Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Identification of Novel Cytotoxic T Lymphocyte Epitopes of Drug- Resistance Related Protein InhA from Mycobacterium tuberculosis

Author(s): Dezhi Li, Zelong Dou, Yahong Wu, Yuanming Qi, Junhui Chen* and Yanfeng Gao*

Volume 27 , Issue 11 , 2020

Page: [1141 - 1150] Pages: 10

DOI: 10.2174/0929866527666200505215346

Price: $65

Abstract

Background: Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB), especially the drug-resistant MTB, poses serious challenges to human healthcare worldwide. Cytotoxic T lymphocytes (CTLs) play a vital role in immune defense against MTB.

Objective: To identify novel CTL epitopes that could induce cellular immunity against MTB infections.

Methods: The HLA-A*0201 restricted CTL epitopes of the drug-resistant protein InhA from MTB were predicted by online algorisms and synthesized by the Fmoc solid phase method. The candidate peptides were used to induce CTLs from human peripheral blood mononuclear cells (PBMCs) of HLA-A*0201 healthy donors and the HLA-2.1/Kb mice. IFN-γ productions of CTLs were detected by enzyme linked immunospot assay (ELISPOT), flow cytometry and enzyme-linked immunosorbent assay (ELISA), and cytotoxicity was analyzed by lactate dehydrogenase (LDH) assay.

Results: A group of 4 epitopes were screened out with high affinities to HLA-A*0201. ELISPOT and flow cytometry analysis indicated these peptides significantly induced that IFN-γ release of CTLs from the HLA-A*0201+/PPD+ donors, as the mutant analogues had more potent stimulation effects. LDH assay showed that CTLs from PPD+ donors and the immunized mice exhibited significant cytotoxicity and low cross-reactivity. ELISA analysis revealed comparative levels of IFN-γ were released by CTLs isolated from the mice spleen.

Conclusion: Our study has identified 4 novel CTL epitopes of InhA that could elicit potent CTL immunity, establishing a foundation for the development of multivalent peptide vaccines against the drug-resistant MTB.

Keywords: Mycobacterium tuberculosis, drug-resistant, cytotoxic T lymphocyte, epitope, vaccine, immunity.

Graphical Abstract
[1]
MacNeil, A.; Glaziou, P.; Sismanidis, C.; Maloney, S.; Floyd, K. Global epidemiology of tuberculosis and progress toward achieving global targets - 2017. MMWR Morb. Mortal. Wkly. Rep., 2019, 68(11), 263-266.
[http://dx.doi.org/10.15585/mmwr.mm6811a3] [PMID: 30897077]
[2]
Pawlowski, A.; Jansson, M.; Sköld, M.; Rottenberg, M.E.; Källenius, G. Tuberculosis and HIV co-infection. PLoS Pathog., 2012, 8(2), e1002464.
[http://dx.doi.org/10.1371/journal.ppat.1002464] [PMID: 22363214]
[3]
Seung, K.J.; Keshavjee, S.; Rich, M.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb. Perspect. Med., 2015, 5(9), a017863.
[http://dx.doi.org/10.1101/cshperspect.a017863] [PMID: 25918181]
[4]
Nguyen, T.N.A.; Anton-Le Berre, V.; Bañuls, A.L.; Nguyen, T.V.A. Molecular diagnosis of drug-resistant tuberculosis; A literature review. Front. Microbiol., 2019, 10, 794.
[http://dx.doi.org/10.3389/fmicb.2019.00794] [PMID: 31057511]
[5]
Hoagland, D.T.; Liu, J.; Lee, R.B.; Lee, R.E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev., 2016, 102, 55-72.
[http://dx.doi.org/10.1016/j.addr.2016.04.026] [PMID: 27151308]
[6]
Bucktrout, S.L.; Bluestone, J.A.; Ramsdell, F. Recent advances in immunotherapies: From infection and autoimmunity, to cancer, and back again. Genome Med., 2018, 10(1), 79.
[http://dx.doi.org/10.1186/s13073-018-0588-4] [PMID: 30376867]
[7]
Ivanyi, J. Function and potentials of M. tuberculosis epitopes. Front. Immunol., 2014, 5, 107.
[http://dx.doi.org/10.3389/fimmu.2014.00107] [PMID: 24715888]
[8]
Cardona, P.J.; Amat, I.; Gordillo, S.; Arcos, V.; Guirado, E.; Díaz, J.; Vilaplana, C.; Tapia, G.; Ausina, V. Immunotherapy with fragmented Mycobacterium tuberculosis cells increases the effectiveness of chemotherapy against a chronical infection in a murine model of tuberculosis. Vaccine, 2005, 23(11), 1393-1398.
[http://dx.doi.org/10.1016/j.vaccine.2004.09.008] [PMID: 15661388]
[9]
Sable, S.B.; Kalra, M.; Verma, I.; Khuller, G.K. Tuberculosis subunit vaccine design: The conflict of antigenicity and immunogenicity. Clin. Immunol., 2007, 122(3), 239-251.
[http://dx.doi.org/10.1016/j.clim.2006.10.010] [PMID: 17208519]
[10]
Uhlin, M.; Andersson, J.; Zumla, A.; Maeurer, M. Adjunct immunotherapies for tuberculosis. J. Infect. Dis., 2012, 205(Suppl. 2), S325-S334.
[http://dx.doi.org/10.1093/infdis/jis197] [PMID: 22457298]
[11]
Tully, G.; Kortsik, C.; Höhn, H.; Zehbe, I.; Hitzler, W.E.; Neukirch, C.; Freitag, K.; Kayser, K.; Maeurer, M.J. Highly focused T cell responses in latent human pulmonary Mycobacterium tuberculosis infection. J. Immunol., 2005, 174(4), 2174-2184.
[http://dx.doi.org/10.4049/jimmunol.174.4.2174] [PMID: 15699149]
[12]
Hodapp, T.; Sester, U.; Mack, U.; Singh, M.; Meier, T.; Wiech, E.; Fisch, P.; Ehl, S.; Sester, M. Massive monoclonal expansion of CD4 T-cells specific for a Mycobacterium tuberculosis ESAT-6 peptide. Eur. Respir. J., 2012, 40(1), 152-160.
[http://dx.doi.org/10.1183/09031936.00175611] [PMID: 22267771]
[13]
Govender, L.; Abel, B.; Hughes, E.J.; Scriba, T.J.; Kagina, B.M.; de Kock, M.; Walzl, G.; Black, G.; Rosenkrands, I.; Hussey, G.D.; Mahomed, H.; Andersen, P.; Hanekom, W.A. Higher human CD4 T cell response to novel Mycobacterium tuberculosis latency associated antigens Rv2660 and Rv2659 in latent infection compared with tuberculosis disease. Vaccine, 2010, 29(1), 51-57.
[http://dx.doi.org/10.1016/j.vaccine.2010.10.022] [PMID: 20974305]
[14]
Dong, Y.; Demaria, S.; Sun, X.; Santori, F.R.; Jesdale, B.M.; De Groot, A.S.; Rom, W.N.; Bushkin, Y. HLA-A2-restricted CD8+-cytotoxic-T-cell responses to novel epitopes in Mycobacterium tuberculosis superoxide dismutase, alanine dehydrogenase, and glutamine synthetase. Infect. Immun., 2004, 72(4), 2412-2415.
[http://dx.doi.org/10.1128/IAI.72.4.2412-2415.2004] [PMID: 15039371]
[15]
Chaitra, M.G.; Shaila, M.S.; Chandra, N.R.; Nayak, R. HLA-A*0201-restricted cytotoxic T-cell epitopes in three PE/PPE family proteins of Mycobacterium tuberculosis. Scand. J. Immunol., 2008, 67(4), 411-417.
[http://dx.doi.org/10.1111/j.1365-3083.2008.02078.x] [PMID: 18248530]
[16]
Zhu, Y.H.; Gao, Y.F.; Chen, F.; Liu, W.; Zhai, M.X.; Zhai, W.J.; Qi, Y.M.; Ye, Y. Identification of novel T cell epitopes from efflux pumps of Mycobacterium tuberculosis. Immunol. Lett., 2011, 140(1-2), 68-73.
[http://dx.doi.org/10.1016/j.imlet.2011.06.009] [PMID: 21756938]
[17]
Zhai, M.X.; Chen, F.; Zhao, Y.Y.; Wu, Y.H.; Li, G.D.; Gao, Y.F.; Qi, Y.M. Novel epitopes identified from efflux pumps of Mycobacterium tuberculosis could induce cytotoxic T lymphocyte response. PeerJ, 2015, 3, e1229.
[http://dx.doi.org/10.7717/peerj.1229] [PMID: 26417538]
[18]
Palomino, J.C.; Martin, A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel), 2014, 3(3), 317-340.
[http://dx.doi.org/10.3390/antibiotics3030317] [PMID: 27025748]
[19]
Rozwarski, D.A.; Grant, G.A.; Barton, D.H.; Jacobs, W.R. Jr. Sacchettini, J.C. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science, 1998, 279(5347), 98-102.
[http://dx.doi.org/10.1126/science.279.5347.98] [PMID: 9417034]
[20]
Parker, K.C.; Bednarek, M.A.; Coligan, J.E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol., 1994, 152(1), 163-175.
[21]
Rammensee, H.; Bachmann, J.; Emmerich, N.P.; Bachor, O.A.; Stevanović, S. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics, 1999, 50(3-4), 213-219.
[http://dx.doi.org/10.1007/s002510050595] [PMID: 10602881]
[22]
Larsen, M.V.; Lundegaard, C.; Lamberth, K.; Buus, S.; Lund, O.; Nielsen, M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 2007, 8, 424.
[http://dx.doi.org/10.1186/1471-2105-8-424] [PMID: 17973982]
[23]
Wu, Z.Y.; Gao, Y.F.; Wu, Y.H.; Liu, W.; Sun, M.; Zhai, M.X.; Qi, Y.M.; Ye, Y. Identification of a novel CD8+ T cell epitope derived from cancer-testis antigen MAGE-4 in oesophageal carcinoma. Scand. J. Immunol., 2011, 74(6), 561-567.
[http://dx.doi.org/10.1111/j.1365-3083.2011.02606.x] [PMID: 21815906]
[24]
Wu, Y.H.; Gao, Y.F.; He, Y.J.; Shi, R.R.; Zhai, M.X.; Wu, Z.Y.; Sun, M.; Zhai, W.J.; Chen, X.; Qi, Y.M. A novel cytotoxic T lymphocyte epitope analogue with enhanced activity derived from cyclooxygenase-2. Scand. J. Immunol., 2012, 76(3), 278-285.
[http://dx.doi.org/10.1111/j.1365-3083.2012.02738.x] [PMID: 22686557]
[25]
Wu, Y.; Zhai, W.; Sun, M.; Zou, Z.; Zhou, X.; Li, G.; Yan, Z.; Qi, Y.; Gao, Y. A novel recombinant multi-epitope vaccine could induce specific cytotoxic T lymphocyte response in vitro and in vivo. Protein Pept. Lett., 2017, 24(6), 573-580.
[http://dx.doi.org/10.2174/0929866524666170419152700] [PMID: 28425860]
[26]
Wu, Y.; Zhai, W.; Zhou, X.; Wang, Z.; Lin, Y.; Ran, L.; Qi, Y.; Gao, Y. HLA-A2-Restricted epitopes identified from MTA1 could elicit antigen-specific cytotoxic T lymphocyte response. J. Immunol. Res., 2018, 2018, 2942679.
[http://dx.doi.org/10.1155/2018/2942679] [PMID: 30596107]
[27]
Vonderheide, R.H.; Hahn, W.C.; Schultze, J.L.; Nadler, L.M. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity, 1999, 10(6), 673-679.
[http://dx.doi.org/10.1016/S1074-7613(00)80066-7] [PMID: 10403642]
[28]
Gao, Y.F.; Sun, Z.Q.; Qi, F.; Qi, Y.M.; Zhai, M.X.; Lou, H.P.; Chen, L.X.; Li, Y.X.; Wang, X.Y. Identification of a new broad-spectrum CD8+ T cell epitope from over-expressed antigen COX-2 in esophageal carcinoma. Cancer Lett., 2009, 284(1), 55-61.
[http://dx.doi.org/10.1016/j.canlet.2009.04.009] [PMID: 19423214]
[29]
Han, J.F.; Zhao, T.T.; Liu, H.L.; Lin, Z.H.; Wang, H.M.; Ruan, Z.H.; Zou, L.Y.; Wu, Y.Z. Identification of a new HLA-A*0201-restricted cytotoxic T lymphocyte epitope from CML28. Cancer Immunol. Immunother., 2006, 55(12), 1575-1583.
[http://dx.doi.org/10.1007/s00262-006-0152-8] [PMID: 16534571]
[30]
Shi, T.D.; Wu, Y.Z.; Jia, Z.C.; Zou, L.Y.; Zhou, W. Therapeutic polypeptides based on HBV core 18-27 epitope can induce CD8+ CTL-mediated cytotoxicity in HLA-A2+ human PBMCs. World J. Gastroenterol., 2004, 10(13), 1902-1906.
[http://dx.doi.org/10.3748/wjg.v10.i13.1902] [PMID: 15222033]
[31]
Dheda, K.; Gumbo, T.; Maartens, G.; Dooley, K.E.; Murray, M.; Furin, J.; Nardell, E.A.; Warren, R.M. Lancet Respiratory Medicine drug-resistant tuberculosis Commission group. The Lancet Respiratory Medicine Commission: 2019 update: Epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosis. Lancet Respir. Med., 2019, 7(9), 820-826.
[http://dx.doi.org/10.1016/S2213-2600(19)30263-2] [PMID: 31486393]
[32]
Caminero, J.A.; Sotgiu, G.; Zumla, A.; Migliori, G.B. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect. Dis., 2010, 10(9), 621-629.
[http://dx.doi.org/10.1016/S1473-3099(10)70139-0] [PMID: 20797644]
[33]
McShane, H. Insights and challenges in tuberculosis vaccine development. Lancet Respir. Med., 2019, 7(9), 810-819.
[http://dx.doi.org/10.1016/S2213-2600(19)30274-7] [PMID: 31416767]
[34]
Lv, H.; Gao, Y.; Wu, Y.; Zhai, M.; Li, L.; Zhu, Y.; Liu, W.; Wu, Z.; Chen, F.; Qi, Y. Identification of a novel cytotoxic T lymphocyte epitope from CFP21, a secreted protein of Mycobacterium tuberculosis. Immunol. Lett., 2010, 133(2), 94-98.
[http://dx.doi.org/10.1016/j.imlet.2010.07.007] [PMID: 20705101]
[35]
Lewinsohn, D.M.; Swarbrick, G.M.; Cansler, M.E.; Null, M.D.; Rajaraman, V.; Frieder, M.M.; Sherman, D.R.; McWeeney, S.; Lewinsohn, D.A. Human Mycobacterium tuberculosis CD8 T cell antigens/epitopes identified by a proteomic peptide library. PLoS One, 2013, 8(6), e67016.
[http://dx.doi.org/10.1371/journal.pone.0067016] [PMID: 23805289]
[36]
Shieh, D.C.; Lin, D.T.; Yang, B.S.; Kuan, H.L.; Kao, K.J. High frequency of HLA-A*0207 subtype in Chinese population. Transfusion, 1996, 36(9), 818-821.
[http://dx.doi.org/10.1046/j.1537-2995.1996.36996420761.x] [PMID: 8823458]
[37]
Tourdot, S.; Scardino, A.; Saloustrou, E.; Gross, D.A.; Pascolo, S.; Cordopatis, P.; Lemonnier, F.A.; Kosmatopoulos, K. A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: Implication in the identification of cryptic tumor epitopes. Eur. J. Immunol., 2000, 30(12), 3411-3421.
[http://dx.doi.org/10.1002/1521-4141(2000012)30:12<3411:AID-IMMU3411>3.0.CO;2-R] [PMID: 11093159]
[38]
Soria-Guerra, R.E.; Nieto-Gomez, R.; Govea-Alonso, D.O.; Rosales-Mendoza, S. An overview of bioinformatics tools for epitope prediction: Implications on vaccine development. J. Biomed. Inform., 2015, 53, 405-414.
[http://dx.doi.org/10.1016/j.jbi.2014.11.003] [PMID: 25464113]
[39]
Tang, S.T.; van Meijgaarden, K.E.; Caccamo, N.; Guggino, G.; Klein, M.R.; van Weeren, P.; Kazi, F.; Stryhn, A.; Zaigler, A.; Sahin, U.; Buus, S.; Dieli, F.; Lund, O.; Ottenhoff, T.H. Genome-based in silico identification of new Mycobacterium tuberculosis antigens activating polyfunctional CD8+ T cells in human tuberculosis. J. Immunol., 2011, 186(2), 1068-1080.
[http://dx.doi.org/10.4049/jimmunol.1002212] [PMID: 21169544]
[40]
Nair, S.K.; Tomaras, G.D.; Sales, A.P.; Boczkowski, D.; Chan, C.; Plonk, K.; Cai, Y.; Dannull, J.; Kepler, T.B.; Pruitt, S.K.; Weinhold, K.J. High-throughput identification and dendritic cell-based functional validation of MHC class I-restricted Mycobacterium tuberculosis epitopes. Sci. Rep., 2014, 4, 4632.
[http://dx.doi.org/10.1038/srep04632] [PMID: 24755960]
[41]
Gupta, A.K.; Chauhan, D.S.; Srivastava, K.; Das, R.; Batra, S.; Mittal, M.; Goswami, P.; Singhal, N.; Sharma, V.D.; Venkatesan, K.; Hasnain, S.E.; Katoch, V.M. Estimation of efflux mediated multi-drug resistance and its correlation with expression levels of two major efflux pumps in mycobacteria. J. Commun. Dis., 2006, 38(3), 246-254.
[42]
Arend, S.M.; Engelhard, A.C.; Groot, G.; de Boer, K.; Andersen, P.; Ottenhoff, T.H.; van Dissel, J.T. Tuberculin skin testing compared with T-cell responses to Mycobacterium tuberculosis-specific and nonspecific antigens for detection of latent infection in persons with recent tuberculosis contact. Clin. Diagn. Lab. Immunol., 2001, 8(6), 1089-1096.
[http://dx.doi.org/10.1128/CDLI.8.6.1089-1096.2001] [PMID: 11687445]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy