Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article (Mini-Review)

Anti-angiogenic Agents: A Review on Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) Inhibitors

Author(s): Kang Cheng, Chen-Fu Liu and Guo-Wu Rao*

Volume 28 , Issue 13 , 2021

Published on: 14 May, 2020

Page: [2540 - 2564] Pages: 25

DOI: 10.2174/0929867327666200514082425

Price: $65

Abstract

Tumor growth inhibition can be achieved by inhibiting angiogenesis, which has been a field of great concern in recent years. Important targets to inhibit angiogenesis include vascular endothelial growth factor receptor (VEGFR) and its homologous tyrosine kinase receptor. Anti-angiogenic therapy based on inhibition of VEGFR-2 is an effective clinical treatment strategy. The research progress of VEGFR-2 inhibitors is reviewed in this paper from the aspects of drug development and chemical synthesis.

Keywords: Tumor, anti-angiogenic agents, tyrosine kinase, VEGFR-2 inhibitor, approved drugs, synthesis.

[1]
Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[2]
Folkman, J.; Merler, E.; Abernathy, C.; Williams, G. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med., 1971, 133(2), 275-288.
[http://dx.doi.org/10.1084/jem.133.2.275] [PMID: 4332371]
[3]
Ferrara, N.; Henzel, W.J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun., 1989, 161(2), 851-858.
[http://dx.doi.org/10.1016/0006-291X(89)92678-8] [PMID: 2735925]
[4]
Risau, W. Mechanisms of angiogenesis. Nature, 1997, 386(6626), 671-674.
[http://dx.doi.org/10.1038/386671a0] [PMID: 9109485]
[5]
Folkman, J.; D’Amore, P.A. Blood vessel formation: what is its molecular basis? Cell, 1996, 87(7), 1153-1155.
[http://dx.doi.org/10.1016/S0092-8674(00)81810-3] [PMID: 8980221]
[6]
Traxler, P. Tyrosine kinases as targets in cancer therapy - successes and failures. Expert Opin. Ther. Targets, 2003, 7(2), 215-234.
[http://dx.doi.org/10.1517/14728222.7.2.215] [PMID: 12667099]
[7]
Brown, J.M.; Giaccia, A.J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res., 1998, 58(7), 1408-1416.
[PMID: 9537241]
[8]
Eckhardt, S.G. Angiogenesis inhibitors as cancer therapy., Hosp. Pract. (1995), 1999, 34(1), 63-68, 77-79, 83-84..
[http://dx.doi.org/10.3810/hp.1999.01.124] [PMID: 9931577]
[9]
Bergers, G.; Javaherian, K.; Lo, K.M.; Folkman, J.; Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science, 1999, 284(5415), 808-812.
[http://dx.doi.org/10.1126/science.284.5415.808] [PMID: 10221914]
[10]
Musumeci, F.; Radi, M.; Brullo, C.; Schenone, S. Vascular endothelial growth factor (VEGF) receptors: drugs and new inhibitors. J. Med. Chem., 2012, 55(24), 10797-10822.
[http://dx.doi.org/10.1021/jm301085w] [PMID: 23098265]
[11]
Bold, G.; Schnell, C.; Furet, P.; McSheehy, P.; Brüggen, J.; Mestan, J.; Manley, P.W.; Drückes, P.; Burglin, M.; Dürler, U.; Loretan, J.; Reuter, R.; Wartmann, M.; Theuer, A.; Bauer-Probst, B.; Martiny-Baron, G.; Allegrini, P.; Goepfert, A.; Wood, J.; Littlewood-Evans, A. A novel potent oral series of VEGFR2 inhibitors abrogate tumor growth by inhibiting angiogenesis. J. Med. Chem., 2016, 59(1), 132-146.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01582] [PMID: 26629594]
[12]
Ellis, L.M.; Hicklin, D.J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer, 2008, 8(8), 579-591.
[http://dx.doi.org/10.1038/nrc2403] [PMID: 18596824]
[13]
Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med., 2003, 9(6), 669-676.
[http://dx.doi.org/10.1038/nm0603-669] [PMID: 12778165]
[14]
Matsumoto, T.; Mugishima, H. Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. J. Atheroscler. Thromb., 2006, 13(3), 130-135.
[http://dx.doi.org/10.5551/jat.13.130] [PMID: 16835467]
[15]
Olsson, A.K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol., 2006, 7(5), 359-371.
[http://dx.doi.org/10.1038/nrm1911] [PMID: 16633338]
[16]
Holmes, K.; Roberts, O.L.; Thomas, A.M.; Cross, M.J. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell. Signal., 2007, 19(10), 2003-2012.
[http://dx.doi.org/10.1016/j.cellsig.2007.05.013] [PMID: 17658244]
[17]
Zhong, H.; Bowen, J.P. Recent advances in small molecule inhibitors of VEGFR and EGFR signaling pathways. Curr. Top. Med. Chem., 2011, 11(12), 1571-1590.
[http://dx.doi.org/10.2174/156802611795860924] [PMID: 21510831]
[18]
Liebmann, C. Regulation of MAP kinase activity by peptide receptor signalling pathway: paradigms of multiplicity. Cell. Signal., 2001, 13(11), 777-785.
[http://dx.doi.org/10.1016/S0898-6568(01)00192-9] [PMID: 11583913]
[19]
Shaw, R.J.; Cantley, L.C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 2006, 441(7092), 424-430.
[http://dx.doi.org/10.1038/nature04869] [PMID: 16724053]
[20]
Gille, J.; Heidenreich, R.; Pinter, A.; Schmitz, J.; Boehme, B.; Hicklin, D.J.; Henschler, R.; Breier, G. Simultaneous blockade of VEGFR-1 and VEGFR-2 activation is necessary to efficiently inhibit experimental melanoma growth and metastasis formation. Int. J. Cancer, 2007, 120(9), 1899-1908.
[http://dx.doi.org/10.1002/ijc.22531] [PMID: 17230507]
[21]
Fu, X.; Yang, Y.; Li, X.; Lai, H.; Huang, Y.; He, L.; Zheng, W.; Chen, T. RGD peptide-conjugated selenium nanoparticles: antiangiogenesis by suppressing VEGF-VEGFR2-ERK/AKT pathway. Nanomedicine (Lond.), 2016, 12(6), 1627-1639.
[http://dx.doi.org/10.1016/j.nano.2016.01.012] [PMID: 26961468]
[22]
Underiner, T.L.; Ruggeri, B.; Gingrich, D.E. Development of vascular endothelial growth factor receptor (VEGFR) kinase inhibitors as anti-angiogenic agents in cancer therapy. Curr. Med. Chem., 2004, 11(6), 731-745.
[http://dx.doi.org/10.2174/0929867043455756] [PMID: 15032727]
[23]
Zuccotto, F.; Ardini, E.; Casale, E.; Angiolini, M. Through the “gatekeeper door”: exploiting the active kinase conformation. J. Med. Chem., 2010, 53(7), 2681-2694.
[http://dx.doi.org/10.1021/jm901443h] [PMID: 20000735]
[24]
Backes, A.; Zech, B.; Felber, B.; Klebl, B.; Müller, G. Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition. Expert Opin. Drug Discov., 2008, 3(12), 1427-1449.
[http://dx.doi.org/10.1517/17460440802580106] [PMID: 23506107]
[25]
Liu, Y.; Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol., 2006, 2(7), 358-364.
[http://dx.doi.org/10.1038/nchembio799] [PMID: 16783341]
[26]
Shi, L.; Zhou, J.; Wu, J.; Shen, Y.; Li, X. Anti-angiogenic therapy: strategies to develop potent VEGFR-2 tyrosine kinase inhibitors and future prospect. Curr. Med. Chem., 2016, 23(10), 1000-1040.
[http://dx.doi.org/10.2174/0929867323666160210130426] [PMID: 26860998]
[27]
Sharma, P.S.; Sharma, R.; Tyagi, T. VEGF/VEGFR pathway inhibitors as anti-angiogenic agents: present and future. Curr. Cancer Drug Targets, 2011, 11(5), 624-653.
[http://dx.doi.org/10.2174/156800911795655985] [PMID: 21486218]
[28]
Schenone, S.; Bondavalli, F.; Botta, M. Antiangiogenic agents: an update on small molecule VEGFR inhibitors. Curr. Med. Chem., 2007, 14(23), 2495-2516.
[http://dx.doi.org/10.2174/092986707782023622] [PMID: 17979703]
[29]
Spratlin, J. Ramucirumab (IMC-1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor-2. Curr. Oncol. Rep., 2011, 13(2), 97-102.
[http://dx.doi.org/10.1007/s11912-010-0149-5] [PMID: 21222245]
[30]
Clarke, J.M.; Hurwitz, H.I. Targeted inhibition of VEGF receptor 2: an update on ramucirumab. Expert Opin. Biol. Ther., 2013, 13(8), 1187-1196.
[http://dx.doi.org/10.1517/14712598.2013.810717] [PMID: 23803182]
[31]
Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; Dos Santos, L.V.; Aprile, G.; Ferry, D.R.; Melichar, B.; Tehfe, M.; Topuzov, E.; Zalcberg, J.R.; Chau, I.; Campbell, W.; Sivanandan, C.; Pikiel, J.; Koshiji, M.; Hsu, Y.; Liepa, A.M.; Gao, L.; Schwartz, J.D.; Tabernero, J. REGARD Trial Investigators. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet, 2014, 383(9911), 31-39.
[http://dx.doi.org/10.1016/S0140-6736(13)61719-5] [PMID: 24094768]
[32]
Hata, A.; Katakami, N. Maintenance ramucirumab monotherapy after intolerable toxicities following docetaxel plus ramucirumab. Oncotarget, 2018, 9(47), 28292-28293.
[http://dx.doi.org/10.18632/oncotarget.25623] [PMID: 29983860]
[33]
Tanimura, K.; Uchino, J.; Tamiya, N.; Kaneko, Y.; Yamada, T.; Yoshimura, K.; Takayama, K. Treatment rationale and design of the RAMNITA study: a phase II study of the efficacy of docetaxel + ramucirumab for non-small cell lung cancer with brain metastasis. Medicine (Baltimore), 2018, 97(23)e11084
[http://dx.doi.org/10.1097/MD.0000000000011084] [PMID: 29879079]
[34]
Zhao, Z.; Wu, H.; Wang, L.; Liu, Y.; Knapp, S.; Liu, Q.; Gray, N.S. Exploration of type II binding mode: a privileged approach for kinase inhibitor focused drug discovery? ACS Chem. Biol., 2014, 9(6), 1230-1241.
[http://dx.doi.org/10.1021/cb500129t] [PMID: 24730530]
[35]
Furtmann, N.; Hu, Y.; Bajorath, J. Comprehensive analysis of three-dimensional activity cliffs formed by kinase inhibitors with different binding modes and cliff mapping of structural analogues. J. Med. Chem., 2015, 58(1), 252-264.
[http://dx.doi.org/10.1021/jm5009264] [PMID: 25054653]
[36]
Sartori, A.; Portioli, E.; Battistini, L.; Calorini, L.; Pupi, A.; Vacondio, F.; Arosio, D.; Bianchini, F.; Zanardi, F. Synthesis of novel c(AmpRGD) - sunitinib dual conjugates as molecular tools targeting the αvβ3 integrin/VEGFR2 couple and impairing tumor-associated angiogenesis. J. Med. Chem., 2017, 60(1), 248-262.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01266] [PMID: 27997164]
[37]
Blumenthal, G.M.; Cortazar, P.; Zhang, J.J.; Tang, S.H.; Sridhara, R.; Murgo, A.; Justice, R.; Pazdur, R. FDA approval summary: sunitinib for the treatment of progressive well-differentiated locally advanced or metastatic pancreatic neuroendocrine tumors. Oncologist, 2012, 17(8), 1108-1113.
[http://dx.doi.org/10.1634/theoncologist.2012-0044]] [PMID: 22836448]
[38]
Patyna, S.; Laird, A.D.; Mendel, D.B.; O’farrell, A.M.; Liang, C.; Guan, H.; Vojkovsky, T.; Vasile, S.; Wang, X.; Chen, J.; Grazzini, M.; Yang, C.Y.; Haznedar, J.O.; Sukbuntherng, J.; Zhong, W.Z.; Cherrington, J.M.; Hu-Lowe, D. SU14813: a novel multiple receptor tyrosine kinase inhibitor with potent antiangiogenic and antitumor activity. Mol. Cancer Ther., 2006, 5(7), 1774-1782.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0333] [PMID: 16891463]
[39]
Sun, L.; Liang, C.; Shirazian, S.; Zhou, Y.; Miller, T.; Cui, J.; Fukuda, J.Y.; Chu, J.Y.; Nematalla, A.; Wang, X.; Chen, H.; Sistla, A.; Luu, T.C.; Tang, F.; Wei, J.; Tang, C. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem., 2003, 46(7), 1116-1119.
[http://dx.doi.org/10.1021/jm0204183] [PMID: 12646019]
[40]
Manley, J.M.; Kalman, M.J.; Conway, B.G.; Ball, C.C.; Havens, J.L.; Vaidyanathan, R. Early amidation approach to 3-[(4-amido)pyrrol-2-yl]-2-indolinones. J. Org. Chem., 2003, 68(16), 6447-6450.
[http://dx.doi.org/10.1021/jo034304q] [PMID: 12895087]
[41]
Hutson, T.E.; Davis, I.D.; Machiels, J.P.H.; De Souza, P.L.; Rottey, S.; Hong, B.F.; Epstein, R.J.; Baker, K.L.; McCann, L.; Crofts, T.; Pandite, L.; Figlin, R.A. Efficacy and safety of pazopanib in patients with metastatic renal cell carcinoma. J. Clin. Oncol., 2010, 28(3), 475-480.
[http://dx.doi.org/10.1200/JCO.2008.21.6994] [PMID: 20008644]
[42]
Gotink, K.J.; Verheul, H.M.W. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis, 2010, 13(1), 1-14.
[http://dx.doi.org/10.1007/s10456-009-9160-6] [PMID: 20012482]
[43]
Keisner, S.V.; Shah, S.R. Pazopanib: the newest tyrosine kinase inhibitor for the treatment of advanced or metastatic renal cell carcinoma. Drugs, 2011, 71(4), 443-454.
[http://dx.doi.org/10.2165/11588960-000000000-00000] [PMID: 21395357]
[44]
Harris, P.A.; Boloor, A.; Cheung, M.; Kumar, R.; Crosby, R.M.; Davis-Ward, R.G.; Epperly, A.H.; Hinkle, K.W.; Hunter, R.N. III.; Johnson, J.H.; Knick, V.B.; Laudeman, C.P.; Luttrell, D.K.; Mook, R.A.; Nolte, R.T.; Rudolph, S.K.; Szewczyk, J.R.; Truesdale, A.T.; Veal, J.M.; Wang, L.; Stafford, J.A. Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J. Med. Chem., 2008, 51(15), 4632-4640.
[http://dx.doi.org/10.1021/jm800566m] [PMID: 18620382]
[45]
Kim, Y.S.; Li, F.; O’Neill, B.E.; Li, Z. Specific binding of modified ZD6474 (Vandetanib) monomer and its dimer with VEGF receptor-2. Bioconjug. Chem., 2013, 24(11), 1937-1944.
[http://dx.doi.org/10.1021/bc400374t] [PMID: 24089699]
[46]
Hanrahan, E.O.; Heymach, J.V. Vascular endothelial growth factor receptor tyrosine kinase inhibitors vandetanib (ZD6474) and AZD2171 in lung cancer. Clin. Cancer Res., 2007, 13(15 Pt 2), s4617-s4622.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0539] [PMID: 17671152]
[47]
Wells, S.A., Jr; Gosnell, J.E.; Gagel, R.F.; Moley, J.; Pfister, D.; Sosa, J.A.; Skinner, M.; Krebs, A.; Vasselli, J.; Schlumberger, M. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J. Clin. Oncol., 2010, 28(5), 767-772.
[http://dx.doi.org/10.1200/JCO.2009.23.6604] [PMID: 20065189]
[48]
Wells, S.A., Jr; Robinson, B.G.; Gagel, R.F.; Dralle, H.; Fagin, J.A.; Santoro, M.; Baudin, E.; Elisei, R.; Jarzab, B.; Vasselli, J.R.; Read, J.; Langmuir, P.; Ryan, A.J.; Schlumberger, M.J. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J. Clin. Oncol., 2012, 30(2), 134-141.
[http://dx.doi.org/10.1200/JCO.2011.35.5040] [PMID: 22025146]
[49]
Hennequin, L.F.; Stokes, E.S.E.; Thomas, A.P.; Johnstone, C.; Plé, P.A.; Ogilvie, D.J.; Dukes, M.; Wedge, S.R.; Kendrew, J.; Curwen, J.O. Novel 4-anilinoquinazolines with C-7 basic side chains: design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors. J. Med. Chem., 2002, 45(6), 1300-1312.
[http://dx.doi.org/10.1021/jm011022e] [PMID: 11881999]
[50]
Motzer, R.J.; Escudier, B.; Tomczak, P.; Hutson, T.E.; Michaelson, M.D.; Negrier, S.; Oudard, S.; Gore, M.E.; Tarazi, J.; Hariharan, S.; Chen, C.; Rosbrook, B.; Kim, S.; Rini, B.I. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol., 2013, 14(6), 552-562.
[http://dx.doi.org/10.1016/S1470-2045(13)70093-7] [PMID: 23598172]
[51]
Rini, B.I.; Escudier, B.; Tomczak, P.; Kaprin, A.; Szczylik, C.; Hutson, T.E.; Michaelson, M.D.; Gorbunova, V.A.; Gore, M.E.; Rusakov, I.G.; Negrier, S.; Ou, Y.C.; Castellano, D.; Lim, H.Y.; Uemura, H.; Tarazi, J.; Cella, D.; Chen, C.; Rosbrook, B.; Kim, S.; Motzer, R.J. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet, 2011, 378(9807), 1931-1939.
[http://dx.doi.org/10.1016/S0140-6736(11)61613-9] [PMID: 22056247]
[52]
Rixe, O.; Bukowski, R.M.; Michaelson, M.D.; Wilding, G.; Hudes, G.R.; Bolte, O.; Motzer, R.J.; Bycott, P.; Liau, K.F.; Freddo, J.; Trask, P.C.; Kim, S.; Rini, B.I. Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a phase II study. Lancet Oncol., 2007, 8(11), 975-984.
[http://dx.doi.org/10.1016/S1470-2045(07)70285-1] [PMID: 17959415]
[53]
Ewanicki, B.L.; Flahive, E.J.; Kasparian, A.J.; Mitchell, M.B.; Perry, M.D.; O’Neill-Slawecki, S.A.; Sach, N.W.; Saenz, J.E.; Shi, B.; Stankovic, N.S. Methods of preparing indazole compounds. U.S. Patent 20,060,094,881,. 2006.
[54]
Hilberg, F.; Roth, G.J.; Krssak, M.; Kautschitsch, S.; Sommergruber, W.; Tontsch-Grunt, U.; Garin-Chesa, P.; Bader, G.; Zoephel, A.; Quant, J.; Heckel, A.; Rettig, W.J. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res., 2008, 68(12), 4774-4782.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6307] [PMID: 18559524]
[55]
Richeldi, L.; Costabel, U.; Selman, M.; Kim, D.S.; Hansell, D.M.; Nicholson, A.G.; Brown, K.K.; Flaherty, K.R.; Noble, P.W.; Raghu, G.; Brun, M.; Gupta, A.; Juhel, N.; Klüglich, M.; du Bois, R.M. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N. Engl. J. Med., 2011, 365(12), 1079-1087.
[http://dx.doi.org/10.1056/NEJMoa1103690] [PMID: 21992121]
[56]
Richeldi, L.; du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y.; Kim, D.S.; Kolb, M.; Nicholson, A.G.; Noble, P.W.; Selman, M.; Taniguchi, H.; Brun, M.; Le Maulf, F.; Girard, M.; Stowasser, S.; Schlenker-Herceg, R.; Disse, B.; Collard, H.R. INPULSIS Trial Investigators. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med., 2014, 370(22), 2071-2082.
[http://dx.doi.org/10.1056/NEJMoa1402584] [PMID: 24836310]
[57]
Reck, M.; Kaiser, R.; Mellemgaard, A.; Douillard, J.Y.; Orlov, S.; Krzakowski, M.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Liao, M.; Gann, C.N.; Barrueco, J.; Gaschler-Markefski, B.; Novello, S. LUME-Lung 1 Study Group. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol., 2014, 15(2), 143-155.
[http://dx.doi.org/10.1016/S1470-2045(13)70586-2] [PMID: 24411639]
[58]
Roth, G.J.; Heckel, A.; Colbatzky, F.; Handschuh, S.; Kley, J.; Lehmann-Lintz, T.; Lotz, R.; Tontsch-Grunt, U.; Walter, R.; Hilberg, F. Design, synthesis, and evaluation of indolinones as triple angiokinase inhibitors and the discovery of a highly specific 6-methoxycarbonyl-substituted indolinone (BIBF 1120). J. Med. Chem., 2009, 52(14), 4466-4480.
[http://dx.doi.org/10.1021/jm900431g] [PMID: 19522465]
[59]
Tohyama, O.; Matsui, J.; Kodama, K.; Hata-Sugi, N.; Kimura, T.; Okamoto, K.; Minoshima, Y.; Iwata, M.; Funahashi, Y. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J. Thyroid Res., 2014, 2014, 638747.
[http://dx.doi.org/10.1155/2014/638747] [PMID: 25295214]
[60]
Ikeda, K.; Kudo, M.; Kawazoe, S.; Osaki, Y.; Ikeda, M.; Okusaka, T.; Tamai, T.; Suzuki, T.; Hisai, T.; Hayato, S.; Okita, K.; Kumada, H. Phase 2 study of lenvatinib in patients with advanced hepatocellular carcinoma. J. Gastroenterol., 2017, 52(4), 512-519.
[http://dx.doi.org/10.1007/s00535-016-1263-4] [PMID: 27704266]
[61]
Okamoto, K.; Kodama, K.; Takase, K.; Sugi, N.H.; Yamamoto, Y.; Iwata, M.; Tsuruoka, A. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett., 2013, 340(1), 97-103.
[http://dx.doi.org/10.1016/j.canlet.2013.07.007] [PMID: 23856031]
[62]
Harmange, J.C.; Weiss, M.M.; Germain, J.; Polverino, A.J.; Borg, G.; Bready, J.; Chen, D.; Choquette, D.; Coxon, A.; DeMelfi, T.; DiPietro, L.; Doerr, N.; Estrada, J.; Flynn, J.; Graceffa, R.F.; Harriman, S.P.; Kaufman, S.; La, D.S.; Long, A.; Martin, M.W.; Neervannan, S.; Patel, V.F.; Potashman, M.; Regal, K.; Roveto, P.M.; Schrag, M.L.; Starnes, C.; Tasker, A.; Teffera, Y.; Wang, L.; White, R.D.; Whittington, D.A.; Zanon, R. Naphthamides as novel and potent vascular endothelial growth factor receptor tyrosine kinase inhibitors: design, synthesis, and evaluation. J. Med. Chem., 2008, 51(6), 1649-1667.
[http://dx.doi.org/10.1021/jm701097z] [PMID: 18324761]
[63]
Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov., 2006, 5(10), 835-844.
[http://dx.doi.org/10.1038/nrd2130] [PMID: 17016424]
[64]
Levine, A.M.; Tulpule, A.; Quinn, D.I.; Gorospe, G., III; Smith, D.L.; Hornor, L.; Boswell, W.D.; Espina, B.M.; Groshen, S.G.; Masood, R.; Gill, P.S. Phase I study of antisense oligonucleotide against vascular endothelial growth factor: decrease in plasma vascular endothelial growth factor with potential clinical efficacy. J. Clin. Oncol., 2006, 24(11), 1712-1719.
[http://dx.doi.org/10.1200/JCO.2005.03.4801] [PMID: 16520466]
[65]
Keating, G.M. Sorafenib: a review in hepatocellular carcinoma. Target. Oncol., 2017, 12(2), 243-253.
[http://dx.doi.org/10.1007/s11523-017-0484-7] [PMID: 28299600]
[66]
Fabian, M.A.; Biggs, W.H., III; Treiber, D.K.; Atteridge, C.E.; Azimioara, M.D.; Benedetti, M.G.; Carter, T.A.; Ciceri, P.; Edeen, P.T.; Floyd, M.; Ford, J.M.; Galvin, M.; Gerlach, J.L.; Grotzfeld, R.M.; Herrgard, S.; Insko, D.E.; Insko, M.A.; Lai, A.G.; Lélias, J.M.; Mehta, S.A.; Milanov, Z.V.; Velasco, A.M.; Wodicka, L.M.; Patel, H.K.; Zarrinkar, P.P.; Lockhart, D.J. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol., 2005, 23(3), 329-336.
[http://dx.doi.org/10.1038/nbt1068] [PMID: 15711537]
[67]
Bankston, D.; Dumas, J.; Natero, R.; Riedl, B.; Monahan, M.K.; Sibley, R. A scaleable synthesis of BAY 43-9006: a potent Raf kinase inhibitor for the treatment of cancer. Org. Process Res. Dev., 2002, 6(6), 777-781.
[http://dx.doi.org/10.1021/op020205n]
[68]
Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schütz, G.; Thierauch, K.H.; Zopf, D. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer, 2011, 129(1), 245-255.
[http://dx.doi.org/10.1002/ijc.25864] [PMID: 21170960]
[69]
Bruix, J.; Tak, W.Y.; Gasbarrini, A.; Santoro, A.; Colombo, M.; Lim, H.Y.; Mazzaferro, V.; Wiest, R.; Reig, M.; Wagner, A.; Bolondi, L. Regorafenib as second-line therapy for intermediate or advanced hepatocellular carcinoma: multicentre, open-label, phase II safety study. Eur. J. Cancer, 2013, 49(16), 3412-3419.
[http://dx.doi.org/10.1016/j.ejca.2013.05.028] [PMID: 23809766]
[70]
George, S.; Wang, Q.; Heinrich, M.C.; Corless, C.L.; Zhu, M.; Butrynski, J.E.; Morgan, J.A.; Wagner, A.J.; Choy, E.; Tap, W.D.; Yap, J.T.; Van den Abbeele, A.D.; Manola, J.B.; Solomon, S.M.; Fletcher, J.A.; von Mehren, M.; Demetri, G.D. Efficacy and safety of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of imatinib and sunitinib: a multicenter phase II trial. J. Clin. Oncol., 2012, 30(19), 2401-2407.
[http://dx.doi.org/10.1200/JCO.2011.39.9394] [PMID: 22614970]
[71]
Demetri, G.D.; Reichardt, P.; Kang, Y.K.; Blay, J.Y.; Rutkowski, P.; Gelderblom, H.; Hohenberger, P.; Leahy, M.; von Mehren, M.; Joensuu, H.; Badalamenti, G.; Blackstein, M.; Le Cesne, A.; Schöffski, P.; Maki, R.G.; Bauer, S.; Nguyen, B.B.; Xu, J.; Nishida, T.; Chung, J.; Kappeler, C.; Kuss, I.; Laurent, D.; Casali, P.G. GRID study investigators. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet, 2013, 381(9863), 295-302.
[http://dx.doi.org/10.1016/S0140-6736(12)61857-1] [PMID: 23177515]
[72]
Boyer, S.; Dumas, J.; Riedl, B.; Wilhelm, S. Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions. U.S. Patent 2,005,038,080,. 2005.
[73]
Elisei, R.; Schlumberger, M.J.; Müller, S.P.; Schöffski, P.; Brose, M.S.; Shah, M.H.; Licitra, L.; Jarzab, B.; Medvedev, V.; Kreissl, M.C.; Niederle, B.; Cohen, E.E.W.; Wirth, L.J.; Ali, H.; Hessel, C.; Yaron, Y.; Ball, D.; Nelkin, B.; Sherman, S.I. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol., 2013, 31(29), 3639-3646.
[http://dx.doi.org/10.1200/JCO.2012.48.4659] [PMID: 24002501]
[74]
Kurzrock, R.; Sherman, S.I.; Ball, D.W.; Forastiere, A.A.; Cohen, R.B.; Mehra, R.; Pfister, D.G.; Cohen, E.E.W.; Janisch, L.; Nauling, F.; Hong, D.S.; Ng, C.S.; Ye, L.; Gagel, R.F.; Frye, J.; Müller, T.; Ratain, M.J.; Salgia, R. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J. Clin. Oncol., 2011, 29(19), 2660-2666.
[http://dx.doi.org/10.1200/JCO.2010.32.4145] [PMID: 21606412]
[75]
Smith, D.C.; Smith, M.R.; Sweeney, C.; Elfiky, A.A.; Logothetis, C.; Corn, P.G.; Vogelzang, N.J.; Small, E.J.; Harzstark, A.L.; Gordon, M.S.; Vaishampayan, U.N.; Haas, N.B.; Spira, A.I.; Lara, P.N., Jr; Lin, C.C.; Srinivas, S.; Sella, A.; Schöffski, P.; Scheffold, C.; Weitzman, A.L.; Hussain, M. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J. Clin. Oncol., 2013, 31(4), 412-419.
[http://dx.doi.org/10.1200/JCO.2012.45.0494] [PMID: 23169517]
[76]
Bannen, L.C.; Chan, D.S.; Forsyth, T.P.; Khoury, R.G.; Leahy, J.W.; Mac, M.B.; Mann, L.W.; Nuss, J.M.; Parks, J.J.; Simeone, D.; Wang, Y.; Xu, W. Methods of using CMet modulators. U.S. Patent 20,120,070,368,. 2012.
[77]
Wilson, J.A. Processes for preparing quinoline compounds and pharmaceutical compositions containing such compounds. WO Patent 2,012,109,510,. 2012.
[78]
De Falco, V.; Buonocore, P.; Muthu, M.; Torregrossa, L.; Basolo, F.; Billaud, M.; Gozgit, J.M.; Carlomagno, F.; Santoro, M. Ponatinib (AP24534) is a novel potent inhibitor of oncogenic RET mutants associated with thyroid cancer. J. Clin. Endocrinol. Metab., 2013, 98(5), E811-E819.
[http://dx.doi.org/10.1210/jc.2012-2672] [PMID: 23526464]
[79]
Gozgit, J.M.; Wong, M.J.; Moran, L.; Wardwell, S.; Mohemmad, Q.K.; Narasimhan, N.I.; Shakespeare, W.C.; Wang, F.; Clackson, T.; Rivera, V.M. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol. Cancer Ther., 2012, 11(3), 690-699.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0450] [PMID: 22238366]
[80]
Cortes, J.E.; Kim, D.W.; Pinilla-Ibarz, J.; le Coutre, P.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; DiPersio, J.; DeAngelo, D.J.; Abruzzese, E.; Rea, D.; Baccarani, M.; Müller, M.C.; Gambacorti-Passerini, C.; Wong, S.; Lustgarten, S.; Rivera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Guilhot, F.; Deininger, M.W.; Hochhaus, A.; Hughes, T.; Goldman, J.M.; Shah, N.P.; Kantarjian, H. PACE Investigators. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2013, 369(19), 1783-1796.
[http://dx.doi.org/10.1056/NEJMoa1306494] [PMID: 24180494]
[81]
Huang, W.S.; Metcalf, C.A.; Sundaramoorthi, R.; Wang, Y.; Zou, D.; Thomas, R.M.; Zhu, X.; Cai, L.; Wen, D.; Liu, S.; Romero, J.; Qi, J.; Chen, I.; Banda, G.; Lentini, S.P.; Das, S.; Xu, Q.; Keats, J.; Wang, F.; Wardwell, S.; Ning, Y.; Snodgrass, J.T.; Broudy, M.I.; Russian, K.; Zhou, T.; Commodore, L.; Narasimhan, N.I.; Mohemmad, Q.K.; Iuliucci, J.; Rivera, V.M.; Dalgarno, D.C.; Sawyer, T.K.; Clackson, T.; Shakespeare, W.C. Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-4-[(4-methylpiperaz-in-1-yl)methyl]-3-(trifluoromethyl)phenylbenzamide (AP2-4534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J. Med. Chem., 2010, 53(12), 4701-4719.
[http://dx.doi.org/10.1021/jm100395q] [PMID: 20513156]
[82]
Roviello, G.; Ravelli, A.; Polom, K.; Petrioli, R.; Marano, L.; Marrelli, D.; Roviello, F.; Generali, D. Apatinib: a novel receptor tyrosine kinase inhibitor for the treatment of gastric cancer. Cancer Lett., 2016, 372(2), 187-191.
[http://dx.doi.org/10.1016/j.canlet.2016.01.014] [PMID: 26797419]
[83]
Scott, L.J. Apatinib: a review in advanced gastric cancer and other advanced cancers. Drugs, 2018, 78(7), 747-758.
[http://dx.doi.org/10.1007/s40265-018-0903-9] [PMID: 29663291]
[84]
Geng, R.; Li, J. Apatinib for the treatment of gastric cancer. Expert Opin. Pharmacother., 2015, 16(1), 117-122.
[http://dx.doi.org/10.1517/14656566.2015.981526] [PMID: 25420417]
[85]
Lin, B.; Song, X.; Yang, D.; Bai, D.; Yao, Y.; Lu, N. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRβ and FGFR1. Gene, 2018, 654, 77-86.
[http://dx.doi.org/10.1016/j.gene.2018.02.026] [PMID: 29454091]
[86]
Han, B.H.; Li, K.; Wang, Q.M.; Zhao, Y.Z.; Zhang, L.; Shi, J.H.; Wang, Z.H.; Cheng, Y.; He, J.X.; Shi, Y.K.; Chen, W.Q.; Wang, X.W.; Luo, Y.; Nan, K.J.; Jin, F.G.; Li, B.L.; Chen, Y.L.; Zhou, J.Y.; Wang, D.L. Efficacy and safety of third-line treatment with anlotinib in patients with refractory advanced non-small-cell lung cancer (ALTER-0303): a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol., 2017, 18, S3.
[http://dx.doi.org/10.1016/S1470-2045(17)30759-3]
[87]
Xie, C.; Wan, X.; Quan, H.; Zheng, M.; Fu, L.; Li, Y.; Lou, L. Preclinical characterization of anlotinib, a highly potent and selective vascular endothelial growth factor receptor-2 inhibitor. Cancer Sci., 2018, 109(4), 1207-1219.
[http://dx.doi.org/10.1111/cas.13536] [PMID: 29446853]
[88]
Cao, J.; Zhang, J.; Peng, W.; Chen, Z.; Fan, S.; Su, W.; Li, K.; Li, J. A Phase I study of safety and pharmacokinetics of fruquintinib, a novel selective inhibitor of vascular endothelial growth factor receptor-1, -2, and -3 tyrosine kinases in Chinese patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2016, 78(2), 259-269.
[http://dx.doi.org/10.1007/s00280-016-3069-8] [PMID: 27299749]
[89]
Sun, Q.; Zhou, J.; Zhang, Z.; Guo, M.; Liang, J.; Zhou, F.; Long, J.; Zhang, W.; Yin, F.; Cai, H.; Yang, H.; Zhang, W.; Gu, Y.; Ni, L.; Sai, Y.; Cui, Y.; Zhang, M.; Hong, M.; Sun, J.; Yang, Z.; Qing, W.; Su, W.; Ren, Y. Discovery of fruquintinib, a potent and highly selective small molecule inhibitor of VEGFR 1, 2, 3 tyrosine kinases for cancer therapy. Cancer Biol. Ther., 2014, 15(12), 1635-1645.
[http://dx.doi.org/10.4161/15384047.2014.964087] [PMID: 25482937]
[90]
Burki, T.K. Fruquintinib for previously treated metastatic colorectal cancer. Lancet Oncol., 2018, 19(8)e388
[http://dx.doi.org/10.1016/S1470-2045(18)30503-5] [PMID: 29983343]
[91]
Bello, E.; Colella, G.; Scarlato, V.; Oliva, P.; Berndt, A.; Valbusa, G.; Serra, S.C.; D’Incalci, M.; Cavalletti, E.; Giavazzi, R.; Damia, G.; Camboni, G. E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Res., 2011, 71(4), 1396-1405.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2700] [PMID: 21212416]
[92]
Guffanti, F.; Chila, R.; Bello, E.; Ceriani, L.; Zangarini, M.; Zucchetti, M.; Saba, C.; Jacquet-Bescond, A.; Pierrat, M.; Damia, G. Preclinical activity of the VEGFR, FGFR and PDGFR inhibitor lucitanib in FGFR2 aberrant endometrial and gastric cancer models. Eur. J. Cancer, 2014, 50, 110.
[http://dx.doi.org/10.1016/S0959-8049(14)70466-6]
[93]
Lobben, P.C.; Barlow, E.; Bergum, J.S.; Braem, A.; Chang, S.Y.; Gibson, F.; Kopp, N.; Lai, C.J.; LaPorte, T.L.; Leahy, D.K.; Muslehiddinoglu, J.; Quiroz, F.; Skliar, D.; Spangler, L.; Srivastava, S.; Wasser, D.; Wasylyk, J.; Wethman, R.; Xu, Z.M. Control strategy for the manufacture of brivanib alaninate, a novel pyrrolotriazine VEGFR/FGFR inhibitor. Org. Process Res. Dev., 2014, 19(8), 900-907.
[http://dx.doi.org/10.1021/op500126u]
[94]
Diaz-Padilla, I.; Siu, L.L. Brivanib alaninate for cancer. Expert Opin. Investig. Drugs, 2011, 20(4), 577-586.
[http://dx.doi.org/10.1517/13543784.2011.565329] [PMID: 21391890]
[95]
Yau, T.C.C.; Lencioni, R.; Sukeepaisarnjaroen, W.; Chao, Y.; Yen, C.J.; Lausoontornsiri, W.; Chen, P.J.; Sanpajit, T.; Camp, A.; Cox, D.S.; Gagnon, R.C.; Liu, Y.; Raffensperger, K.E.; Kulkarni, D.A.; Kallender, H.; Ottesen, L.H.; Poon, R.T.P.; Bottaro, D.P. Kallender. H.; Ottesen, L.H.; Poon, R.T.P.; Bottaro, D.P. A phase I/II multicenter study of single-agent foretinib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin. Cancer Res., 2017, 23(10), 2405-2413.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1789] [PMID: 27821605]
[96]
Chen, H.M.; Tsai, C.H.; Hung, W.C. Foretinib inhibits angiogenesis, lymphangiogenesis and tumor growth of pancreatic cancer in vivo by decreasing VEGFR-2/3 and TIE-2 signaling. Oncotarget, 2015, 6(17), 14940-14952.
[http://dx.doi.org/10.18632/oncotarget.3613] [PMID: 25909285]
[97]
Eder, J.P.; Shapiro, G.I.; Appleman, L.J.; Zhu, A.X.; Miles, D.; Keer, H.; Cancilla, B.; Chu, F.; Hitchcock-Bryan, S.; Sherman, L.; McCallum, S.; Heath, E.I.; Boerner, S.A.; LoRusso, P.M. A phase I study of foretinib, a multi-targeted inhibitor of c-Met and vascular endothelial growth factor receptor 2. Clin. Cancer Res., 2010, 16(13), 3507-3516.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0574] [PMID: 20472683]
[98]
Sodani, K.; Patel, A.; Anreddy, N.; Singh, S.; Yang, D.H.; Kathawala, R.J.; Kumar, P.; Talele, T.T.; Chen, Z.S. Telatinib reverses chemotherapeutic multidrug resistance mediated by ABCG2 efflux transporter in vitro and in vivo. Biochem. Pharmacol., 2014, 89(1), 52-61.
[http://dx.doi.org/10.1016/j.bcp.2014.02.012] [PMID: 24565910]
[99]
Steeghs, N.; Gelderblom, H.; Wessels, J.; Eskens, F.A.L.M.; de Bont, N.; Nortier, J.W.R.; Guchelaar, H.J. Pharmacogenetics of telatinib, a VEGFR-2 and VEGFR-3 tyrosine kinase inhibitor, used in patients with solid tumors. Invest. New Drugs, 2011, 29(1), 137-143.
[http://dx.doi.org/10.1007/s10637-009-9347-0] [PMID: 19924384]
[100]
To, K.K.; Poon, D.C.; Wei, Y.M.; Wang, F.; Lin, G.; Fu, L-W. Vatalanib targets ABCG2-overexpressing multidrug resistant colon cancer cells under hypoxia. Cancer Res., 2015, 75(15), 4417.
[http://dx.doi.org/10.1158/1538-7445.AM2015-4417]]
[101]
Joensuu, H.; De Braud, F.; Grignagni, G.; De Pas, T.; Spitalieri, G.; Coco, P.; Spreafico, C.; Boselli, S.; Toffalorio, F.; Bono, P.; Jalava, T.; Kappeler, C.; Aglietta, M.; Laurent, D.; Casali, P.G. Vatalanib for metastatic gastrointestinal stromal tumour (GIST) resistant to imatinib: final results of a phase II study. Br. J. Cancer, 2011, 104(11), 1686-1690.
[http://dx.doi.org/10.1038/bjc.2011.151] [PMID: 21540861]
[102]
Rao, G.W.; Guo, Y.M.; Hu, W.X. Synthesis, structure analysis and antitumor evaluation of 3,6-dimethyl-1,2,4,5-tetrazine-1,4-dicarboxamide derivatives. Chem.Med.Chem, 2012, 7(6), 973-976.
[http://dx.doi.org/10.1002/cmdc.201200109] [PMID: 22539490]
[103]
Rao, G.W.; Xu, G.J.; Wang, J.; Jiang, X.L.; Li, H.B. Synthesis, antitumor evaluation and docking study of novel 4-anilinoquinazoline derivatives as potential epidermal growth factor receptor (EGFR) inhibitors. Chem. Med. Chem., 2013, 8(6), 928-933.
[http://dx.doi.org/10.1002/cmdc.201300120] [PMID: 23640754]
[104]
Rao, G.W.; Wang, C.; Wang, J.; Zhao, Z.G.; Hu, W.X. Synthesis, structure analysis, antitumor evaluation and 3D-QSAR studies of 3,6-disubstituted-dihydro-1,2,4,5-tetrazine derivatives. Bioorg. Med. Chem. Lett., 2013, 23(23), 6474-6480.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.036] [PMID: 24120541]
[105]
Jin, H.; Dan, H.G.; Rao, G.W. Research progress in quinazoline derivatives as multi-target tyrosine kinase inhibitors. Heterocycl. Commun., 2018, 24(1), 1-10.
[http://dx.doi.org/10.1515/hc-2017-0066]
[106]
Wu, Y.C.; Ren, X.Y.; Rao, G.W. Research progress of diphenyl urea derivatives as anticancer agents and synthetic methodologies. Mini Rev. Org. Chem., 2019, 16(7), 617-630.
[http://dx.doi.org/10.2174/1570193X15666181029130418]
[107]
Zhang, Y.; Chen, Y.; Zhang, D.; Wang, L.; Lu, T.; Jiao, Y. Discovery of novel potent VEGFR-2 inhibitors exerting significant antiproliferative activity against cancer cell lines. J. Med. Chem., 2018, 61(1), 140-157.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01091] [PMID: 29189002]
[108]
Garon, E.B.; Ciuleanu, T.E.; Arrieta, O.; Prabhash, K.; Syrigos, K.N.; Goksel, T.; Park, K.; Gorbunova, V.; Kowalyszyn, R.D.; Pikiel, J.; Czyzewicz, G.; Orlov, S.V.; Lewanski, C.R.; Thomas, M.; Bidoli, P.; Dakhil, S.; Gans, S.; Kim, J.H.; Grigorescu, A.; Karaseva, N.; Reck, M.; Cappuzzo, F.; Alexandris, E.; Sashegyi, A.; Yurasov, S.; Pérol, M. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet, 2014, 384(9944), 665-673.
[http://dx.doi.org/10.1016/S0140-6736(14)60845-X] [PMID: 24933332]
[109]
Yasuda, S.; Sho, M.; Yamato, I.; Yoshiji, H.; Wakatsuki, K.; Nishiwada, S.; Yagita, H.; Nakajima, Y. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic antitumour effect in vivo. Clin. Exp. Immunol., 2013, 172(3), 500-506.
[http://dx.doi.org/10.1111/cei.12069] [PMID: 23600839]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy