Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Non-Histone Arginine Methylation by Protein Arginine Methyltransferases

Author(s): Ayad A. Al-Hamashi, Krystal Diaz and Rong Huang*

Volume 21, Issue 7, 2020

Page: [699 - 712] Pages: 14

DOI: 10.2174/1389203721666200507091952

Price: $65

Abstract

Protein arginine methyltransferase (PRMT) enzymes play a crucial role in RNA splicing, DNA damage repair, cell signaling, and differentiation. Arginine methylation is a prominent posttransitional modification of histones and various non-histone proteins that can either activate or repress gene expression. The aberrant expression of PRMTs has been linked to multiple abnormalities, notably cancer. Herein, we review a number of non-histone protein substrates for all nine members of human PRMTs and how PRMT-mediated non-histone arginine methylation modulates various diseases. Additionally, we highlight the most recent clinical studies for several PRMT inhibitors.

Keywords: PRMT, arginine methylation, non-histone protein, PRMT inhibitor, cancer, epigenetic modifications.

Graphical Abstract
[1]
Dawson, M.A.; Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell, 2012, 150(1), 12-27.
[http://dx.doi.org/10.1016/j.cell.2012.06.013] [PMID: 22770212]
[2]
Johann, P.D.; Erkek, S.; Zapatka, M.; Kerl, K.; Buchhalter, I.; Hovestadt, V.; Jones, D.T.W.; Sturm, D.; Hermann, C.; Segura Wang, M.; Korshunov, A.; Rhyzova, M.; Gröbner, S.; Brabetz, S.; Chavez, L.; Bens, S.; Gröschel, S.; Kratochwil, F.; Wittmann, A.; Sieber, L.; Geörg, C.; Wolf, S.; Beck, K.; Oyen, F.; Capper, D.; van Sluis, P.; Volckmann, R.; Koster, J.; Versteeg, R.; von Deimling, A.; Milde, T.; Witt, O.; Kulozik, A.E.; Ebinger, M.; Shalaby, T.; Grotzer, M.; Sumerauer, D.; Zamecnik, J.; Mora, J.; Jabado, N.; Taylor, M.D.; Huang, A.; Aronica, E.; Bertoni, A.; Radlwimmer, B.; Pietsch, T.; Schüller, U.; Schneppenheim, R.; Northcott, P.A.; Korbel, J.O.; Siebert, R.; Frühwald, M.C.; Lichter, P.; Eils, R.; Gajjar, A.; Hasselblatt, M.; Pfister, S.M.; Kool, M. Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer Cell, 2016, 29(3), 379-393.
[http://dx.doi.org/10.1016/j.ccell.2016.02.001] [PMID: 26923874]
[3]
Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov., 2014, 13(9), 673-691.
[http://dx.doi.org/10.1038/nrd4360] [PMID: 25131830]
[4]
Kelly, W.K.; O’Connor, O.A.; Krug, L.M.; Chiao, J.H.; Heaney, M.; Curley, T.; MacGregore-Cortelli, B.; Tong, W.; Secrist, J.P.; Schwartz, L.; Richardson, S.; Chu, E.; Olgac, S.; Marks, P.A.; Scher, H.; Richon, V.M.; Phase, I. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol., 2005, 23(17), 3923-3931.
[http://dx.doi.org/10.1200/JCO.2005.14.167] [PMID: 15897550]
[5]
VanderMolen, K.M.; McCulloch, W.; Pearce, C.J.; Oberlies, N.H. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J. Antibiot. (Tokyo), 2011, 64(8), 525-531.
[http://dx.doi.org/10.1038/ja.2011.35] [PMID: 21587264]
[6]
Campbell, P.; Thomas, C.M. Belinostat for the Treatment of Relapsed or Refractory Peripheral T-Cell Lymphoma. J. Oncol. Pharm. Pract., 2016, 7, 209-218.
[PMID: 26921086]
[7]
Garnock-Jones, K.P. Panobinostat: first global approval. Drugs, 2015, 75(6), 695-704.
[http://dx.doi.org/10.1007/s40265-015-0388-8] [PMID: 25837990]
[8]
Jahan, S.; Davie, J.R. Protein arginine methyltransferases (PRMTs): role in chromatin organization. Adv. Biol. Regul., 2015, 57, 173-184.
[http://dx.doi.org/10.1016/j.jbior.2014.09.003] [PMID: 25263650]
[9]
Jarrold, J.; Davies, C.C. PRMTs and Arginine Methylation : Cancer’s Best-Kept Secret? Trends Mol. Med., 2019, 1-16. just accep
[10]
Yang, Y.; Bedford, M.T. Protein Arginine Methyltransferases and Cancer. Nat. Rev. Cancer, 2013, 13(1), 37-50.
[PMID: 23235912]
[11]
Matsuguma, K.; Ueda, S.; Yamagishi, S.; Matsumoto, Y.; Kaneyuki, U.; Shibata, R.; Fujimura, T.; Matsuoka, H.; Kimoto, M.; Kato, S.; Imaizumi, T.; Okuda, S. Molecular mechanism for elevation of asymmetric dimethylarginine and its role for hypertension in chronic kidney disease. J. Am. Soc. Nephrol., 2006, 17(8), 2176-2183.
[http://dx.doi.org/10.1681/ASN.2005121379] [PMID: 16807406]
[12]
Parry, R.V.; Ward, S.G. Protein arginine methylation: a new handle on T lymphocytes? Trends Immunol., 2010, 31(4), 164-169.
[http://dx.doi.org/10.1016/j.it.2010.01.006] [PMID: 20181528]
[13]
Han, H.S.; Choi, D.; Choi, S.; Koo, S.H. Roles of protein arginine methyltransferases in the control of glucose metabolism. Endocrinol. Metab. (Seoul), 2014, 29(4), 435-440.
[http://dx.doi.org/10.3803/EnM.2014.29.4.435] [PMID: 25559572]
[14]
Huang, L.; Liu, J.; Zhang, X.O.; Sibley, K.; Najjar, S.M.; Lee, M.M.; Wu, Q. Inhibition of protein arginine methyltransferase 5 enhances hepatic mitochondrial biogenesis. J. Biol. Chem., 2018, 293(28), 10884-10894.
[http://dx.doi.org/10.1074/jbc.RA118.002377] [PMID: 29773653]
[15]
Iwasaki, H. Impaired PRMT1 activity in the liver and pancreas of type 2 diabetic Goto-Kakizaki rats. Life Sci., 2009, 85(3-4), 161-166.
[http://dx.doi.org/10.1016/j.lfs.2009.05.007] [PMID: 19467247]
[16]
Schapira, M.; Ferreira de Freitas, R. Structural biology and chemistry of protein arginine methyltransferases. MedChemComm, 2014, 5(12), 1779-1788.
[http://dx.doi.org/10.1039/C4MD00269E] [PMID: 26693001]
[17]
Hasegawa, M.; Toma-Fukai, S.; Kim, J.D.; Fukamizu, A.; Shimizu, T. Protein arginine methyltransferase 7 has a novel homodimer-like structure formed by tandem repeats. FEBS Lett., 2014, 588(10), 1942-1948.
[http://dx.doi.org/10.1016/j.febslet.2014.03.053] [PMID: 24726727]
[18]
Shishkova, E.; Zeng, H.; Liu, F.; Kwiecien, N.W.; Hebert, A.S.; Coon, J.J.; Xu, W. Global mapping of CARM1 substrates defines enzyme specificity and substrate recognition. Nat. Commun., 2017, 8, 15571.
[http://dx.doi.org/10.1038/ncomms15571] [PMID: 28537268]
[19]
Morales, Y.; Cáceres, T.; May, K.; Hevel, J.M. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch. Biochem. Biophys., 2016, 590, 138-152.
[http://dx.doi.org/10.1016/j.abb.2015.11.030] [PMID: 26612103]
[20]
Osborne, T.C.; Obianyo, O.; Zhang, X.; Cheng, X.; Thompson, P.R. Protein arginine methyltransferase 1: positively charged residues in substrate peptides distal to the site of methylation are important for substrate binding and catalysis. Biochemistry, 2007, 46(46), 13370-13381.
[http://dx.doi.org/10.1021/bi701558t] [PMID: 17960915]
[21]
Wang, M.; Xu, R-M.; Thompson, P.R. Substrate specificity, processivity, and kinetic mechanism of protein arginine methyltransferase 5. Biochemistry, 2013, 52(32), 5430-5440.
[http://dx.doi.org/10.1021/bi4005123] [PMID: 23866019]
[22]
Cheng, D.; Côté, J.; Shaaban, S.; Bedford, M.T. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol. Cell, 2007, 25(1), 71-83.
[http://dx.doi.org/10.1016/j.molcel.2006.11.019] [PMID: 17218272]
[23]
Feng, Y.; Maity, R.; Whitelegge, J.P.; Hadjikyriacou, A.; Li, Z.; Zurita-Lopez, C.; Al-Hadid, Q.; Clark, A.T.; Bedford, M.T.; Masson, J.Y.; Clarke, S.G. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J. Biol. Chem., 2013, 288(52), 37010-37025.
[http://dx.doi.org/10.1074/jbc.M113.525345] [PMID: 24247247]
[24]
Yang, Y.; Hadjikyriacou, A.; Xia, Z.; Gayatri, S.; Kim, D.; Zurita-Lopez, C.; Kelly, R.; Guo, A.; Li, W.; Clarke, S.G.; Bedford, M.T. PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145. Nat. Commun., 2015, 6, 6428.
[http://dx.doi.org/10.1038/ncomms7428] [PMID: 25737013]
[25]
Fulton, M.D.; Brown, T.; Zheng, Y.G. Mechanisms and Inhibitors of Histone Arginine Methylation. Chem. Rec., 2018, 18(12), 1792-1807.
[http://dx.doi.org/10.1002/tcr.201800082] [PMID: 30230223]
[26]
Kölbel, K.; Ihling, C.; Bellmann-Sickert, K.; Neundorf, I.; Beck-Sickinger, A.G.; Sinz, A.; Kühn, U.; Wahle, E.; Type, I.; Type, I. Arginine Methyltransferases PRMT1 and PRMT-3 Act Distributively. J. Biol. Chem., 2009, 284(13), 8274-8282.
[http://dx.doi.org/10.1074/jbc.M809547200] [PMID: 19158082]
[27]
Wang, M.; Fuhrmann, J.; Thompson, P.R. Protein arginine methyltransferase 5 catalyzes substrate dimethylation in a distributive fashion. Biochemistry, 2014, 53(50), 7884-7892.
[http://dx.doi.org/10.1021/bi501279g] [PMID: 25485739]
[28]
Guo, H.; Wang, R.; Zheng, W.; Chen, Y.; Blum, G.; Deng, H.; Luo, M. Profiling substrates of protein arginine N-methyltransferase 3 with S-adenosyl-L-methionine analogues. ACS Chem. Biol., 2014, 9(2), 476-484.
[http://dx.doi.org/10.1021/cb4008259] [PMID: 24320160]
[29]
Musiani, D.; Bok, J.; Massignani, E.; Wu, L.; Tabaglio, T.; Ippolito, M.R.; Cuomo, A.; Ozbek, U.; Zorgati, H.; Ghoshdastider, U.; Robinson, R.C.; Guccione, E.; Bonaldi, T. Proteomics profiling of arginine methylation defines PRMT5 substrate specificity. Sci. Signal., 2019, 12(575)eaat8388
[http://dx.doi.org/10.1126/scisignal.aat8388] [PMID: 30940768]
[30]
Obianyo, O.; Causey, C.P.; Jones, J.E.; Thompson, P.R. Activity-based protein profiling of protein arginine methyltransferase 1. ACS Chem. Biol., 2011, 6(10), 1127-1135.
[http://dx.doi.org/10.1021/cb2001473] [PMID: 21838253]
[31]
Lim, Y.; Kwon, Y.H.; Won, N.H.; Min, B.H.; Park, I.S.; Paik, W.K.; Kim, S. Multimerization of expressed protein-arginine methyltransferases during the growth and differentiation of rat liver. Biochim. Biophys. Acta, 2005, 1723(1-3), 240-247.
[http://dx.doi.org/10.1016/j.bbagen.2005.02.015] [PMID: 15837430]
[32]
Gui, S.; Wooderchak, W.L.; Daly, M.P.; Porter, P.J.; Johnson, S.J.; Hevel, J.M. Investigation of the molecular origins of protein-arginine methyltransferase I (PRMT1) product specificity reveals a role for two conserved methionine residues. J. Biol. Chem., 2011, 286(33), 29118-29126.
[http://dx.doi.org/10.1074/jbc.M111.224097] [PMID: 21697082]
[33]
Rust, H.L.; Zurita-Lopez, C.I.; Clarke, S.; Thompson, P.R. Mechanistic studies on transcriptional coactivator protein arginine methyltransferase 1. Biochemistry, 2011, 50(16), 3332-3345.
[http://dx.doi.org/10.1021/bi102022e] [PMID: 21417440]
[34]
Gui, S.; Gathiaka, S.; Li, J.; Qu, J.; Acevedo, O.; Hevel, J.M. A remodeled protein arginine methyltransferase 1 (PRMT1) generates symmetric dimethylarginine. J. Biol. Chem., 2014, 289(13), 9320-9327.
[http://dx.doi.org/10.1074/jbc.M113.535278] [PMID: 24478314]
[35]
Avasarala, S.; Van Scoyk, M.; Karuppusamy Rathinam, M.K.; Zerayesus, S.; Zhao, X.; Zhang, W.; Pergande, M.R.; Borgia, J.A.; DeGregori, J.; Port, J.D.; Winn, R.A.; Bikkavilli, R.K. PRMT1 Is a Novel Regulator of Epithelial-Mesenchymal-Transition in Non-small Cell Lung Cancer. J. Biol. Chem., 2015, 290(21), 13479-13489.
[http://dx.doi.org/10.1074/jbc.M114.636050] [PMID: 25847239]
[36]
Jobert, L.; Argentini, M.; Tora, L. PRMT1 mediated methylation of TAF15 is required for its positive gene regulatory function. Exp. Cell Res., 2009, 315(7), 1273-1286.
[http://dx.doi.org/10.1016/j.yexcr.2008.12.008] [PMID: 19124016]
[37]
Mizutani, S.; Yoshida, T.; Zhao, X.; Nimer, S.D.; Taniwaki, M.; Okuda, T. Loss of RUNX1/AML1 arginine-methylation impairs peripheral T cell homeostasis. Br. J. Haematol., 2015, 170(6), 859-873.
[http://dx.doi.org/10.1111/bjh.13499] [PMID: 26010396]
[38]
Yamagata, K.; Daitoku, H.; Takahashi, Y.; Namiki, K.; Hisatake, K.; Kako, K.; Mukai, H.; Kasuya, Y.; Fukamizu, A. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol. Cell, 2008, 32(2), 221-231.
[http://dx.doi.org/10.1016/j.molcel.2008.09.013] [PMID: 18951090]
[39]
Roworth, A.P.; Carr, S.M.; Liu, G.; Barczak, W.; Miller, R.L.; Munro, S.; Kanapin, A.; Samsonova, A.; La Thangue, N.B. Arginine methylation expands the regulatory mechanisms and extends the genomic landscape under E2F control. Sci. Adv., 2019, 5(6)eaaw4640
[http://dx.doi.org/10.1126/sciadv.aaw4640] [PMID: 31249870]
[40]
Liu, L-M.; Sun, W-Z.; Fan, X-Z.; Xu, Y-L.; Cheng, M-B.; Zhang, Y. Methylation of C/EBPα by PRMT1 Inhibits Its Tumor-Suppressive Function in Breast Cancer. Cancer Res., 2019, 79, 2865-2877.
[41]
Inamitsu, M.; Itoh, S.; Hellman, U.; Ten Dijke, P.; Kato, M. Methylation of Smad6 by protein arginine N-methyltransferase 1. FEBS Lett., 2006, 580(28-29), 6603-6611.
[http://dx.doi.org/10.1016/j.febslet.2006.11.008] [PMID: 17118358]
[42]
Katsuno, Y.; Qin, J.; Oses-Prieto, J.; Wang, H.; Jackson-Weaver, O.; Zhang, T.; Lamouille, S.; Wu, J.; Burlingame, A.; Xu, J.; Derynck, R. Arginine methylation of SMAD7 by PRMT1 in TGF-β-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J. Biol. Chem., 2018, 293(34), 13059-13072.
[http://dx.doi.org/10.1074/jbc.RA118.002027] [PMID: 29907569]
[43]
Wooderchak, W.L.; Zang, T.; Zhou, Z.S.; Acuña, M.; Tahara, S.M.; Hevel, J.M. Substrate profiling of PRMT1 reveals amino acid sequences that extend beyond the “RGG” paradigm. Biochemistry, 2008, 47(36), 9456-9466.
[http://dx.doi.org/10.1021/bi800984s] [PMID: 18700728]
[44]
Fronz, K.; Otto, S.; Kölbel, K.; Kühn, U.; Friedrich, H.; Schierhorn, A.; Beck-Sickinger, A.G.; Ostareck-Lederer, A.; Wahle, E. Promiscuous modification of the nuclear poly(A)-binding protein by multiple protein-arginine methyltransferases does not affect the aggregation behavior. J. Biol. Chem., 2008, 283(29), 20408-20420.
[http://dx.doi.org/10.1074/jbc.M802329200] [PMID: 18495660]
[45]
Kim, C.; Lim, Y.; Yoo, B.C.; Won, N.H.; Kim, S.; Kim, G. Regulation of post-translational protein arginine methylation during HeLa cell cycle. Biochim. Biophys. Acta, 2010, 1800(9), 977-985.
[http://dx.doi.org/10.1016/j.bbagen.2010.06.004] [PMID: 20541591]
[46]
Yu, J.; Shin, B.; Park, E.S.; Yang, S.; Choi, S.; Kang, M.; Rho, J. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation. Biochem. Biophys. Res. Commun., 2010, 391(1), 322-328.
[http://dx.doi.org/10.1016/j.bbrc.2009.11.057] [PMID: 19913501]
[47]
Boisvert, F.M.; Rhie, A.; Richard, S.; Doherty, A.J. The GAR motif of 53BP1 is arginine methylated by PRMT1 and is necessary for 53BP1 DNA binding activity. Cell Cycle, 2005, 4(12), 1834-1841.
[http://dx.doi.org/10.4161/cc.4.12.2250] [PMID: 16294045]
[48]
Boisvert, F.M.; Déry, U.; Masson, J.Y.; Richard, S. Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control. Genes Dev., 2005, 19(6), 671-676.
[http://dx.doi.org/10.1101/gad.1279805] [PMID: 15741314]
[49]
Guendel, I.; Carpio, L.; Pedati, C.; Schwartz, A.; Teal, C.; Kashanchi, F.; Kehn-Hall, K. Methylation of the tumor suppressor protein, BRCA1, influences its transcriptional cofactor function. PLoS One, 2010, 5(6)e11379
[http://dx.doi.org/10.1371/journal.pone.0011379] [PMID: 20614009]
[50]
Huang, L.; Wang, Z.; Narayanan, N.; Yang, Y. Arginine methylation of the C-terminus RGG motif promotes TOP3B topoisomerase activity and stress granule localization. Nucleic Acids Res., 2018, 46(6), 3061-3074.
[http://dx.doi.org/10.1093/nar/gky103] [PMID: 29471495]
[51]
Le Romancer, M.; Treilleux, I.; Leconte, N.; Robin-Lespinasse, Y.; Sentis, S.; Bouchekioua-Bouzaghou, K.; Goddard, S.; Gobert-Gosse, S.; Corbo, L. Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol. Cell, 2008, 31(2), 212-221.
[http://dx.doi.org/10.1016/j.molcel.2008.05.025] [PMID: 18657504]
[52]
Nakai, K.; Xia, W.; Liao, H.W.; Saito, M. Mien-chie Hung, M.C.; Yamaguchi, H. The Role of PRMT1 in EGFR Methylation and Signaling in MDA-MB-468 Triple-Negative Breast Cancer Cells. Breast Cancer, 2017, 7, 2587-2599.
[53]
Zou, Y.; Webb, K.; Perna, A.D.; Zhang, Q.; Clarke, S.; Wang, Y. A mass spectrometric study on the in vitro methylation of HMGA1a and HMGA1b proteins by PRMTs: methylation specificity, the effect of binding to AT-rich duplex DNA, and the effect of C-terminal phosphorylation. Biochemistry, 2007, 46(26), 7896-7906.
[http://dx.doi.org/10.1021/bi6024897] [PMID: 17550233]
[54]
Cha, B.; Park, Y.; Hwang, B.N.; Kim, S.Y.; Jho, E.H. Protein Arginine Methyltransferase 1 Methylates Smurf2. Mol. Cells, 2015, 38(8), 723-728.
[http://dx.doi.org/10.14348/molcells.2015.0113] [PMID: 26126536]
[55]
Albrecht, L.V.; Zhang, L.; Shabanowitz, J.; Purevjav, E.; Towbin, J.A.; Hunt, D.F.; Green, K.J. GSK3- and PRMT-1-dependent modifications of desmoplakin control desmoplakin-cytoskeleton dynamics. J. Cell Biol., 2015, 208(5), 597-612.
[http://dx.doi.org/10.1083/jcb.201406020] [PMID: 25733715]
[56]
Zhu, Y.; He, X.; Lin, Y-C.; Dong, H.; Zhang, L.; Chen, X.; Wang, Z.; Shen, Y.; Li, M.; Wang, H.; Sun, J.; Nguyen, L.X.; Zhang, H.; Jiang, W.; Yang, Y.; Chen, J.; Müschen, M.; Chen, C.W.; Konopleva, M.Y.; Sun, W.; Jin, J.; Carlesso, N.; Marcucci, G.; Luo, Y.; Li, L. Targeting PRMT1-Mediated FLT3 Methylation Disrupts Maintenance of MLL- Rearranged Acute Lymphoblastic Leukemia. Blood, 2019, 134(15), 1257-1268.
[57]
Zhao, Z.; Rahman, M.A.; Chen, Z.G.; Shin, D.M. Multiple biological functions of Twist1 in various cancers. Oncotarget, 2017, 8(12), 20380-20393.
[http://dx.doi.org/10.18632/oncotarget.14608] [PMID: 28099910]
[58]
Choi, D.; Oh, K.J.; Han, H.S.; Yoon, Y.S.; Jung, C.Y.; Kim, S.T.; Koo, S.H. Protein arginine methyltransferase 1 regulates hepatic glucose production in a FoxO1-dependent manner. Hepatology, 2012, 56(4), 1546-1556.
[http://dx.doi.org/10.1002/hep.25809] [PMID: 22532369]
[59]
Fronz, K.; Güttinger, S.; Burkert, K.; Kühn, U.; Stöhr, N.; Schierhorn, A.; Wahle, E. Arginine methylation of the nuclear poly(a) binding protein weakens the interaction with its nuclear import receptor, transportin. J. Biol. Chem., 2011, 286(38), 32986-32994.
[http://dx.doi.org/10.1074/jbc.M111.273912] [PMID: 21808065]
[60]
Choi, H.J.; Weis, W.I. Purification and Structural Analysis of Desmoplakin. Methods Enzymol., 2016, 569, 197-213.
[http://dx.doi.org/10.1016/bs.mie.2015.05.006] [PMID: 26778560]
[61]
Poulard, C.; Treilleux, I.; Lavergne, E.; Bouchekioua-Bouzaghou, K.; Goddard-Léon, S.; Chabaud, S.; Trédan, O.; Corbo, L.; Le Romancer, M. Activation of rapid oestrogen signalling in aggressive human breast cancers. EMBO Mol. Med., 2012, 4(11), 1200-1213.
[http://dx.doi.org/10.1002/emmm.201201615] [PMID: 23065768]
[62]
Liao, H.W.; Hsu, J.M.; Xia, W.; Wang, H.L.; Wang, Y.N.; Chang, W.C.; Arold, S.T.; Chou, C.K.; Tsou, P.H.; Yamaguchi, H.; Fang, Y.F.; Lee, H.J.; Lee, H.H.; Tai, S.K.; Yang, M.H.; Morelli, M.P.; Sen, M.; Ladbury, J.E.; Chen, C.H.; Grandis, J.R.; Kopetz, S.; Hung, M.C. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response. J. Clin. Invest., 2015, 125(12), 4529-4543.
[http://dx.doi.org/10.1172/JCI82826] [PMID: 26571401]
[63]
Zhu, Y.; He, X.; Dong, H.; Sun, J.; Wang, H.; Zhang, L.; Miao, Y.; Jin, J.; Shen, Y.; Chen, J.; Muschen, M.; Chen, C-W.; Konopleva, M.Y.; Sun, W.; Zhang, B.; Kuo, Y-H.; Carlesso, N.; Marcucci, G.; Li, L. Inhibition of PRMT1 Mediated FLT3 Arginine Methylation as a Potent Therapeutic Strategy for MLL-r ALL. Blood, 2018, 132, 892-892.
[http://dx.doi.org/10.1182/blood-2018-99-115139]
[64]
Kzhyshkowska, J.; Schütt, H.; Liss, M.; Kremmer, E.; Stauber, R.; Wolf, H.; Dobner, T. Heterogeneous nuclear ribonucleoprotein E1B-AP5 is methylated in its Arg-Gly-Gly (RGG) box and interacts with human arginine methyltransferase HRMT1L1. Biochem. J., 2001, 358(Pt 2), 305-314.
[http://dx.doi.org/10.1042/bj3580305] [PMID: 11513728]
[65]
Yoshimoto, T.; Boehm, M.; Olive, M.; Crook, M.F.; San, H.; Langenickel, T.; Nabel, E.G. The arginine methyltransferase PRMT2 binds RB and regulates E2F function. Exp. Cell Res., 2006, 312(11), 2040-2053.
[http://dx.doi.org/10.1016/j.yexcr.2006.03.001] [PMID: 16616919]
[66]
Tang, J.; Gary, J.D.; Clarke, S.; Herschman, H.R. PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J. Biol. Chem., 1998, 273(27), 16935-16945.
[http://dx.doi.org/10.1074/jbc.273.27.16935] [PMID: 9642256]
[67]
Frankel, A.; Clarke, S.; Frankel, A.; Clarke, S. PRMT3 is a distinct member of the protein arginine N-methyltransferase family. Conferral of substrate specificity by a zinc-finger domain. J. Biol. Chem., 2000, 275(42), 32974-32982.
[http://dx.doi.org/10.1074/jbc.M006445200] [PMID: 10931850]
[68]
Swiercz, R.; Person, M.D.; Bedford, M.T. Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3). Biochem. J., 2005, 386(Pt 1), 85-91.
[http://dx.doi.org/10.1042/BJ20041466] [PMID: 15473865]
[69]
Hsu, M.C.; Pan, M.R.; Chu, P.Y.; Tsai, Y.L.; Tsai, C.H.; Shan, Y.S.; Chen, L.T.; Hung, W.C. Protein Arginine Methyltransferase 3 Enhances Chemoresistance in Pancreatic Cancer by Methylating hnRNPA1 to Increase ABCG2 Expression. Cancers (Basel), 2018, 11(1), 1-18.
[http://dx.doi.org/10.3390/cancers11010008] [PMID: 30577570]
[70]
Xu, W.; Chen, H.; Du, K.; Asahara, H.; Tini, M.; Emerson, B.M.; Montminy, M.; Evans, R.M. A transcriptional switch mediated by cofactor methylation. Science, 2001, 294(5551), 2507-2511.
[http://dx.doi.org/10.1126/science.1065961] [PMID: 11701890]
[71]
Wang, L.; Zhao, Z.; Meyer, M.B.; Saha, S.; Yu, M.; Guo, A.; Wisinski, K.B.; Huang, W.; Cai, W.; Pike, J.W.; Yuan, M.; Ahlquist, P.; Xu, W. CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell, 2014, 25(1), 21-36.
[http://dx.doi.org/10.1016/j.ccr.2013.12.007] [PMID: 24434208]
[72]
Feng, Q.; Yi, P.; Wong, J.; O’Malley, B.W. Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol. Cell. Biol., 2006, 26(21), 7846-7857.
[http://dx.doi.org/10.1128/MCB.00568-06] [PMID: 16923966]
[73]
Cheng, D.; Vemulapalli, V.; Lu, Y.; Shen, J.; Aoyagi, S.; Fry, C.J.; Yang, Y.; Foulds, C.E.; Stossi, F.; Treviño, L.S.; Mancini, M.A.; O’Malley, B.W.; Walker, C.L.; Boyer, T.G.; Bedford, M.T. CARM1 methylates MED12 to regulate its RNA-binding ability. Life Sci Alliance, 2018, 1(5)e201800117
[http://dx.doi.org/10.26508/lsa.201800117] [PMID: 30456381]
[74]
Lee, J.; Bedford, M.T. PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays. EMBO Rep., 2002, 3(3), 268-273.
[http://dx.doi.org/10.1093/embo-reports/kvf052] [PMID: 11850402]
[75]
Li, H.; Park, S.; Kilburn, B.; Jelinek, M.A.; Henschen-Edman, A.; Aswad, D.W.; Stallcup, M.R.; Laird-Offringa, I.A. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J. Biol. Chem., 2002, 277(47), 44623-44630.
[http://dx.doi.org/10.1074/jbc.M206187200] [PMID: 12237300]
[76]
Zhong, X.Y.; Yuan, X.M.; Xu, Y.Y.; Yin, M.; Yan, W.W.; Zou, S.W.; Wei, L.M.; Lu, H.J.; Wang, Y.P.; Lei, Q.Y. CARM1 Methylates GAPDH to Regulate Glucose Metabolism and Is Suppressed in Liver Cancer. Cell Rep., 2018, 24(12), 3207-3223.
[http://dx.doi.org/10.1016/j.celrep.2018.08.066] [PMID: 30232003]
[77]
Singhroy, D.N.; Mesplède, T.; Sabbah, A.; Quashie, P.K.; Falgueyret, J.P.; Wainberg, M.A. Automethylation of protein arginine methyltransferase 6 (PRMT6) regulates its stability and its anti-HIV-1 activity. Retrovirology, 2013, 10, 73.
[http://dx.doi.org/10.1186/1742-4690-10-73] [PMID: 23866860]
[78]
Herrmann, F.; Pably, P.; Eckerich, C.; Bedford, M.T.; Fackelmayer, F.O. Human protein arginine methyltransferases in vivo--distinct properties of eight canonical members of the PRMT family. J. Cell Sci., 2009, 122(Pt 5), 667-677.
[http://dx.doi.org/10.1242/jcs.039933] [PMID: 19208762]
[79]
Waldmann, T.; Izzo, A.; Kamieniarz, K.; Richter, F.; Vogler, C.; Sarg, B.; Lindner, H.; Young, N.L.; Mittler, G.; Garcia, B.A.; Schneider, R. Methylation of H2AR29 is a novel repressive PRMT6 target. Epigenetics Chromatin, 2011, 4, 11.
[http://dx.doi.org/10.1186/1756-8935-4-11] [PMID: 21774791]
[80]
Xie, B.; Invernizzi, C.F.; Richard, S.; Wainberg, M.A. Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat Interactions with both cyclin T1 and the Tat transactivation region. J. Virol., 2007, 81(8), 4226-4234.
[http://dx.doi.org/10.1128/JVI.01888-06] [PMID: 17267505]
[81]
Choi, S.; Jeong, H.J.; Kim, H.; Choi, D.; Cho, S.C.; Seong, J.K.; Koo, S.H.; Kang, J.S. Skeletal muscle-specific Prmt1 deletion causes muscle atrophy via deregulation of the PRMT6-FOXO3 axis. Autophagy, 2019, 15(6), 1069-1081.
[http://dx.doi.org/10.1080/15548627.2019.1569931] [PMID: 30653406]
[82]
Lee, J.; Sayegh, J.; Daniel, J.; Clarke, S.; Bedford, M.T. PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J. Biol. Chem., 2005, 280(38), 32890-32896.
[http://dx.doi.org/10.1074/jbc.M506944200] [PMID: 16051612]
[83]
Lee, W.C.; Lin, W.L.; Matsui, T.; Chen, E.S.W.; Wei, T.Y.W.; Lin, W.H.; Hu, H.; Zheng, Y.G.; Tsai, M.D.; Ho, M.C. Protein Arginine Methyltransferase 8: Tetrameric Structure and Protein Substrate Specificity. Biochemistry, 2015, 54(51), 7514-7523.
[http://dx.doi.org/10.1021/acs.biochem.5b00995] [PMID: 26529540]
[84]
Sayegh, J.; Webb, K.; Cheng, D.; Bedford, M.T.; Clarke, S.G. Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain. J. Biol. Chem., 2007, 282(50), 36444-36453.
[http://dx.doi.org/10.1074/jbc.M704650200] [PMID: 17925405]
[85]
Kim, J.D.; Kako, K.; Kakiuchi, M.; Park, G.G.; Fukamizu, A. EWS is a substrate of type I protein arginine methyltransferase, PRMT8. Int. J. Mol. Med., 2008, 22(3), 309-315.
[PMID: 18698489]
[86]
Jeong, H.C.; Park, S.J.; Choi, J.J.; Go, Y.H.; Hong, S.K.; Kwon, O.S.; Shin, J.G.; Kim, R.K.; Lee, M.O.; Lee, S.J.; Shin, H.D.; Moon, S.H.; Cha, H.J. PRMT8 Controls the Pluripotency and Mesodermal Fate of Human Embryonic Stem Cells By Enhancing the PI3K/AKT/SOX2 Axis. Stem Cells, 2017, 35(9), 2037-2049.
[http://dx.doi.org/10.1002/stem.2642] [PMID: 28543863]
[87]
Simandi, Z.; Pajer, K.; Karolyi, K.; Sieler, T.; Jiang, L-L.; Kolostyak, Z.; Sari, Z.; Fekecs, Z.; Pap, A.; Patsalos, A.; Contreras, G.A.; Reho, B.; Papp, Z.; Guo, X.; Horvath, A.; Kiss, G.; Keresztessy, Z.; Vámosi, G.; Hickman, J.; Xu, H.; Dormann, D.; Hortobagyi, T.; Antal, M.; Nógrádi, A.; Nagy, L. Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. J. Neurosci., 2018, 38(35), 7683-7700.
[http://dx.doi.org/10.1523/JNEUROSCI.3389-17.2018] [PMID: 30054395]
[88]
Branscombe, T.L.; Frankel, A.; Lee, J.H.; Cook, J.R.; Yang, Z.; Pestka, S.; Clarke, S. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol. Chem., 2001, 276(35), 32971-32976.
[http://dx.doi.org/10.1074/jbc.M105412200] [PMID: 11413150]
[89]
Sun, L.; Wang, M.; Lv, Z.; Yang, N.; Liu, Y.; Bao, S.; Gong, W.; Xu, R.M. Structural insights into protein arginine symmetric dimethylation by PRMT5. Proc. Natl. Acad. Sci. USA, 2011, 108(51), 20538-20543.
[http://dx.doi.org/10.1073/pnas.1106946108] [PMID: 22143770]
[90]
Lacroix, M.; El Messaoudi, S.; Rodier, G.; Le Cam, A.; Sardet, C.; Fabbrizio, E. The histone-binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO Rep., 2008, 9(5), 452-458.
[http://dx.doi.org/10.1038/embor.2008.45] [PMID: 18404153]
[91]
Antonysamy, S.; Bonday, Z.; Campbell, R.M.; Doyle, B.; Druzina, Z.; Gheyi, T.; Han, B.; Jungheim, L.N.; Qian, Y.; Rauch, C.; Russell, M.; Sauder, J.M.; Wasserman, S.R.; Weichert, K.; Willard, F.S.; Zhang, A.; Emtage, S. Crystal structure of the human PRMT5:MEP50 complex. Proc. Natl. Acad. Sci. USA, 2012, 109(44), 17960-17965.
[http://dx.doi.org/10.1073/pnas.1209814109] [PMID: 23071334]
[92]
Deng, X.; Shao, G.; Zhang, H.T.; Li, C.; Zhang, D.; Cheng, L.; Elzey, B.D.; Pili, R.; Ratliff, T.L.; Huang, J.; Hu, C.D. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth. Oncogene, 2017, 36(9), 1223-1231.
[http://dx.doi.org/10.1038/onc.2016.287] [PMID: 27546619]
[93]
Jansson, M.; Durant, S.T.; Cho, E.C.; Sheahan, S.; Edelmann, M.; Kessler, B.; La Thangue, N.B. Arginine methylation regulates the p53 response. Nat. Cell Biol., 2008, 10(12), 1431-1439.
[http://dx.doi.org/10.1038/ncb1802] [PMID: 19011621]
[94]
Wei, H.; Wang, B.; Miyagi, M.; She, Y.; Gopalan, B.; Huang, D.B.; Ghosh, G.; Stark, G.R.; Lu, T. PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB. Proc. Natl. Acad. Sci. USA, 2013, 110(33), 13516-13521.
[http://dx.doi.org/10.1073/pnas.1311784110] [PMID: 23904475]
[95]
Hu, D.; Gur, M.; Zhou, Z.; Gamper, A.; Hung, M.C.; Fujita, N.; Lan, L.; Bahar, I.; Wan, Y. Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat. Commun., 2015, 6, 8419.
[http://dx.doi.org/10.1038/ncomms9419] [PMID: 26420673]
[96]
Zheng, S.; Moehlenbrink, J.; Lu, Y.C.; Zalmas, L.P.; Sagum, C.A.; Carr, S.; McGouran, J.F.; Alexander, L.; Fedorov, O.; Munro, S.; Kessler, B.; Bedford, M.T.; Yu, Q.; La Thangue, N.B. Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol. Cell, 2013, 52(1), 37-51.
[http://dx.doi.org/10.1016/j.molcel.2013.08.039] [PMID: 24076217]
[97]
Li, M.; An, W.; Xu, L.; Lin, Y.; Su, L.; Liu, X. The arginine methyltransferase PRMT5 and PRMT1 distinctly regulate the degradation of anti-apoptotic protein CFLARL in human lung cancer cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 64.
[http://dx.doi.org/10.1186/s13046-019-1064-8] [PMID: 30736843]
[98]
Mersaoui, S.Y.; Yu, Z.; Coulombe, Y.; Karam, M.; Busatto, F.F.; Masson, J-Y.; Richard, S. Arginine methylation of the DDX5 helicase RGG/RG motif by PRMT5 regulates resolution of RNA:DNA hybrids. EMBO J., 2019, 38(15)e100986
[http://dx.doi.org/10.15252/embj.2018100986] [PMID: 31267554]
[99]
An, W.; Yao, S.; Sun, X.; Hou, Z.; Lin, Y.; Su, L.; Liu, X. Glucocorticoid modulatory element-binding protein 1 (GMEB1) interacts with the de-ubiquitinase USP40 to stabilize CFLARL and inhibit apoptosis in human non-small cell lung cancer cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 181-193.
[http://dx.doi.org/10.1186/s13046-019-1182-3] [PMID: 31046799]
[100]
Cook, J.R.; Lee, J.H.; Yang, Z.H.; Krause, C.D.; Herth, N.; Hoffmann, R.; Pestka, S. FBXO11/PRMT9, a new protein arginine methyltransferase, symmetrically dimethylates arginine residues. Biochem. Biophys. Res. Commun., 2006, 342(2), 472-481.
[http://dx.doi.org/10.1016/j.bbrc.2006.01.167] [PMID: 16487488]
[101]
Hadjikyriacou, A.; Yang, Y.; Espejo, A.; Bedford, M.T.; Clarke, S.G. Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2. J. Biol. Chem., 2015, 290(27), 16723-16743.
[http://dx.doi.org/10.1074/jbc.M115.659433] [PMID: 25979344]
[102]
Lee, J-H.; Cook, J.R.; Yang, Z-H.; Mirochnitchenko, O.; Gunderson, S.I.; Felix, A.M.; Herth, N.; Hoffmann, R.; Pestka, S. PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine. J. Biol. Chem., 2005, 280(5), 3656-3664.
[http://dx.doi.org/10.1074/jbc.M405295200] [PMID: 15494416]
[103]
Jain, K.; Jin, C.Y.; Clarke, S.G. Epigenetic control via allosteric regulation of mammalian protein arginine methyltransferases. Proc. Natl. Acad. Sci. USA, 2017, 114(38), 10101-10106.
[http://dx.doi.org/10.1073/pnas.1706978114] [PMID: 28874563]
[104]
Cura, V.; Troffer-Charlier, N.; Wurtz, J.M.; Bonnefond, L.; Cavarelli, J. Structural insight into arginine methylation by the mouse protein arginine methyltransferase 7: a zinc finger freezes the mimic of the dimeric state into a single active site. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(Pt 9), 2401-2412.
[http://dx.doi.org/10.1107/S1399004714014278] [PMID: 25195753]
[105]
Haghandish, N.; Baldwin, R.M.; Morettin, A.; Dawit, H.T.; Adhikary, H.; Masson, J-Y.; Mazroui, R.; Trinkle-Mulcahy, L.; Côté, J. PRMT7 methylates eukaryotic translation initiation factor 2α and regulates its role in stress granule formation. Mol. Biol. Cell, 2019, 30(6), 778-793.
[http://dx.doi.org/10.1091/mbc.E18-05-0330] [PMID: 30699057]
[106]
Jeong, H-J.; Lee, S-J.; Lee, H-J.; Kim, H-B.; Anh Vuong, T.; Cho, H.; Bae, G-U.; Kang, J-S. Prmt7 Promotes Myoblast Differentiation via Methylation of P38MAPK on Arginine Residue 70. Cell Death Differ., 2020, 27, 573-586.
[http://dx.doi.org/10.1038/s41418-019-0373-y]]
[107]
Cuenda, A.; Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta, 2007, 1773(8), 1358-1375.
[http://dx.doi.org/10.1016/j.bbamcr.2007.03.010] [PMID: 17481747]
[108]
Elakoum, R.; Gauchotte, G.; Oussalah, A.; Wissler, M.; Clément-duchêne, C.; Vignaud, J.; Guéant, J.; Namour, F. Biochimie CARM1 and PRMT1 are Dysregulated in Lung Cancer without Hierarchical Features., 2014, 97, 210-218.
[109]
Hernandez, S.J.; Dolivo, D.M.; Dominko, T. PRMT8 demonstrates variant-specific expression in cancer cells and correlates with patient survival in breast, ovarian and gastric cancer. Oncol. Lett., 2017, 13(3), 1983-1989.
[http://dx.doi.org/10.3892/ol.2017.5671] [PMID: 28454353]
[110]
Li, L.; Zhang, Z.; Ma, T.; Huo, R. PRMT1 regulates tumor growth and metastasis of human melanoma via targeting ALCAM. Mol. Med. Rep., 2016, 14(1), 521-528.
[http://dx.doi.org/10.3892/mmr.2016.5273] [PMID: 27175582]
[111]
Zhou, Z.; Feng, Z.; Hu, D.; Yang, P.; Gur, M.; Bahar, I.; Cristofanilli, M.; Gradishar, W.J.; Xie, X. qun; Wan, Y. A Novel Small-Molecule Antagonizes PRMT5-Mediated KLF4 Methylation for Targeted Therapy. EBioMedicine, 2019, 44, 98-111.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.011]
[112]
Zhang, B.; Dong, S.; Li, Z.; Lu, L.; Zhang, S.; Chen, X.; Cen, X.; Wu, Y. Targeting protein arginine methyltransferase 5 inhibits human hepatocellular carcinoma growth via the downregulation of beta-catenin. J. Transl. Med., 2015, 13, 349.
[http://dx.doi.org/10.1186/s12967-015-0721-8] [PMID: 26541651]
[113]
Zhang, H.; Guo, X.; Feng, X.; Wang, T.; Hu, Z.; Que, X.; Tian, Q.; Zhu, T.; Guo, G.; Huang, W.; Li, X. MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1α protein. Oncotarget, 2017, 8(2), 2342-2355.
[http://dx.doi.org/10.18632/oncotarget.13672] [PMID: 27911265]
[114]
Li, S.; Cheng, D.; Zhu, B.; Yang, Q. The Overexpression of CARM1 Promotes Human Osteosarcoma Cell Proliferation through the pGSK3β/β-Catenin/cyclinD1 Signaling Pathway. Int. J. Biol. Sci., 2017, 13(8), 976-984.
[http://dx.doi.org/10.7150/ijbs.19191] [PMID: 28924379]
[115]
Baldwin, R.M.; Haghandish, N.; Daneshmand, M.; Amin, S.; Paris, G.; Falls, T.J.; Bell, J.C.; Islam, S.; Côté, J. Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression. Oncotarget, 2015, 6(5), 3013-3032.
[http://dx.doi.org/10.18632/oncotarget.3072] [PMID: 25605249]
[116]
Fedoriw, A.; Rajapurkar, S.R.; O’Brien, S.; Gerhart, S.V.; Mitchell, L.H.; Adams, N.D.; Rioux, N.; Lingaraj, T.; Ribich, S.A.; Pappalardi, M.B.; Shah, N.; Laraio, J.; Liu, Y.; Butticello, M.; Carpenter, C.L.; Creasy, C.; Korenchuk, S.; McCabe, M.T.; McHugh, C.F.; Nagarajan, R.; Wagner, C.; Zappacosta, F.; Annan, R.; Concha, N.O.; Thomas, R.A.; Hart, T.K.; Smith, J.J.; Copeland, R.A.; Moyer, M.P.; Campbell, J.; Stickland, K.; Mills, J.; Jacques-O’Hagan, S.; Allain, C.; Johnston, D.; Raimondi, A.; Porter Scott, M.; Waters, N.; Swinger, K.; Boriack-Sjodin, A.; Riera, T.; Shapiro, G.; Chesworth, R.; Prinjha, R.K.; Kruger, R.G.; Barbash, O.; Mohammad, H.P. Anti-tumor Activity of the Type I PRMT Inhibitor, GSK3368715, Synergizes with PRMT5 Inhibition through MTAP Loss. Cancer Cell, 2019, 36(1), 100-114.e25.
[http://dx.doi.org/10.1016/j.ccell.2019.05.014] [PMID: 31257072]
[117]
Yoshimatsu, M.; Toyokawa, G.; Hayami, S.; Unoki, M.; Tsunoda, T.; Field, H.I. Dysregulation of PRMT1 and PRMT6, Type I Arginine Methyltransferases, is Involved in Various Types of Human Cancers 2011, 1, 562-573.
[118]
Zhu, F.; Guo, H.; Bates, P.D.; Zhang, S.; Zhang, H.; Nomie, K.J.; Li, Y.; Lu, L.; Seibold, K.R.; Wang, F.; Rumball, I.; Cameron, H.; Hoang, N.M.; Yang, D.T.; Xu, W.; Zhang, L.; Wang, M.; Capitini, C.M.; Rui, L. PRMT5 is upregulated by B-cell receptor signaling and forms a positive-feedback loop with PI3K/AKT in lymphoma cells. Leukemia, 2019, 33(12), 2898-2911.
[http://dx.doi.org/10.1038/s41375-019-0489-6] [PMID: 31123343]
[119]
He, X.; Zhu, Y.; Lin, Y-C.; Li, M.; Du, J.; Dong, H.; Sun, J.; Zhu, L.; Wang, H.; Ding, Z.; Zhang, L.; Zhang, L.; Zhao, D.; Wang, Z.; Wu, H.; Zhang, H.; Jiang, W.; Xu, Y.; Jin, J.; Shen, Y.; Perry, J.; Zhao, X.; Zhang, B.; Liu, S.; Xue, S-L.; Shen, B.; Chen, C-W.; Chen, J.; Khaled, S.; Kuo, Y-H.; Marcucci, G.; Luo, Y.; Li, L. PRMT1-mediated FLT3 arginine methylation promotes maintenance of FLT3-ITD+ acute myeloid leukemia. Blood, 2019, 134(6), 548-560.
[http://dx.doi.org/10.1182/blood.2019001282] [PMID: 31217189]
[120]
Gerhart, S.V.; Kellner, W.A.; Thompson, C.; Pappalardi, M.B.; Zhang, X.P.; Montes de Oca, R.; Penebre, E.; Duncan, K.; Boriack-Sjodin, A.; Le, B.; Majer, C.; McCabe, M.T.; Carpenter, C.; Johnson, N.; Kruger, R.G.; Barbash, O.; Barbash, O. Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing. Sci. Rep., 2018, 8(1), 9711-9726.
[http://dx.doi.org/10.1038/s41598-018-28002-y] [PMID: 29946150]
[121]
Kaniskan, H.Ü.; Szewczyk, M.M.; Yu, Z.; Eram, M.S.; Yang, X.; Schmidt, K.; Luo, X.; Dai, M.; He, F.; Zang, I.; Lin, Y.; Kennedy, S.; Li, F.; Dobrovetsky, E.; Dong, A.; Smil, D.; Min, S.J.; Landon, M.; Lin-Jones, J.; Huang, X.P.; Roth, B.L.; Schapira, M.; Atadja, P.; Barsyte-Lovejoy, D.; Arrowsmith, C.H.; Brown, P.J.; Zhao, K.; Jin, J.; Vedadi, M. A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3 (PRMT3). Angew. Chem. Int. Ed. Engl., 2015, 54(17), 5166-5170.
[http://dx.doi.org/10.1002/anie.201412154] [PMID: 25728001]
[122]
Kaniskan, H.Ü.; Eram, M.S.; Zhao, K.; Szewczyk, M.M.; Yang, X.; Schmidt, K.; Luo, X.; Xiao, S.; Dai, M.; He, F.; Zang, I.; Lin, Y.; Li, F.; Dobrovetsky, E.; Smil, D.; Min, S-J.; Lin-Jones, J.; Schapira, M.; Atadja, P.; Li, E.; Barsyte-Lovejoy, D.; Arrowsmith, C.H.; Brown, P.J.; Liu, F.; Yu, Z.; Vedadi, M.; Jin, J. Discovery of Potent and Selective Allosteric Inhibitors of Protein Arginine Methyltransferase 3 (PRMT3). J. Med. Chem., 2018, 61(3), 1204-1217.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01674] [PMID: 29244490]
[123]
Mitchell, L.H.; Drew, A.E.; Ribich, S.A.; Rioux, N.; Swinger, K.K.; Jacques, S.L.; Lingaraj, T.; Boriack-Sjodin, P.A.; Waters, N.J.; Wigle, T.J.; Moradei, O.; Jin, L.; Riera, T.; Porter-Scott, M.; Moyer, M.P.; Smith, J.J.; Chesworth, R.; Copeland, R.A. Aryl Pyrazoles as Potent Inhibitors of Arginine Methyltransferases: Identification of the First PRMT6 Tool Compound. ACS Med. Chem. Lett., 2015, 6(6), 655-659.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00071] [PMID: 26101569]
[124]
Nakayama, K.; Szewczyk, M.M.; Dela Sena, C.; Wu, H.; Dong, A.; Zeng, H.; Li, F.; de Freitas, R.F.; Eram, M.S.; Schapira, M.; Baba, Y.; Kunitomo, M.; Cary, D.R.; Tawada, M.; Ohashi, A.; Imaeda, Y.; Saikatendu, K.S.; Grimshaw, C.E.; Vedadi, M.; Arrowsmith, C.H.; Barsyte-Lovejoy, D.; Kiba, A.; Tomita, D.; Brown, P.J. TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma. Oncotarget, 2018, 9(26), 18480-18493.
[http://dx.doi.org/10.18632/oncotarget.24883] [PMID: 29719619]
[125]
National Institutes of Health. United States National Library of Medicine, Clinical Trials., Available from: https://clinicaltrials.gov/ct2/show/NCT03666988 [August 5, 2019];
[127]
National Institutes of Health. United States National Library of Medicine, Clinical Trials., Available from: https://clinicaltrials.gov/ct2/show/NCT02783300 [August 5, 2019];
[128]
National Institutes of Health. United States National Library of Medicine, Clinical Trials., Available from: https://clinicaltrials.gov/ct2/show/NCT03614728 [August 5, 2019];
[129]
National Institutes of Health. United States National Library of Medicine, Clinical Trials., Available from: https://clinicaltrials.gov/ct2/show/NCT03854227 [August 5, 2019];

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy