Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Enhanced Ofloxacin Degradation Efficiency on Porous CeTi2O6 Photocatalyst - CTAB Induced Porosity

Author(s): Lili Yang, Chuanguo Li and Wenjie Zhang*

Volume 17, Issue 1, 2021

Published on: 11 May, 2020

Page: [90 - 97] Pages: 8

DOI: 10.2174/1573413716999200511130328

Abstract

Background: Photocatalytic oxidation of organic pollutants in the environment is being studied for more than half a century. Titanate has the activity on the degradation of organic pollutants under UV light illumination. Template directed sol-gel method is capable of producing porous structure in titanate during high temperature thermal treatment.

Methods: The materials were characterized using X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy, surface area and pore size analyses, UV-Visible spectrometry, and Xray photoelectron spectroscopy. Photocatalytic activity of the CeTi2O6 material was evaluated through ofloxacin degradation.

Results: Brannerite structured CeTi2O6 was the major component in the samples, and the addition of CTAB caused a slight growth of CeTi2O6 crystals. Porous structure formed in the porous sample after the removal of CTAB template, and the surface area and pore volume were greatly enlarged. The first order reaction rate constant for photocatalytic degradation of ofloxacin was 9.60×10-3 min-1 on the nonporous CeTi2O6 sample, and it was as large as 2.44×10-2 min-1 on the porous CeTi2O6 sample. The addition of CTAB can influence the physico-chemical properties of the porous CeTi2O6, such as the improved activity on photocatalytic degradation of ofloxacin.

Conclusion: The CeTi2O6 samples composed of majority brannerite CeTi2O6, and CeTi2O6 crystallite sizes for the nonporous and porous samples were 38.1 and 43.2 nm. The burning up of CTAB during calcination produced abundant pores in the porous material. After 50 min of reaction, photocatalytic degradation efficiencies on the nonporous and porous CeTi2O6 samples were 38.1% and 70.5%.

Keywords: CeTi2O6, photocatalysis, Cetyltrimethyl Ammonium Bromide, Ofloxacin, degradation, organic pollutants.

« Previous
Graphical Abstract
`
[1]
Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95, 69-96.
[http://dx.doi.org/10.1021/cr00033a004]
[2]
Fujishima, A.; Rao, T.; Tryk, D. Titanium dioxide photocatalysis. J. Photochem. Photobiol. Photochem. Rev., 2000, 1, 1-21.
[http://dx.doi.org/10.1016/S1389-5567(00)00002-2]
[3]
Zhang, W.J.; Liu, Y.X.; Pei, X.B.; Chen, X.J. Effects of indium doping on properties of xIn-0.1%Gd-TiO2 photocatalyst synthesized by sol-gel method. J. Phys. Chem. Solids, 2017, 104, 45-51.
[http://dx.doi.org/10.1016/j.jpcs.2016.12.031]
[4]
Azanu, D.; Styrishave, B.; Darko, G.; Weisser, J.J.; Abaidoo, R.C. Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Sci. Total Environ., 2018, 622-623, 293-305.
[http://dx.doi.org/10.1016/j.scitotenv.2017.11.287] [PMID: 29216470]
[5]
Llorca, M.; Gros, M.; Rodríguez-Mozaz, S.; Barceló, D. Sample preservation for the analysis of antibiotics in water. J. Chromatogr. A, 2014, 1369, 43-51.
[http://dx.doi.org/10.1016/j.chroma.2014.09.089] [PMID: 25441070]
[6]
Zhang, W.; Liu, Y.; Li, C. Photocatalytic degradation of ofloxacin on Gd2Ti2O7 supported on quartz spheres. J. Phys. Chem. Solids, 2018, 118, 144-149.
[http://dx.doi.org/10.1016/j.jpcs.2018.03.019]
[7]
Li, Z.; Qi, M.; Tu, C.; Wang, W.; Chen, J.; Wang, A.J. Highly efficient removal of chlorotetracycline from aqueous solution using graphene oxide/TiO2 composite: Properties and mechanism. Appl. Surf. Sci., 2017, 425, 765-775.
[http://dx.doi.org/10.1016/j.apsusc.2017.07.027]
[8]
Momeni, M.M.; Ghayeb, Y.; Ezati, F. Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO2 nanotube composite photoanodes. J. Colloid Interface Sci., 2018, 514, 70-82.
[http://dx.doi.org/10.1016/j.jcis.2017.12.021] [PMID: 29245074]
[9]
Momeni, M.M.; Hakimian, M.; Kazempour, A. In-situ manganese doping of TiO2 nanostructures via single-step electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: A good visible-light photocatalyst. Ceram. Int., 2015, 41, 13692-13701.
[http://dx.doi.org/10.1016/j.ceramint.2015.07.158]
[10]
Momeni, M.M.; Ghayeb, Y.; Ghonchegi, Z. Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. J. Solid State Electrochem., 2015, 19, 1359-1366.
[http://dx.doi.org/10.1007/s10008-015-2758-2]
[11]
Liu, Z.Q.; Zhang, X.M.; Wang, B.; Xia, M.; Gao, S.Y.; Liu, X.Y.; Zavabeti, A.; Ou, J.Z.; Kalantar-Zadeh, K.; Wang, Y.C. Amorphous MoSx-coated TiO2 nanotube arrays for enhanced electrocatalytic hydrogen evolution reaction. J. Phys. Chem. C, 2018, 122, 12589-12597.
[http://dx.doi.org/10.1021/acs.jpcc.8b01678]
[12]
Momeni, M.M.; Ghayeb, Y.; Ghonchegi, Z. Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram. Int., 2015, 41, 8735-8741.
[http://dx.doi.org/10.1016/j.ceramint.2015.03.094]
[13]
Momeni, M.M.; Ahadzadeh, I.; Rahmati, A. Nitrogen, carbon and iron multiple-co doped titanium dioxide nanotubes as a new high-performance photo catalyst. J. Mater. Sci. Mater. Electron., 2016, 27, 8646-8653.
[http://dx.doi.org/10.1007/s10854-016-4885-7]
[14]
Zhang, W.J.; Bi, F.F.; Yu, Y.; He, H.B. Phosphoric acid treating of ZSM-5 zeolite for the enhanced photocatalytic activity of TiO2/HZSM-5. J. Mol. Catal. Chem., 2013, 372, 6-12.
[http://dx.doi.org/10.1016/j.molcata.2013.02.002]
[15]
Plantard, G.; Janin, T.; Goetz, V.; Brosillon, S. Solar photocatalysis treatment of phytosanitary refuses: Efficiency of industrial photocatalysts Review Article. Appl. Catal. B, 2012, 115–116, 38-44.
[http://dx.doi.org/10.1016/j.apcatb.2011.11.034]
[16]
Momeni, M.M. Fabrication of copper decorated tungsten oxide–titanium oxide nanotubes by photochemical deposition technique and their photocatalytic application under visible light. Appl. Surf. Sci., 2015, 357, 160-166.
[http://dx.doi.org/10.1016/j.apsusc.2015.09.015]
[17]
Momeni, M.M.; Ghayeb, Y.; Davarzadeh, M. Electrochemical construction of different titania–tungsten trioxide nanotubular composite and their photocatalytic activity for pollutant degradation: a recyclable photocatalysts. J. Mater. Sci. Mater. Electron., 2015, 26, 1560-1567.
[http://dx.doi.org/10.1007/s10854-014-2575-x]
[18]
Wang, Y.C.; Zhang, S.; Haque, E.; Zhang, B.Y.; Ou, J.Z.; Liu, J.; Liu, Z.Q.; Li, Y.X.; Gao, W.M.; Haque, F.; Xu, K.; Wang, H.B.; Cahill, D.; Kong, L.X.; Yang, W.R. Immobilisation of microperoxidase-11 into layered MoO3 for applications of enzymatic conversion. Appl. Mater. Today, 2019, 16, 185-192.
[http://dx.doi.org/10.1016/j.apmt.2019.05.008]
[19]
Liu, X.Y.; Gao, S.Y.; Yang, P.; Wang, B.; Ou, J.Z.; Liu, Z.Q.; Wang, Y.C. Synergetic coupling of Pd nanoparticles and amorphous MoSx toward highly efficient electrocatalytic hydrogen evolution reactions. Appl. Mater. Today, 2018, 13, 158-165.
[http://dx.doi.org/10.1016/j.apmt.2018.09.001]
[20]
Momeni, M.M.; Ghayeb, Y.; Shafiei, M. Preparation and characterization of CrFeWTiO2 photoanodes and their photoelectrochemical activities for water splitting. Dalton Trans., 2017, 46(37), 12527-12536.
[http://dx.doi.org/10.1039/C7DT01596H] [PMID: 28902207]
[21]
Sharifi, T.; Ghayeb, Y.; Mohammadi, T.; Momeni, M.M. Enhanced photoelectrochemical water splitting of CrTiO2 nanotube photoanodes by the decoration of their surface via the photodeposition of Ag and Au. Dalton Trans., 2018, 47(33), 11593-11604.
[http://dx.doi.org/10.1039/C8DT02383B] [PMID: 30088502]
[22]
Momeni, M.M.; Mirhosseini, M.; Mohammadi, N. Efficient photo catalytic degradation of methyl orange over Ag–CuO nanostructures grown on copper foil under visible light irradiation. J. Mater. Sci. Mater. Electron., 2016, 27, 6542-6551.
[http://dx.doi.org/10.1007/s10854-016-4598-y]
[23]
Zhang, W.J.; Ma, Z.; Du, L.; Yang, L.L.; Chen, X.J.; He, H.B. Effects of calcination temperature on characterization and photocatalytic activity of La2Ti2O7 supported on HZSM-5 zeolite. J. Alloys Compd., 2017, 695, 3541-3546.
[http://dx.doi.org/10.1016/j.jallcom.2016.11.416]
[24]
Zhang, W.; Tao, Y.; Li, C. Sol-gel synthesis of Gd2Ti2O7/HZSM-5 composite photocatalyst for ofloxacin degradation. J. Photochem. Photobiol. Chem., 2018, 364, 787-793.
[http://dx.doi.org/10.1016/j.jphotochem.2018.07.022]
[25]
Chen, J.; Liu, S.; Zhang, L.; Chen, N. New SnS2/La2Ti2O7 heterojunction photocatalyst with enhanced visible-light activity. Mater. Lett., 2015, 150, 44-47.
[http://dx.doi.org/10.1016/j.matlet.2015.02.134]
[26]
Chen, Z.W.; Jiang, H.; Jin, W.L.; Shi, C.K. Enhanced photocatalytic performance over Bi4Ti3O12 nanosheets with controllable size and exposed {001} facets for Rhodamine B degradation. Appl. Catal. B, 2016, 180, 698-706.
[http://dx.doi.org/10.1016/j.apcatb.2015.07.022]
[27]
Lozano-Sánchez, L.M.; Obregón, S.; Díaz-Torres, L.A.; Lee, S.; Rodríguez-González, V. Visible and near-infrared light-driven photocatalytic activity of erbium-doped CaTiO3 system. J. Mol. Catal. Chem., 2015, 410, 19-25.
[http://dx.doi.org/10.1016/j.molcata.2015.09.005]
[28]
Abe, R.; Higashi, M.; Sayama, K.; Abe, Y.; Sugihara, H. Photocatalytic activity of R3MO7 and R2Ti2O7 (R=Y, Gd, La; M=Nb, Ta) for water splitting into H2 and O2. J. Phys. Chem. B, 2006, 110(5), 2219-2226.
[http://dx.doi.org/10.1021/jp0552933] [PMID: 16471807]
[29]
Xue, H.; Zhang, Y.W.; Xu, J.; Liu, X.P.; Qian, Q.R.; Xiao, L.; Chen, Q. Facile one-pot synthesis of porous Ln2Ti2O7 (Ln = Nd, Gd, Er) with photocatalytic degradation performance for methyl orange. Catal. Commun., 2014, 51, 72-76.
[http://dx.doi.org/10.1016/j.catcom.2014.03.017]
[30]
Otsuka-Yao-Matsuo, S.; Omata, T.; Yoshimura, M. Photocatalytic behavior of cerium titanates, CeTiO4 and CeTi2O6 and their composite powders with SrTiO3. J. Alloys Compd., 2004, 376, 262-267.
[http://dx.doi.org/10.1016/j.jallcom.2004.01.006]
[31]
Zhang, Y.L.; Han, C.; Zhang, G.S.; Dionysiou, D.D.; Nadagoudaf, M.N. PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine. Chem. Eng. J., 2015, 268, 170-179.
[http://dx.doi.org/10.1016/j.cej.2015.01.006]
[32]
Wang, H.; Du, L.; Yang, L.; Zhang, W.; He, H. Sol-gel synthesis of La2Ti2O7 modified with PEG4000 for the enhanced photocatalytic activity. J. Adv. Oxid. Technol., 2016, 19, 366-371.
[http://dx.doi.org/10.1515/jaots-2016-0221]
[33]
Zhang, W.J.; Tao, Y.; Li, C. Effects of PEG4000 template on sol-gel synthesis of porous cerium titanate photocatalyst. Solid State Sci., 2018, 78, 16-21.
[http://dx.doi.org/10.1016/j.solidstatesciences.2018.02.007]
[34]
Zhang, W.J.; Dong, Y.H.; Zhou, Y.W.; Li, J.; Xiao, X.; Li, C.G. Role of cetyltrimethyl ammonium bromide on sol–gel preparation of porous cerium titanate photocatalyst. J. Sol-Gel Sci. Technol., 2018, 88, 202-210.
[http://dx.doi.org/10.1007/s10971-018-4779-7]
[35]
Verma, A.; Srivastava, A.K.; Sood, K.N. Effect of precursor sol’s aging on properties of nanostructured thin films with coexistent CeO2 and CeTi2O6 phases. Solid State Ion., 2007, 178, 1288-1296.
[http://dx.doi.org/10.1016/j.ssi.2007.06.013]
[36]
Haque, F.; Zavabeti, A.; Zhang, B.Y.; Datta, R.S.; Yin, Y.F.; Yi, Z.F.; Wang, Y.C.; Mahmood, N.; Pillai, N.; Syed, N.; Khan, H.; Jannat, A.; Wang, N.; Medhekar, N.; Kalantar-zadeh, K.; Ou, J.Z. Ordered intracrystalline pores in planar molybdenum oxide for enhanced alkaline hydrogen evolution. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7, 257-268.
[http://dx.doi.org/10.1039/C8TA08330D]
[37]
Butler, M.A. Photoelectrolysis and physical properties of the semiconducting electrode WO2. J. Appl. Phys., 1977, 48, 1914-1920.
[http://dx.doi.org/10.1063/1.323948]
[38]
Liu, C.; Tang, X.; Mo, C.; Qiang, Z. Characterization and activity of visible-light-driven TiO2, photocatalyst codoped with nitrogen and cerium. J. Solid State Chem., 2008, 181, 913-919.
[http://dx.doi.org/10.1016/j.jssc.2008.01.031]
[39]
Lan, J.F.; Wu, X.F.; Lü, K.L.; Si, L.; Deng, K.J. Fabrication of TiO2, hollow microspheres using K3PW12O40 as template. Chin. J. Catal., 2015, 36, 2237-2243.
[http://dx.doi.org/10.1016/S1872-2067(15)60987-1]
[40]
Valeš, V.; Matějová, L.; Matěj, Z.; Brunátová, T.; Holý, V. Crystallization kinetics study of cerium titanate CeTi2O6. J. Phys. Chem. Solids, 2014, 75, 265-270.
[http://dx.doi.org/10.1016/j.jpcs.2013.10.001]
[41]
Pouilleau, J.; Devilliers, D.; Groult, H. Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy. J. Mater. Sci., 1997, 32, 5645-5651.
[http://dx.doi.org/10.1023/A:1018645112465]
[42]
Francisco, M.S.P.; Nascente, P.A.P.; Mastelaro, V.R.; Florentino, A.O. X-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and x-ray diffraction characterization of CuO–TiO2–CeO2 catalyst system. J. Vac. Sci. Technol. A, 2001, 19, 1150-1157.
[http://dx.doi.org/10.1116/1.1345911]
[43]
Arthur, H.; Nethercot, J. Prediction of Fermi energies and photoelectric thresholds based on electronegativity concepts. Phys. Rev. Lett., 1974, 33, 1088-1091.
[http://dx.doi.org/10.1103/PhysRevLett.33.1088]
[44]
Zhang, G.S.; Zhang, W.; Crittenden, J.C.; Chen, Y.S.; Minakata, D.; Wang, P. Photocatalytic hydrogen production under visible-light irradiation on (CuAg)0.15In0.3Zn1.4S2 synthesized by precipitation and calcination. Chin. J. Catal., 2013, 34, 1926-1935.
[http://dx.doi.org/10.1016/S1872-2067(12)60675-5]
[45]
Tachikawa, T.; Fujitsuka, M.; Majima, T. Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J. Phys. Chem. C, 2007, 111, 5259-5275.
[http://dx.doi.org/10.1021/jp069005u]
[46]
Arai, T.; Yanagida, M.; Konishi, Y. Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation. J. Phys. Chem. C, 2007, 111, 7574-7577.
[http://dx.doi.org/10.1021/jp0725533]

© 2024 Bentham Science Publishers | Privacy Policy