Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Resorcin[4]arenes: Generalities and Their Role in the Modification and Detection of Amino Acids

Author(s): Alver Castillo-Aguirre, Miguel Angel Esteso and Mauricio Maldonado*

Volume 24 , Issue 21 , 2020

Page: [2412 - 2425] Pages: 14

DOI: 10.2174/1385272824999200510232141

Price: $65

Abstract

The characteristics and properties that enable resorcin[4]arenes to self-assemble in order to form derivatives with amino acids with a high potential for application in various fields are reviewed. In particular, resorcin[4]arene synthesis, their characteristics, the variety in the size of cavity, their functional groups, and their applications associated with molecular interactions are described in this study. Also, the types of amino acids that can be recognized by resorcin[4]arenes, their interactions, the techniques that allow the determination of the association constants, and the evaluation of the stoichiometry of the complex formed, are reviewed.

Keywords: Amino acids, complexion, conformations, derivatization, resorcin[4]arenes, stoichiometry.

Graphical Abstract
[1]
Jain, V.K.; Kanaiya, P.H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev., 2011, 80, 75-102.
[http://dx.doi.org/10.1070/RC2011v080n01ABEH004127]
[2]
Timmerman, P.; Verboom, W.; Reinhoudt, D.N. Resorcinarenes. Tetrahedron, 1996, 52, 2263-2704.
[http://dx.doi.org/10.1016/0040-4020(95)00984-1]
[3]
Agrawal, Y.; Patadia, R. Studies on resorcinarenes and their analytical applications. Rev. Anal. Chem., 2006, 25, 155-239.
[http://dx.doi.org/10.1515/REVAC.2006.25.3.155]
[4]
Español, E.S.; Villamil, M.M. Calixarenes: generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules. Biomolecules, 2019, 9(3), 1-15.
[http://dx.doi.org/10.3390/biom9030090] [PMID: 30841659]
[5]
Español, E.S.; Maldonado, M. Host-guest recognition of pesticides by calixarenes. Crit. Rev. Anal. Chem., 2019, 49(5), 383-394.
[http://dx.doi.org/10.1080/10408347.2018.1534200] [PMID: 30753109]
[6]
Zhou, Y.; Jie, K.; Zhao, R.; Huang, F. Supramolecular-macrocycle-based crystalline organic materials. Adv. Mater., 2019, 32(20)e1904824
[http://dx.doi.org/10.1002/adma.201904824] [PMID: 31535778]
[7]
Lande, D.N.; Gejji, S.P. Exploring chimeric calix[4]tetrolarene molecular scaffolds: theoretical investigations. J. Phys. Chem. A, 2018, 122(16), 4189-4197.
[http://dx.doi.org/10.1021/acs.jpca.8b01686] [PMID: 29617134]
[8]
Baeyer, A. Ueber die verbindungen der aldehyde mit den phenolen. Dtsch. Chem. Ges., 1872, 5, 280-282.
[http://dx.doi.org/10.1002/cber.18720050186]
[9]
Baeyer, A. Ueber die Verbindungen der Aldehyde mit den Phenolen und aromatischen Kohlenwasserstoffen. Dtsch. Chem. Ges., 1872, 5, 1094-1100.
[http://dx.doi.org/10.1002/cber.187200502157]
[10]
Niederl, J.; Vogel, H. Aldehyde-resorcinol condensations. J. Am. Chem. Soc., 1940, 62, 2512-2514.
[http://dx.doi.org/10.1021/ja01866a067]
[11]
Erdtman, H.; Högberg, H.; Abrahamsson, S.; Nilsson, B. Cyclooligomeric phenol-aldehyde condensation products I. Tetrahedron Lett., 1968, 9, 1679-1682.
[http://dx.doi.org/10.1016/S0040-4039(01)99028-8]
[12]
Högberg, A.G. Two stereoisomeric macrocyclic resorcinol-acetaldehyde condensation products. J. Org. Chem., 1980, 45, 4498-4500.
[http://dx.doi.org/10.1021/jo01310a046]
[13]
Högberg, A.G. Stereoselective synthesis and DNMR study of two 1,8,15,22-tetraphenyl[14]metacyclophan-3,5,10,12,17,19,24,26-octols. J. Am. Chem. Soc., 1980, 102(19), 6046-6050.
[http://dx.doi.org/10.1021/ja00539a012]
[14]
Gutsche, C. Calixarenes Revisited; RSC Publishing, 1998.
[15]
Vicens, J.; Böhmer, V. Calixarenes: A Versatile Class of Macrocyclic Compounds; Springer Sciences and Business Media, 1991.
[16]
Egberink, R.J.M.; Cobben, P.L.H.M.; Vverboom, W.; Harkema, S.; Reinhoudt, D.N. Högberg compounds with a functionalized box-like cavity. J. Incl. Phenom. Mol. Recognit. Chem., 1992, 12, 151-158.
[http://dx.doi.org/10.1007/BF01053858]
[17]
Tunstad, L.M.; Tucker, J.A.; Dalcanale, E.; Weiser, J.; Bryant, J.A.; Sherman, J.C.; Helgeson, R.C.; Knobler, C.B.; Cram, D.J. Host-guest complexation. 48. Octol building blocks for cavitands and carcerands. J. Org. Chem., 1989, 54, 1305-1312.
[http://dx.doi.org/10.1021/jo00267a015]
[18]
Ryzhkina, I.S.; Kudryavtseva, L.A.; Enikeev, K.M.; Babkina, Y.A.; Konovalov, A.I.; Zuev, Y.F.; Zakharchenko, N.L. Reactivity of amphiphilic calix[4]resorcinolarenes and phenols in the reverse micellar system sodium bis(2-ethylhexyl) sulfosuccinate-decane-water. Russ. J. Gen. Chem., 2002, 72, 1401-1405.
[http://dx.doi.org/10.1023/A:1021673812308]
[19]
Yanagihara, R.; Tominaga, M.; Aoyamal, Y. Chiral host-guest interaction. A water-soluble calix[l]resorcarene having L-proline moieties as a non-lanthanide chiral NMR shift reagent for chiral aromatic guests in water. J. Org. Chem., 1994, 59, 6865-6867.
[http://dx.doi.org/10.1021/jo00101a061]
[20]
Wright, A.J.; Matthews, S.E.; Fischer, W.B.; Beer, P.D. Novel resorcin[4]arenes as potassium-selective ion-channel and transporter mimics. Chemistry, 2001, 7(16), 3474-3481.
[http://dx.doi.org/10.1002/1521-3765(20010817)7:16<3474:AID-CHEM3474>3.0.CO;2-6] [PMID: 11560317]
[21]
Franco, L.; Salamanca, Y.; Maldonado, M.; Vargas, E. Solubility of calix[4]resorcinarene in water from (278.15 to 308.15). K. J. Chem. Eng. Data, 2010, 55, 1042-1044.
[http://dx.doi.org/10.1021/je9005097]
[22]
Alshahateet, S.F.; Jiries, A.G.; Al-Trawneh, S.A.; Eldouhaibi, A.S.; Al-Mahadeen, M.M. Kinetic, equilibrium and selectivity studies of heavy metal ions (Pb(II), Co(II), Cu(II), Mn(II), and Zn(II)) removal from water using synthesized C-4-methoxyphenylcalix[4]resorcinarene adsorbent. Desalin. Water Treat., 2014, 57, 1-11.
[http://dx.doi.org/10.1080/19443994.2014.991762]
[23]
Yamakawa, Y.; Ueda, M.; Nagahata, R.; Takeuchi, K.; Asai, M. Rapid synthesis of dendrimers based on calix[4]resorcinarenes. J. Chem. Soc., Perkin Trans. 1, 1998, 1998(24), 4135-4139.
[http://dx.doi.org/10.1039/a806475j]
[24]
Cram, D.J.; Karbach, S.; Kim, H.E.; Knobler, C.B.; Maverick, E.F.; Ericson, J.L.; Helgeson, R.C. Host-guest complexation. 46. Cavitands as open molecular vessels form solvates. J. Am. Chem. Soc., 1988, 110, 2229-2237.
[http://dx.doi.org/10.1021/ja00215a037]
[25]
Cometti, G.; Dalcanale, E.; Du Vosel, A.; Levelut, A-M. A new, conformationally mobile macrocyclic core for bowl-shaped columnar liquid crystals. Liq. Cryst., 1992, 11, 93-100.
[http://dx.doi.org/10.1080/02678299208028973]
[26]
Schneider, U.; Schneider, H-J. Synthese und eigenschaften von makrocyclen aus resorcinen sowie von entsprechenden derivaten und wirt-gast-komplexen. Chem. Ber., 1994, 127, 2455-2469.
[http://dx.doi.org/10.1002/cber.19941271216]
[27]
Thoden van Velzen, E.U.; Engbersen, J.F.J.; Reinhoudt, D.N. Self-assembled monolayers of receptor adsorbates on gold: preparation and characterization. J. Am. Chem. Soc., 1994, 116, 3597-3598.
[http://dx.doi.org/10.1021/ja00087a055]
[28]
Hayashi, Y.; Maruyama, T.; Yachi, T.; Kudo, K.; Ichimura, K. Synthesis and fluorescence bahavior of calix[4]resorcinarenes possessing pyrenyl group(s). J. Chem. Soc., Perkin Trans. 2, 1998, 981-987.
[http://dx.doi.org/10.1039/a704762b]
[29]
Moore, D.; Watson, G.W.; Gunnlaugsson, T.; Matthews, S.E. Selective formation of the rctt chair stereoisomers of octa-O-alkyl resorcin[4]arenes using Brønsted acid catalysis. New J. Chem., 2008, 32, 994-1002.
[http://dx.doi.org/10.1039/b714735j]
[30]
Aoyama, Y.; Tanaka, Y.; Sugahara, S. Molecular recognition. 5. Molecular recognition of sugars via hydrogen-bonding interaction with a synthetic polyhydroxy macrocycle. J. Am. Chem. Soc., 1989, 111, 5397-5404.
[http://dx.doi.org/10.1021/ja00196a052]
[31]
Abis, L.; Dalcanale, E. Du vosel, A.; Spera, S. Structurally new macrocycles from the resorcinol-aldehyde condensation. configurational and conformational analyses by means of dynamic NMR, NOE, and T1 experiments. J. Org. Chem., 1988, 53, 5475-5479.
[http://dx.doi.org/10.1021/jo00258a015]
[32]
Abis, L.; Dalcanale, E.; Du Vosel, A.; Spera, S. Nuclear magnetic resonance elucidation of ring-inversion processes in macrocyclic octaols. J. Chem. Soc. Perkin Trans. 2 Phys. Org. Chem., 1990, 1990(12), 2075-2080.
[http://dx.doi.org/10.1039/p29900002075.]
[33]
Botta, B.; Monache, G.D.; Salvatore, P.; Gasparrini, F.; Villani, C.; Botta, M.; Corelli, F.; Tafi, A.; Gacs-baitz, E.; Santini, A.; Carvalho, C.F.; Misiti, D. Synthesis of C-alkylcalix[4]arenes. 4. Design, synthesis, and computational studies of novel chiral amido[4]resorcinarenes. J. Org. Chem., 1997, 62, 932-938.
[http://dx.doi.org/10.1021/jo962018r]
[34]
Ma, B.Q.; Zhang, Y.; Coppens, P. Multiple conformations of benzil in resorcinarene-based supramolecular host matrixes. J. Org. Chem., 2003, 68(24), 9467-9472.
[http://dx.doi.org/10.1021/jo035169k] [PMID: 14629173]
[35]
McIldowie, M.J.; Mocerino, M.; Ogden, M.I. A brief review of Cn-symmetric calixarenes and resorcinarenes. Supramol. Chem., 2010, 22, 13-39.
[http://dx.doi.org/10.1080/10610270902980663]
[36]
Kaminský, J.; Dvořáková, H.; Štursa, J.; Moravcová, J. Problems with a conformation assignment of aryl-substituted resorc[4]arenes. Collect. Czech. Chem. Commun., 2011, 76, 1199-1222.
[http://dx.doi.org/10.1135/cccc2010104]
[37]
Castillo-Aguirre, A.A.; Rivera Monroy, Z.J.; Maldonado, M. Analysis by RP-HPLC and Purification by RP-SPE of the C-Tetra(p-hydroxy-phenyl)resorcinolarene Crown and Chair Stereoisomers. J. Anal. Methods Chem., 2019, •••20192051282
[http://dx.doi.org/10.1155/2019/2051282] [PMID: 31143485]
[38]
Fransen, J.R.; Dutton, P.J. Cation binding and conformation of octafunctionalized calix[4]resorcinarenes. Can. J. Chem., 1995, 73, 2217-2223.
[http://dx.doi.org/10.1139/v95-275]
[39]
Zhang, Y.; Kim, C.D.; Coppens, P. Does C-methylcalix[4]resorcinarene always adopt the crown shape conformation? A resorcinarene/bipyridine/decamethylruthenocene supramolecular clathrate with a novel framework structure. Chem. Commun. (Camb.), 2000, 2000(23), 2299-2300.
[http://dx.doi.org/10.1039/b004783j]
[40]
Iwanek, W. The Synthesis of octamethoxyresorc[4]arenes catalysed by Lewis acids. Tetrahedron, 1998, 54, 14089-14094.
[http://dx.doi.org/10.1016/S0040-4020(98)00859-X]
[41]
Strandman, S.; Tenhu, H. Star polymers synthesised with flexible resorcinarene-derived ATRP initiators. Polymer (Guildf.), 2007, 48, 3938-3951.
[http://dx.doi.org/10.1016/j.polymer.2007.05.024]
[42]
Moran, J.; Karbach, S.; Cram, D. Cavitands: synthetic molecular vessels. J. Am. Chem. Soc., 1982, 104, 5826-5828.
[http://dx.doi.org/10.1021/ja00385a064]
[43]
Davis, F.; Faul, C.F.J.; Higson, S.P.J. Calix[4]resorcinarene-surfactant complexes: formulation, structure and potential sensor applications. Soft Matter, 2009, 5, 2746-2751.
[http://dx.doi.org/10.1039/b905349b]
[44]
Helttunen, K.; Prus, P.; Luostarinen, M.; Nissinen, M. Interaction of aminomethylated resorcinarenes with rhodamine B. New J. Chem., 2009, 33, 1148-1154.
[http://dx.doi.org/10.1039/b820409h]
[45]
Maldonado, M.; Sanabria, E.; Batanero, B.; Esteso, M. Apparent molal volume and viscosity values for a new synthesized diazoted resorcin[4]arene in DMSO at several temperatures. J. Mol. Liq., 2017, 231, 142-148.
[http://dx.doi.org/10.1016/j.molliq.2017.01.093]
[46]
Volkmer, D.; Fricke, M.; Mattay, J. Interfacial electrostatics guiding the crystallization of CaCO3 underneath monolayers of calixarenes and resorcarenes. J. Mater. Chem., 2004, 14, 2249-2259.
[http://dx.doi.org/10.1039/b403132f]
[47]
Mironova, D.A.; Muslinkina, L.A.; Syakaev, V.V.; Morozova, J.E.; Yanilkin, V.V.; Konovalov, A.I.; Kazakova, E.Kh. Crystal violet dye in complexes with amphiphilic anionic calix[4]resorcinarenes: binding by aggregates and individual molecules. J. Colloid Interface Sci., 2013, 407, 148-154.
[http://dx.doi.org/10.1016/j.jcis.2013.06.048] [PMID: 23891445]
[48]
Hayashida, O.; Mizuki, K.; Akagi, K.; Matsuo, A.; Kanamori, T.; Nakai, T.; Sando, S.; Aoyama, Y. Macrocyclic glycoclusters. Self-aggregation and phosphate-induced agglutination behaviors of calix[4]resorcarene-based quadruple-chain amphiphiles with a huge oligosaccharide pool. J. Am. Chem. Soc., 2003, 125(2), 594-601.
[http://dx.doi.org/10.1021/ja0275663] [PMID: 12517177]
[49]
Castillo-Aguirre, A.A.; Pérez-Redondo, A.; Maldonado, M. Influence of the hydrogen bond on the iteroselective O-alkylation of calix[4]resorcinarenes. J. Mol. Struct., 2020, 1202127402
[http://dx.doi.org/10.1016/j.molstruc.2019.127402]
[50]
Castillo-Aguirre, A.; Maldonado, M. Preparation of methacrylate-based polymers modified with chiral resorcinarenes and their evaluation as sorbents in norepinephrine microextraction. Polymers (Basel), 2019, 11(9), 1428.
[http://dx.doi.org/10.3390/polym11091428] [PMID: 31480387]
[51]
Velásquez-Silva, B.A.; Castillo-Aguirre, A.; Rivera-Monroy, Z.J.; Maldonado, M. Aminomethylated calix[4]resorcinarenes as modifying agents for Glycidyl Methacrylate (GMA) rigid copolymers surface. Polymers (Basel), 2019, 11(7), 1147.
[http://dx.doi.org/10.3390/polym11071147] [PMID: 31277429]
[52]
Castillo-Aguirre, A.; Rivera-Monroy, Z.; Maldonado, M. Selective O-alkylation of the crown conformer of tetra(4-hydroxyphenyl)calix[4]-resorcinarene to the corresponding tetraalkyl ether. Molecules, 2017, 22(10), 1660.
[http://dx.doi.org/10.3390/molecules22101660] [PMID: 28976918]
[53]
Jain, V.K.; Kanaiya, P.H.; Bhojak, N. Synthesis, spectral characterization of azo dyes derived from calix[4]resorcinarene and their application in dyeing of fibers. Fibers Polym., 2008, 9, 720-726.
[http://dx.doi.org/10.1007/s12221-008-0113-2]
[54]
Elçin, S.; Ilhan, M.M.; Deligöz, H. Synthesis and spectral characterization of azo dyes derived from calix[4]arene and their application in dyeing of fibers. J. Incl. Phenom. Macrocycl. Chem., 2013, 77, 259-267.
[http://dx.doi.org/10.1007/s10847-012-0240-7]
[55]
Sanabria, E.; Esteso, M.Á.; Pérez-Redondo, A.; Vargas, E.; Maldonado, M. Synthesis and characterization of two sulfonated resorcinarenes: a new example of a linear array of sodium centers and macrocycles. Molecules, 2015, 20(6), 9915-9928.
[http://dx.doi.org/10.3390/molecules20069915] [PMID: 26029860]
[56]
Bartenstein, J.E.; Lucas, N.T. Reduced symmetry triflate-resorcin[4]arenes. Supramol. Chem., 2012, 24, 618-626.
[http://dx.doi.org/10.1080/10610278.2012.703324]
[57]
Utomo, S.B.; Saputro, A.N.C.; Rinanto, Y. Functionalization of C-4-methoxyphenylcalix[4]resorcinarene with several ammonium compounds. Mater. Sci. Eng., 2016, 107, 1-10.
[http://dx.doi.org/10.1088/1757-899X/107/1/012042]
[58]
Hong, M.; Zhang, Y-M.; Liu, Y. Selective binding affinity between quaternary ammonium cations and water-soluble calix[4]resorcinarene. J. Org. Chem., 2015, 80(3), 1849-1855.
[http://dx.doi.org/10.1021/jo502825z] [PMID: 25584396]
[59]
Velásquez-Silva, A.; Cortés, B.; Rivera-Monroy, Z.; Pérez-Redondo, A.; Maldonado, M. Crystal structure and dynamic NMR studies of octaacetyl-tetra(propyl)calix[4]resorcinarene. J. Mol. Struct., 2017, 1137, 380-386.
[http://dx.doi.org/10.1016/j.molstruc.2017.02.059]
[60]
Casas-Hinestroza, J.L.; Maldonado, M. Conformational Aspects of the O-acetylation of C-tetra(phenyl)calixpyrogallol[4]arene. Molecules, 2018, 23(5), 1-9.
[http://dx.doi.org/10.3390/molecules23051225] [PMID: 29783780]
[61]
Ballistreri, F.P.; Pappalardo, A.; Tomaselli, G.A.; Sfrazzetto, G.T.; Vittorino, E.; Sortino, S. Synthesis and photophysics of a fullerene-triquinoxaline ensemble. New J. Chem., 2010, 34, 2828-2834.
[http://dx.doi.org/10.1039/c0nj00481b]
[62]
Pappalardo, A.; Amato, M.E.; Ballistreri, F.P.; Notti, A.; Tomaselli, G.A.; Toscano, R.M.; Sfrazzetto, G.T. Synthesis and topology of [2+2] calix[4]resorcarene-based chiral cavitand-salen macrocycles. Tetrahedron Lett., 2012, 53, 7150-7153.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.101]
[63]
Poleska-Muchlado, Z.; Luboch, E.; Biernat, J. Novel calix[4]resorcinarenes with side azobenzo-15-crown-5 residues. Synth. Commun., 2008, 38, 3062-3067.
[http://dx.doi.org/10.1080/00397910802044298]
[64]
Burilov, A.; Knyazeva, I.; Pudovik, M.; Latypov, S.; Baier, I.; Habicher, W.; Konovalov, A. New phosphorus-containing analog of calix[4]resorcinarene based on 2,6-dihydroxypyridine. Russ. Chem. Bull. Int. Ed, 2007, 56, 364-366.
[http://dx.doi.org/10.1007/s11172-007-0060-x]]
[65]
Han, J.; Cai, H.; Liu, L.; Yan, G.; Li, Q. Syntheses, crystal structures, and electrochemical properties of multi-ferrocenyl resorcinarenes. Tetrahedron, 2007, 63, 2275-2282.
[http://dx.doi.org/10.1016/j.tet.2006.12.073]
[66]
Yang, Q.; Yan, C.; Zhu, X. A fluorescent chemosensor for paeonol based on tetramethoxy resorcinarene tetraoxyacetic acid. Sens. Actuators B Chem., 2014, 191, 53-59.
[http://dx.doi.org/10.1016/j.snb.2013.09.044]
[67]
Castillo-Aguirre, A.A.; Velásquez-Silva, B.A.; Palacio, C.; Baez, F.; Rivera-Monroy, Z.J.; Maldonado, M. Surface modification of poly(GMA-co-EDMA-co-MMA) with resorcarenes. J. Braz. Chem. Soc., 2018, 29, 1965-1972.
[http://dx.doi.org/10.21577/0103-5053.20180074]
[68]
Sander, J.R.G.; Bucar, D.K.; Baltrusaitis, J.; Macgillivray, L.R. Organic nanocrystals of the resorcinarene hexamer via sonochemistry: evidence of reversed crystal growth involving hollow morphologies. J. Am. Chem. Soc., 2012, 134(16), 6900-6903.
[http://dx.doi.org/10.1021/ja211141p]]
[69]
Kobayashi, K.; Yamanaka, M. Self-assembled capsules based on tetrafunctionalized calix[4]resorcinarene cavitands. Chem. Soc. Rev., 2015, 44(2), 449-466.
[http://dx.doi.org/10.1039/C4CS00153B] [PMID: 24938592]
[70]
Perret, F.; Lazar, A.N.; Coleman, A.W. Biochemistry of the para-sulfonato-calix[n]arenes. Chem. Commun. (Camb.), 2006, 23(23), 2425-2438.
[http://dx.doi.org/10.1039/b600720c] [PMID: 16758007]
[71]
Mokhtari, B.; Pourabdollah, K.; Dalali, N. Analytical applications of calixarenes from 2005 up-to-date. J. Incl. Phenom. Macrocycl. Chem., 2011, 69, 1-55.
[http://dx.doi.org/10.1007/s10847-010-9848-7]
[72]
Li, N.; Harrison, R.G.; Lamb, J.D. Application of resorcinarene derivatives in chemical separations. J. Incl. Phenom. Macrocycl. Chem., 2014, 78, 39-60.
[http://dx.doi.org/10.1007/s10847-013-0336-8]
[73]
Beyeh, N.K.; Jo, H.H.; Kolesnichenko, I.; Pan, F.; Kalenius, E.; Anslyn, E.V.; Ras, R.H.A.; Rissanen, K. Recognition of viologen derivatives in water by N-alkyl ammonium resorcinarene chlorides. J. Org. Chem., 2017, 82(10), 5198-5203.
[http://dx.doi.org/10.1021/acs.joc.7b00449] [PMID: 28452495]
[74]
Jose, T.; Cañellas, S.; Pericàs, M.A.; Kleij, A.W. Polystyrene-supported bifunctional resorcinarenes as cheap, metal-free and recyclable catalysts for epoxide/CO2 coupling reactions. Green Chem., 2017, 19, 5488-5493.
[http://dx.doi.org/10.1039/C7GC02856C]
[75]
Gangemi, C.M.A.; Pappalardo, A.; Sfrazzetto, G.T. Assembling of supramolecular capsules with resorcin[4]arene and calix[n]arene building blocks. Curr. Org. Chem., 2015, 19, 2281-2308.
[http://dx.doi.org/10.2174/1385272819666150608221916]
[76]
Gaeta, C.; Talotta, C.; De Rosa, M.; La Manna, P.; Soriente, A.; Neri, P. The hexameric resorcinarene capsule at work: supramolecular catalysis in confined spaces. Chemistry, 2019, 25(19), 4899-4913.
[http://dx.doi.org/10.1002/chem.201805206] [PMID: 30499615]
[77]
Beyeh, N.K.; Pan, F.; Valkonen, A.; Rissanen, K. Encapsulation of secondary and tertiary ammonium salts by resorcinarenes and pyrogallarenes: the effect of size and charge concentration. CrystEngComm, 2015, 17, 1182-1188.
[http://dx.doi.org/10.1039/C4CE01927J]
[78]
Christy, F.A.; Shah, P.A.; Shah, J.V.; Shah, B.A.; Shrivastav, P.S. Conductometric studies on complexation of Ag+ cation by C-thiophene calix[4]resorcinarene in pure and mixed non-aqueous solvent systems. J. Incl. Phenom. Macrocycl. Chem., 2015, 83, 343-353.
[http://dx.doi.org/10.1007/s10847-015-0570-3]
[79]
Helttunen, K.; Tero, T-R.; Nissinen, M. Influence of lower rim C-methyl group on crystal forms and metal complexation of resorcinarene bis-crown-5. CrystEngComm, 2015, 17, 3667-3676.
[http://dx.doi.org/10.1039/C5CE00311C]
[80]
Matsushita, Y.; Matsui, T. Synthesis of aminomethylated calix[4]resorcin-arenes. Tetrahedron Lett., 1993, 34, 7433-7436.
[http://dx.doi.org/10.1016/S0040-4039(00)60145-4]
[81]
Pashirova, T.N.; Lukashenko, S.S.; Kosacheva, E.M.; Leonova, M.V.; Vagapova, L.I.; Burilov, A.R.; Pudovik, M.A.; Kudryavtseva, L.A.; Konovalov, A.I. Aggregation behavior and catalytic properties of systems based on aminomethylated calix[4]resorcinarenes and poly(ethylene). Imines. Russ. J. Gen. Chem., 2008, 78, 402-409.
[http://dx.doi.org/10.1134/S1070363208030109]
[82]
Arnecke, R.; Böhmer, V.; Paulus, E.F.; Vogt, W. Regioselective formation of dissymmetric resorcarene derivatives with C4-symmetry. J. Am. Chem. Soc., 1995, 117, 3286-3287.
[http://dx.doi.org/10.1021/ja00116a039]
[83]
Schmidt, C.; Airola, K.; Böhmer, V.; Vogt, W.; Rissanen, K. Selective derivatisations of resorcarenes ring - 2. multiple regioselective ring closure reactions. Tetrahedron, 1997, 53, 17691-17698.
[http://dx.doi.org/10.1016/S0040-4020(97)10236-8]
[84]
Vagapova, L.I.; Burilov, A.R.; Pudovik, M.A. Mannich reaction involving calix[4]resorcinarenes and aminoacetals. Russ. J. Gen. Chem., 2010, 80, 475-477.
[http://dx.doi.org/10.1134/S1070363210030187]
[85]
Iwanek, W.; Wzorek, A. Introduction to the chirality of resorcinarenes. Mini Rev. Org. Chem., 2009, 6, 398-411.
[http://dx.doi.org/10.2174/157019309789371604]
[86]
Szumna, A.; Górski, M.; Lukin, O. Diastereoselective formation of cyclochiral amino acids-substituted resorcin[4]arenes. Tetrahedron Lett., 2005, 46, 7423-7426.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.113]
[87]
Szumna, A. Inherently chiral concave molecules--from synthesis to applications. Chem. Soc. Rev., 2010, 39(11), 4274-4285.
[http://dx.doi.org/10.1039/b919527k] [PMID: 20882239]
[88]
Klaes, M.; Neumann, B.; Stammler, H-G.; Mattay, J. Determination of the absolute configuration of inherently chiral resorc[4]arenes. Eur. J. Org. Chem., 2005, 2005, 864-868.
[http://dx.doi.org/10.1002/ejoc.200400614]
[89]
Böhmer, V.; Caccamese, S.; Principato, G.; Schmidt, C. Resolution of inherently chiral resorcarene derivatives by enantieselective HPLC. Tetrahedron Lett., 1999, 40, 5927-5930.
[http://dx.doi.org/10.1016/S0040-4039(99)01175-2]
[90]
Trapp, O.; Caccamese, S.; Schmidt, C.; Böhmer, V.; Schurig, V. Enantiomerization of an inherently chiral resorcarene derivative: determination of the interconversion barrier by computer simulation of the dynamic HPLC experiment. Tetrahedron Asymmetry, 2001, 12, 1395-1398.
[http://dx.doi.org/10.1016/S0957-4166(01)00246-4]
[91]
Arnecke, R.; Böhmer, V.; Friebe, S.; Gebauer, S.; Krauss, G.J.; Thondorf, I.; Vogt, W. Regio- and diastereoselective condensation of resorcarenes with primary amines and formaldehyde. Tetrahedron Lett., 1995, 36, 6221-6224.
[http://dx.doi.org/10.1016/0040-4039(95)01267-L]
[92]
Iwanek, W.; Mattay, J. Chiral calixarenes derived from resorcinol. Liebigs Ann., 1995, 1995, 1463-1466.
[http://dx.doi.org/10.1002/jlac.1995199508199]
[93]
El Gihani, M.T.E.; Heaney, H.; Slawin, A.M.Z. Highly diastereoselective functionalisation of calix[4]resorcinarene derivatives and acid catalysed epimerisation reactions. Tetrahedron Lett., 1995, 36, 4905-4908.
[http://dx.doi.org/10.1016/00404-0399(50)0882D-]
[94]
Airola, K.; Böhmer, V.; Paulus, E.F.; Rissanen, K.; Schmidt, C.; Thondorf, I.; Vogt, W. Selective derivatisation of resorcarenes: 1. The regioselective formation of tetra-benzoxazine derivatives. Tetrahedron, 1997, 53, 10709-10724.
[http://dx.doi.org/10.1016/S0040-4020(97)00685-6]
[95]
Page, P.C.B.; Heaney, H.; Sampler, E.P. The first enantioselective syntheses of axially chiral enantiomerically pure calix[4]resorcinarene derivatives. J. Am. Chem. Soc., 1999, 121, 6751-6752.
[http://dx.doi.org/10.1021/ja990819g]]
[96]
García, M.A.; Hernandez, O.S.; Martínez, G.M.; Klimova, E.; Klimova, T.; Flores, P.B.M.R. Synthesis of tetrabenzoxazines and their supramolecular complexes with fullerene C60. Fuller. Nanotub. Carbon Nanostruct., 2005, 13, 171-181.
[http://dx.doi.org/10.1081/FST-200050699]
[97]
Schmidt, C.; Paulus, E.F.; Böhmer, V.; Vogt, W. Selective derivatisation of resorcarenes: Part 7. The reason for the diastereoselectivity of Mannich reactions with chiral amines. New J. Chem., 2001, 25, 374-378.
[http://dx.doi.org/10.1039/b010210p]
[98]
Li, N.; Yang, F.; Stock, H.A.; Dearden, D.V.; Lamb, J.D.; Harrison, R.G. Resorcinarene-based cavitands with chiral amino acid substituents for chiral amine recognition. Org. Biomol. Chem., 2012, 10(36), 7392-7401.
[http://dx.doi.org/10.1039/c2ob25613d] [PMID: 22865201]
[99]
Li, N.; Allen, L.J.; Harrison, R.G.; Lamb, J.D. Transition metal cation separations with a resorcinarene-based amino acid stationary phase. Analyst (Lond.), 2013, 138(5), 1467-1474.
[http://dx.doi.org/10.1039/c2an36562f] [PMID: 23324944]
[100]
Kashapov, R.R.; Zakharova, L.Y.; Saifutdinova, M.N.; Kochergin, Y.S.; Gavrilova, E.L.; Sinyashin, O.G. Construction of a water-soluble form of amino acid C-methylcalix[4]resorcinarene. J. Mol. Liq., 2015, 208, 58-62.
[http://dx.doi.org/10.1016/j.molliq.2015.04.025]
[101]
Shahgaldian, P.; Pieles, U.; Hegner, M. Enantioselective recognition of phenylalanine by a chiral amphiphilic macrocycle at the air-water interface: a copper-mediated mechanism. Langmuir, 2005, 21(14), 6503-6507.
[http://dx.doi.org/10.1021/la0503101] [PMID: 15982059]
[102]
Dignam, C.F.; Richards, C.J.; Zopf, J.J.; Wacker, L.S.; Wenzel, T.J. An enantioselective NMR shift reagent for cationic aromatics. Org. Lett., 2005, 7(9), 1773-1776.
[http://dx.doi.org/10.1021/ol050355t] [PMID: 15844903]
[103]
Ehrler, S.; Pieles, U.; Wirth-Heller, A.; Shahgaldian, P. Surface modification of resorcinarene based self-assembled solid lipid nanoparticles for drug targeting. Chem. Commun. (Camb.), 2007, 2007(25), 2605-2607.
[http://dx.doi.org/10.1039/b703106h] [PMID: 17579752]
[104]
O’Farrell, C.M.; Chudomel, J.M.; Collins, J.M.; Dignam, C.F.; Wenzel, T.J. Water-soluble calix[4]resorcinarenes with hydroxyproline groups as chiral NMR solvating agents. J. Org. Chem., 2008, 73(7), 2843-2851.
[http://dx.doi.org/10.1021/jo702751z] [PMID: 18336044]
[105]
Iwanek, W.; Stefanska, K.; Szumna, A.; Wierzbicki, M. Inherently chiral heterocyclic resorcinarenes usin a Diels-Alder reaction. RSC Advances, 2016, 6, 13027.
[http://dx.doi.org/10.1039/C5RA26106F]
[106]
Kashapov, R.R.; Pashirova, T.N.; Zhiltsova, E.P.; Lukashenko, S.S.; Ziganshina, A.Y.; Zakharova, L.Y. Supramolecular systems based on aminomethylated calix [4]resorcinarene and a cationic surfactant: catalysts of the hydrolysis of esters of phosphorus acids. Russ. J. Phys. Chem. A, 2012, 86, 200-204.
[http://dx.doi.org/10.1134/S003602441201013X]
[107]
Pietraszkiewicz, M.; Prus, P.; Fabianowski, W. Chiral recognition studies of amino acids by chiral calix[4]resorcinarenes in langmuir films. Mol. Recognit. Incl., 1998, 463-466.
[108]
Prus, P.; Pietraszkiewicz, M.; Bilewicz, R. Monolayers of chiral calix[4]resorcinarenes: surface pressure and surface potential studies. Supramol. Chem., 1998, 10, 17-25.
[http://dx.doi.org/10.1080/10610279808054979]
[109]
Wiegmann, S.; Fukuhara, G.; Neumann, B.; Stammler, H.; Inoue, Y.; Mattay, J. Inherently chiral resorcin[4]arenes with urea and amide side arms: synthesis, structure and chiral recognition. Eur. J. Org. Chem., 2013, 2013, 1240-1245.
[http://dx.doi.org/10.1002/ejoc.201201272]
[110]
Kharlamov, S.V.; Kashapov, R.R.; Pashirova, T.N.; Zhiltsova, E.P.; Lukashenko, S.S.; Ziganshina, A.Y.; Gubaidullin, A.T.; Zakharova, L.Y.; Gruner, M.; Habicher, W.D.; Konovalov, A.I. A supramolecular amphiphile based on calix[4]resorcinarene and cationic surfactant for controlled self-assembly. J. Phys. Chem. C, 2013, 117, 20280-20288.
[http://dx.doi.org/10.1021/jp406643g]
[111]
Gaynanova, G.A.; Bekmukhametova, A.M.; Kashapov, R.R.; Ziganshina, A.Y.; Zakharova, L.Y. Superamphiphilic nanocontainers based on the resorcinarene - cationic surfactant system: synergetic self-assembling behavior. Chem. Phys. Lett., 2016, 652, 190-194.
[http://dx.doi.org/10.1016/j.cplett.2016.04.021]
[112]
Gaynanova, G.A.; Bekmukhametova, A.M.; Mukhitova, R.K.; Kharlamov, S.V.; Ziganshina, A.Y.; Zakharova, L.Y.; Konovalov, A.I. Pyrene fluorescence quenching in supramolecular systems based on dimethylaminomethylated resorcinarene. J. Mol. Liq. J., 2015, 206, 316-320.
[http://dx.doi.org/10.1016/j.molliq.2015.02.025]
[113]
Pham, N.H.; Wenzel, T.J. A water-soluble calix[4]resorcinarene with α-methyl-L-prolinylmethyl groups as a chiral NMR solvating agent. J. Org. Chem., 2011, 76(3), 986-989.
[http://dx.doi.org/10.1021/jo102197w] [PMID: 21204543]
[114]
Wenzel, T.J. Calixarenes and calix[4]resorcinarenes as chiral NMR solvating agents. J. Incl. Phenom. Macrocycl. Chem., 2014, 78, 1-14.
[http://dx.doi.org/10.1007/s10847-013-0325-y]
[115]
Russo, M.; Lo Meo, P. Binding abilities of a chiral calix[4]resorcinarene: a polarimetric investigation on a complex case of study. Beilstein J. Org. Chem., 2017, 13, 2698-2709.
[http://dx.doi.org/10.3762/bjoc.13.268] [PMID: 29564007]
[116]
Li, L.; Sun, J.; Zhang, L-L.; Yao, R.; Yan, C-G. Crystal structure and fluorescence sensing properties of tetramethoxyresorcinarene functionalized Schiff bases. J. Mol. Struct., 2015, 1081, 355-361.
[http://dx.doi.org/10.1016/j.molstruc.2014.10.064]
[117]
Sobhana, M.; Divya, T.; Anuja, E.V.; Kumar, K.G. Manganese(II) -selective potentiometric sensor based on calix[4]resorcinarene in PVC matrix. Front. Sensors, 2013, 1, 74-80.
[118]
Iwanek, W.; Fröhlich, R.; Schwab, P.; Schurig, V. The synthesis and crystallographic structures of novel bora-oxazino-oxazolidine derivatives of resorcarene. Chem. Commun. (Camb.), 2002, 2002(21), 2516-2517.
[http://dx.doi.org/10.1039/B206188K]
[119]
Biros, S.M.; Rebek, J. Structure and binding properties of water-soluble cavitands and capsules. Chem. Soc. Rev., 2007, 36(1), 93-104.
[http://dx.doi.org/10.1039/B508530F] [PMID: 17173148]
[120]
Kazakova, E.K.; Ziganshina, A.U.; Muslinkina, L.A.; Morozova, J.E.; Makarova, N.A.; Mustafina, A.R.; Habicher, W.D. The complexation properties of the water-soluble tetrasulfonatomethylcalix[4]resorcinarene toward α-aminoacids. J. Incl. Phenom. Macrocycl. Chem., 2002, 43, 65-69.
[http://dx.doi.org/10.1023/A:1020404220640]
[121]
Mishra, D.R.; Darjee, S.M.; Bhatt, K.D.; Modi, K.M.; Jain, V.K. Calix protected gold nanobeacon as turn-off fluorescent sensor for phenylalanine. J. Incl. Phenom. Macrocycl. Chem., 2015, 82, 425-436.
[http://dx.doi.org/10.1007/s10847-015-0509-8]
[122]
Makwana, B.A.; Vyas, D.J.; Bhatt, K.D.; Jain, V.K. Selective sensing of copper (II) and leucine using fluorescent turn on - off mechanism from calix[4]resorcinarene modified gold nanoparticles. Sens. Actuators B Chem., 2017, 240, 278-287.
[http://dx.doi.org/10.1016/j.snb.2016.08.128]
[123]
Pinalli, R.; Brancatelli, G.; Pedrini, A.; Menozzi, D.; Hernández, D.; Ballester, P.; Geremia, S.; Dalcanale, E. The origin of selectivity in the complexation of N-methyl amino acids by tetraphosphonate cavitands. J. Am. Chem. Soc., 2016, 138(27), 8569-8580.
[http://dx.doi.org/10.1021/jacs.6b04372] [PMID: 27310660]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy