu, N.L.; Mahuvakar, V.R.; Andersen, M.R.; Lao, K.Q.; Livak, K.J.; Guegler, K.J. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res., 2005, 33(20)e179
[http://dx.doi.org/10.1093/nar/gni178] [PMID: 16314309]
[135]
Li, W.; Ruan, K. MicroRNA detection by microarray. Anal. Bioanal. Chem., 2009, 394(4), 1117-1124.
[http://dx.doi.org/10.1007/s00216-008-2570-2] [PMID: 19132354]
[136]
Choi, Y.E.; Kwak, J.W.; Park, J.W. Nanotechnology for early cancer detection. Sensors (Basel), 2010, 10(1), 428-455.
[http://dx.doi.org/10.3390/s100100428] [PMID: 22315549]
[137]
Salvati, E.; Stellacci, F.; Krol, S. Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine (Lond.), 2015, 10(23), 3495-3512.
[http://dx.doi.org/10.2217/nnm.15.180] [PMID: 26606949]
[138]
Catuogno, S.; Esposito, C.L.; Quintavalle, C.; Cerchia, L.; Condorelli, G.; De Franciscis, V. Recent Advance in Biosensors for microRNAs Detection in Cancer. Cancers (Basel), 2011, 3(2), 1877-1898.
[http://dx.doi.org/10.3390/cancers3021877] [PMID: 24212787]
[139]
Cai, B.; Guo, S.; Li, Y. MoS2-based sensor for the detection ofmiRNA in serum samples related with breast cancer. Anal. Methods, 2018, 10, 230-236.
[http://dx.doi.org/10.1039/C7AY02329D]
[140]
Su, S.; Cao, W.; Liu, W.; Lu, Z.; Zhu, D.; Chao, J.; Weng, L.; Wang, L.; Fan, C.; Wang, L. Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet. Biosens. Bioelectron., 2017, 94, 552-559.
[http://dx.doi.org/10.1016/j.bios.2017.03.040] [PMID: 28363193]
[141]
Oue, N.; Anami, K.; Schetter, A.J.; Moehler, M.; Okayama, H.; Khan, M.A.; Bowman, E.D.; Mueller, A.; Schad, A.; Shimomura, M.; Hinoi, T.; Aoyagi, K.; Sasaki, H.; Okajima, M.; Ohdan, H.; Galle, P.R.; Yasui, W.; Harris, C.C. High miR-21 expression from FFPE tissues is associated with poor survival and response to adjuvant chemotherapy in colon cancer. Int. J. Cancer, 2014, 134(8), 1926-1934.
[http://dx.doi.org/10.1002/ijc.28522] [PMID: 24122631]
[142]
Ghosh, D.; Girigoswami, A.; Chattopadhyay, N. Superquenching of coumarin 153 by gold nanoparticles. J. Photochem. Photobiol. Chem., 2012, 242, 44-50.
[http://dx.doi.org/10.1016/j.jphotochem.2012.05.027]
[143]
Miao, X.; Ning, X.; Li, Z.; Cheng, Z. Sensitive detection of miRNA by using hybridization chain reaction coupled with positively charged gold nanoparticles. Sci. Rep., 2016, 6, 32358.
[http://dx.doi.org/10.1038/srep32358] [PMID: 27576601]
[144]
Cai, B.; Huang, L.; Zhang, H.; Sun, Z.; Zhang, Z.; Zhang, G.J. Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection. Biosens. Bioelectron., 2015, 74, 329-334.
[http://dx.doi.org/10.1016/j.bios.2015.06.068] [PMID: 26159152]
[145]
Lu, Z.; Tang, H.; Wu, D.; Xia, Y.; Wu, M.; Yi, X.; Li, H.; Wang, J. Amplified voltammetric detection of miRNA from serum samples of glioma patients via combination of conducting magnetic microbeads and ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosens. Bioelectron., 2016, 86, 502-507.
[http://dx.doi.org/10.1016/j.bios.2016.07.010] [PMID: 27442080]
[146]
Yin, H.; Zhou, Y.; Chen, C.; Zhu, L.; Ai, S. An electrochemical signal ‘off-on’ sensing platform for microRNA detection. Analyst (Lond.), 2012, 137(6), 1389-1395.
[http://dx.doi.org/10.1039/c2an16098f] [PMID: 22311172]
[147]
Yang, W-J.; Li, X-B.; Li, Y-Y.; Zhao, L-F.; He, W-L.; Gao, Y-Q.; Wan, Y-J.; Xia, W.; Chen, T.; Zheng, H.; Li, M.; Xu, S.Q. Quantification of microRNA by gold nanoparticle probes. Anal. Biochem., 2008, 376(2), 183-188.
[http://dx.doi.org/10.1016/j.ab.2008.02.003] [PMID: 18316033]
[148]
Yang, D.; Cheng, W.; Chen, X.; Tang, Y.; Miao, P. Ultrasensitive electrochemical detection of miRNA based on DNA strand displacement polymerization and Ca2+-dependent DNAzyme cleavage. Analyst (Lond.), 2018, 143(22), 5352-5357.
[http://dx.doi.org/10.1039/C8AN01555D] [PMID: 30283926]
[149]
Singh, R.D.; Shandilya, R.; Bhargava, A.; Kumar, R.; Tiwari, R.; Chaudhury, K.; Srivastava, R.K.; Goryacheva, I.Y.; Mishra, P.K. Quantum dot based nano-biosensors for detection of circulating cell free mirnas in lung carcinogenesis: From biology to clinical translation. Front. Genet., 2018, 9, 616.
[http://dx.doi.org/10.3389/fgene.2018.00616] [PMID: 30574163]
[150]
Laurenti, M.; Paez-Perez, M.; Algarra, M.; Alonso-Cristobal, P.; Lopez-Cabarcos, E.; Mendez-Gonzalez, D.; Rubio-Retama, J. Enhancement of the upconversion emission by visible to near-infra red fluorescent grapheme quantum dots for miRNA detection. ACS Appl. Mater. Interfaces, 2016, 8, 12644-12651.
[http://dx.doi.org/10.1021/acsami.6b02361] [PMID: 27153453]
[151]
Wang, Y.; Zheng, D.; Tan, Q.; Wang, M.X.; Gu, L.Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnol., 2011, 6(10), 668-674.
[http://dx.doi.org/10.1038/nnano.2011.147] [PMID: 21892163]
[152]
Chaudhary, V.; Jangra, S.; Yadav, N.R. Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J. Nanobiotechnology, 2018, 16(1), 40.
[http://dx.doi.org/10.1186/s12951-018-0368-8] [PMID: 29653577]
[153]
Wanunu, M.; Dadosh, T.; Ray, V.; Jin, J.; McReynolds, L.; Drndić, M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol., 2010, 5(11), 807-814.
[http://dx.doi.org/10.1038/nnano.2010.202] [PMID: 20972437]
[154]
Fan, Y.; Chen, X.; Trigg, A.D.; Tung, C.H.; Kong, J.; Gao, Z. Detection of MicroRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J. Am. Chem. Soc., 2007, 129(17), 5437-5443.
[http://dx.doi.org/10.1021/ja067477g] [PMID: 17411036]
[155]
Gao, Z.; Yang, Z. Detection of microRNAs using electrocatalytic nanoparticle tags. Anal. Chem., 2006, 78(5), 1470-1477.
[http://dx.doi.org/10.1021/ac051726m] [PMID: 16503596]
[156]
Peng, Y.; Gao, Z. Amplified detection of microRNA based on ruthenium oxide nanoparticle-initiated deposition of an insulating film. Anal. Chem., 2011, 83(3), 820-827.
[http://dx.doi.org/10.1021/ac102370s] [PMID: 21207998]
[157]
Yang, S.W.; Vosch, T. Rapid detection of microRNA by a silver nanocluster DNA probe. Anal. Chem., 2011, 83(18), 6935-6939.
[http://dx.doi.org/10.1021/ac201903n] [PMID: 21859161]
[158]
Driskell, J.D.; Seto, A.G.; Jones, L.P.; Jokela, S.; Dluhy, R.A.; Zhao, Y.P.; Tripp, R.A. Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens. Bioelectron., 2008, 24, 917-922.
[159]
Driskell, J.D.; Shanmukh, S.; Liu, Y.; Chaney, S.B.; Tang, X.J.; Zhao, Y.P.; Dluhy, R.A. The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates. J. Phys. Chem. C, 2008, 112, 895-901.
[160]
Driskell, J.D.; Tripp, R.A. Label-free SERS detection of microRNA based on affinity for an unmodified silver nanorod array substrate. Chem. Commun. (Camb.), 2010, 46(19), 3298-3300.
[http://dx.doi.org/10.1039/c002059a] [PMID: 20442892]
[161]
Cheng, H.L.; Fu, C.Y.; Kuo, W.C.; Chen, Y.W.; Chen, Y.S.; Lee, Y.M.; Li, K.H.; Chen, C.; Ma, H.P.; Huang, P.C.; Wang, Y.L.; Lee, G.B. Detecting miRNA biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system. Lab Chip, 2018, 18(19), 2917-2925.
[http://dx.doi.org/10.1039/C8LC00386F] [PMID: 30118128]
[162]
Chandrasekaran, A.R.; MacIsaac, M.; Dey, P.; Levchenko, O.; Zhou, L.; Andres, M.; Dey, B.K.; Halvorsen, K. Cellular microRNA detection with miRacles: microRNA- activated conditional looping of engineered switches. Sci. Adv., 2019, 5(3)eaau9443 a
[http://dx.doi.org/10.1126/sciadv.aau9443] [PMID: 30891499]
[163]
Chandrasekaran, A.R.; Punnoose, J.A.; Zhou, L.; Dey, P.; Dey, B.K.; Halvorsen, K. DNA nanotechnology approaches for microRNA detection and diagnosis. Nucleic Acids Res., 2019, 47(20), 10489-10505.
[http://dx.doi.org/10.1093/nar/gkz580] [PMID: 31287874]
[164]
Shabaninejad, Z.; Yousefi, F.; Movahedpour, A.; Ghasemi, Y.; Dokanehiifard, S.; Rezaei, S.; Aryan, R.; Savardashtaki, A.; Mirzaei, H. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view. Anal. Biochem., 2019, 581113349
[http://dx.doi.org/10.1016/j.ab.2019.113349] [PMID: 31254490]
[165]
Lai, M.; Slaughter, G. Label-Free MicroRNA optical biosensors. Nanomaterials (Basel), 2019, 9(11)E1573
[http://dx.doi.org/10.3390/nano9111573] [PMID: 31698769]
[166]
Sharif-Barfeh, Z.; Beigoli, S.; Marouzi, S.; Rad, A.S.; Asoodeh, A.; Chamani, J. Multi-spectroscopic and HPLC studies of the interaction between estradiol and cyclophosphamide with human serum albumin: binary and ternary systems. J. Solution Chem., 2017, 46, 488-504.
[http://dx.doi.org/10.1007/s10953-017-0590-2]
[167]
Zolfagharzadeh, M.; Pirouzi, M.; Asoodeh, A.; Saberi, M.R.; Chamani, J. A comparison investigation of DNP-binding effects to HSA and HTF by spectroscopic and molecular modeling techniques. J. Biomol. Struct. Dyn., 2014, 32(12), 1936-1952.
[http://dx.doi.org/10.1080/07391102.2013.843062] [PMID: 24125112]
[168]
Sattar, Z.; Saberi, M.R.; Chamani, J. Determination of LMF binding site on a HSA-PPIX complex in the presence of human holo transferrin from the viewpoint of drug loading on proteins. PLoS One, 2014, 9(1)e84045
[http://dx.doi.org/10.1371/journal.pone.0084045] [PMID: 24392106]
[169]
Sani, F.D.; Shakibapour, N.; Beigoli, S.; Sadeghian, H.; Hosainzadeh, M.; Chamani, J. Changes in binding affinity between ofloxacin and calf thymus DNA in the presence of histone H1: Spectroscopic and molecular modeling investigations. J. Lumin., 2018, 203.
[http://dx.doi.org/10.1016/j.jlumin.2018.06.083]
[170]
Ahmad, F.; Wang, X.; Li, W. Toxico‐metabolomics of engineered nanomaterials: progress and challenges. Adv. Funct. Mater., 2019, 29(51)1904268
[http://dx.doi.org/10.1002/adfm.201904268]
[171]
Girigoswami, K. Toxicity of metal oxide nanoparticles. Adv. Exp. Med. Biol., 2018, 1048, 99-122.
[http://dx.doi.org/10.1007/978-3-319-72041-8_7] [PMID: 29453535]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy