Abstract
The wide range of activities now attributed to 1,25(OH)2 D 3 has suggested numerous potential therapeutic applications for this vitamin D hormone, including inhibiting growth of various type of cancer. Unfortunately, the potent calcemic activity of the natural hormone has precluded its use in most cases. Vitamin D analogs with higher therapeutic indices offer renewed hope for treatment of malignancies. The promising analogs currently under study were selected from hundreds of candidates by in vitro screening followed by in vivo testing. The mecha-nism( s) responsible for the greater effectiveness of most of these compounds is not known. Our current understanding of vitamin D physiology and biochemistry suggests that the biological profile of an analog would be determined primarily by its interaction with four classes of proteins: 1) the nuclear vitamin D receptor (VDR) that mediates transcriptional regulation; 2) the metabolic enzymes, primarily the vitamin D-24-hydroxylase but possibly others 3) serum transporters, mainly vitamin D binding protein (DBP), and perhaps lipoproteins; and 4) a new class of receptors that reside in the plasma membrane and mediate rapid, nongenomic responses. This article discusses how the manner in which analogs associate with these proteins can potentially produce selective actions at the tissue, cell and gene level. A thorough understanding of the influence of these analog-protein interactions on the biological profile of vitamin D analogs will be invaluable for the design of future analogs with enhanced target specificity.
Keywords: Vitamin D Analogues, nuclearvitamin D, receptor VDR, D 24 hydrox, vitamin D binding protein DBP, lipoproteins, 25 dihydroxyvitamin D3 1 25 OH2 D3, Translocation, VDR Phosphorylation, Heterodimerization, RXR, DNA Bind, Serum Vitamin D, Binding DBP, Transporters, parathyroid horomone PTH gene transcription, Vitamin D 24 Hydroxylase, hglucocoorticoids, estrone E1, estradiol E2, Nongenomic Activity
Current Pharmaceutical Design
Title: Mechanisms for the Selective Actions of Vitamin D Analogues
Volume: 6 Issue: 7
Author(s): Alex J. Brown
Affiliation:
Keywords: Vitamin D Analogues, nuclearvitamin D, receptor VDR, D 24 hydrox, vitamin D binding protein DBP, lipoproteins, 25 dihydroxyvitamin D3 1 25 OH2 D3, Translocation, VDR Phosphorylation, Heterodimerization, RXR, DNA Bind, Serum Vitamin D, Binding DBP, Transporters, parathyroid horomone PTH gene transcription, Vitamin D 24 Hydroxylase, hglucocoorticoids, estrone E1, estradiol E2, Nongenomic Activity
Abstract: The wide range of activities now attributed to 1,25(OH)2 D 3 has suggested numerous potential therapeutic applications for this vitamin D hormone, including inhibiting growth of various type of cancer. Unfortunately, the potent calcemic activity of the natural hormone has precluded its use in most cases. Vitamin D analogs with higher therapeutic indices offer renewed hope for treatment of malignancies. The promising analogs currently under study were selected from hundreds of candidates by in vitro screening followed by in vivo testing. The mecha-nism( s) responsible for the greater effectiveness of most of these compounds is not known. Our current understanding of vitamin D physiology and biochemistry suggests that the biological profile of an analog would be determined primarily by its interaction with four classes of proteins: 1) the nuclear vitamin D receptor (VDR) that mediates transcriptional regulation; 2) the metabolic enzymes, primarily the vitamin D-24-hydroxylase but possibly others 3) serum transporters, mainly vitamin D binding protein (DBP), and perhaps lipoproteins; and 4) a new class of receptors that reside in the plasma membrane and mediate rapid, nongenomic responses. This article discusses how the manner in which analogs associate with these proteins can potentially produce selective actions at the tissue, cell and gene level. A thorough understanding of the influence of these analog-protein interactions on the biological profile of vitamin D analogs will be invaluable for the design of future analogs with enhanced target specificity.
Export Options
About this article
Cite this article as:
Brown J. Alex, Mechanisms for the Selective Actions of Vitamin D Analogues, Current Pharmaceutical Design 2000; 6 (7) . https://dx.doi.org/10.2174/1381612003400416
DOI https://dx.doi.org/10.2174/1381612003400416 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
Call for Papers in Thematic Issues
Blood-based biomarkers in large-scale screening for neurodegenerative diseases
Disease biomarkers are necessary tools that can be employ in several clinical context of use (COU), ranging from the (early) diagnosis, prognosis, prediction, to monitor of disease state and/or drug efficacy. Regarding neurodegenerative diseases, in particular Alzheimer’s disease (AD), a battery of well-validated biomarkers are available, such as cerebrospinal fluid ...read more
Diabetes mellitus: advances in diagnosis and treatment driving by precision medicine
Diabetes mellitus (DM) is a chronic degenerative metabolic disease with ever increasing prevalence worldwide which is now an epidemic disease affecting 500 million people worldwide. Insufficient insulin secretion from pancreatic β cells unable to maintain blood glucose homeostasis is the main feature of this disease. Multifactorial and complex nature of ...read more
Food-derived bioactive peptides against chronic diseases
Chronic diseases, such as cardiovascular diseases and metabolic diseases, have become a great threat to the human health in recent decades due to the excessive food consumption and the prevalence of sedentary lifestyle. As a class of natural compounds, food-derived bioactive peptides have been demonstrated to possess great potential for ...read more
Innovative delivery systems and formulations for the management of diseases affecting the skin and skin appendages
Skin and skin appendage diseases have high incidence and can highly impact the quality of life. Such diseases include pigmentation disorders, such as melasma, vitiligo and post-inflammatory hyperpigmentation, infectious diseases caused by fungi, viruses, bacteria and parasites, inflammatory diseases such as acne, dermatitis, rosacea, and psoriasis, as well as skin ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Advancements in the Treatment and Repair of Tendon Injuries
Current Tissue Engineering (Discontinued) The Metastatic Process: Methodological Advances and Pharmacological Challenges
Current Medicinal Chemistry AMPA Receptor Antagonist CFM-2 Decreases Survivin Expression in Cancer Cells
Anti-Cancer Agents in Medicinal Chemistry MicroRNA: Promising Roles in Cancer Therapy
Current Pharmaceutical Biotechnology Development of Hedgehog Pathway Inhibitors (HPI) in Treatment of Cancer
Current Chemical Biology Potential Association Between TLR4 and Chitinase 3-Like 1 (CHI3L1/YKL-40) Signaling on Colonic Epithelial Cells in Inflammatory Bowel Disease and Colitis-Associated Cancer
Current Molecular Medicine Peptide and Small Molecule Inhibitors Targeting Myeloid Cell Leukemia 1 (Mcl-1) as Novel Antitumor Agents
Current Molecular Medicine Non-histone Methylation of SET7/9 and its Biological Functions
Recent Patents on Anti-Cancer Drug Discovery Genetic Polymorphisms of Drug Metabolising Enzymes and Drug Transporters in Relation to Cancer Risk
Current Cancer Therapy Reviews Mitochondrial Permeability Transition Pore as a Suitable Targ e t for Neuroprotective Agents Against Alzheimer’s Disease
CNS & Neurological Disorders - Drug Targets Regulation and Importance of the PI3K/Akt/mTOR Signaling Pathway in Hematologic Malignancies
Anti-Cancer Agents in Medicinal Chemistry Increased Expression of the Remodeling- and Tumorigenic-Associated Factor Osteopontin in Pyramidal Neurons of the Alzheimers Disease Brain
Current Alzheimer Research Red Seaweed-derived Compounds: A Desired Approach for Treating Cancer
Current Pharmaceutical Design Hypoxic Regulation of Metastasis via Hypoxia-Inducible Factors
Current Molecular Medicine Novel Drugs for Neuroblastoma
Drug Design Reviews - Online (Discontinued) Utilising Nanotechnology and Nanosystems for Treatment of Rare Diseases
Pharmaceutical Nanotechnology Application of Liposomes in Cancer Therapy: An Assessment of the Advancement of Technology Through Patent Documents
Recent Patents on Nanotechnology Anticancer Antifolates: Current Status and Future Directions
Current Pharmaceutical Design Stem Cell-based Tissue Engineering Approaches for Musculoskeletal Regeneration
Current Pharmaceutical Design Effect of HPV Oncoprotein on Carbohydrate and Lipid Metabolism in Tumor Cells
Current Cancer Drug Targets