Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Anti-atherosclerotic Effects of Spice-Derived Phytochemicals

Author(s): Ayesheh Enayati, Thomas P. Johnston and Amirhossein Sahebkar*

Volume 28 , Issue 6 , 2021

Published on: 05 May, 2020

Page: [1197 - 1223] Pages: 27

DOI: 10.2174/0929867327666200505084620

Price: $65

Abstract

Cardiovascular diseases are the leading cause of death in the world. Atherosclerosis is characterized by oxidized lipid deposition and inflammation in the arterial wall and represents a significant problem in public health and medicine. Some dietary spices have been widely used in many countries; however, the mechanism of their action as it relates to the prevention and treatment of atherosclerosis is still poorly understood. In this review, we focus on the properties of various spice-derived active ingredients used in the prevention and treatment of atherosclerosis, as well as associated atherosclerotic risk factors. We provide a summary of the mechanisms of action, epidemiological analyses, and studies of various components of spice used in the clinic, animal models, and cell lines related to atherosclerosis. Most notably, we focused on mechanisms of action by which these spice-derived compounds elicit their lipid-lowering, anti-inflammatory, antioxidant, and immunomodulatory properties, as well as their involvement in selected biochemical and signal transduction pathways. It is suggested that future research should aim to design well-controlled clinical trials and more thoroughly investigate the role of spices and their active components in the prevention/treatment of atherosclerosis. Based on this literature review, it appears that spices and their active components are well tolerated and have few adverse side effects and, therefore, provide a promising adjunctive treatment strategy for patients with atherosclerosis.

Keywords: Atherosclerosis, spice-derived phytochemicals, inflammation, antioxidant, lipid-lowering, immune system.

[1]
Barquera, S.; Pedroza-Tobías, A.; Medina, C.; Hernández-Barrera, L.; Bibbins-Domingo, K.; Lozano, R.; Moran, A.E. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch. Med. Res., 2015, 46(5), 328-338.
[http://dx.doi.org/10.1016/j.arcmed.2015.06.006] [PMID: 26135634]
[2]
Rai, V.; Jadhav, G.P. Role of transcription factors in regulating development and progression of atherosclerosis. Annals Vasc. Med. Surg., 2019, 2(1), 1-5.
[3]
Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; Alla, F.; Alvis-Guzman, N.; Amrock, S.; Ansari, H.; Ärnlöv, J.; Asayesh, H.; Atey, T.M.; Avila-Burgos, L.; Awasthi, A.; Banerjee, A.; Barac, A.; Bärnighausen, T.; Barregard, L.; Bedi, N.; Belay Ketema, E.; Bennett, D.; Berhe, G.; Bhutta, Z.; Bitew, S.; Carapetis, J.; Carrero, J.J.; Malta, D.C.; Castañeda-Orjuela, C.A.; Castillo-Rivas, J.; Catalá-López, F.; Choi, J.Y.; Christensen, H.; Cirillo, M.; Cooper, L., Jr; Criqui, M.; Cundiff, D.; Damasceno, A.; Dandona, L.; Dandona, R.; Davletov, K.; Dharmaratne, S.; Dorairaj, P.; Dubey, M.; Ehrenkranz, R.; El Sayed Zaki, M.; Faraon, E.J.A.; Esteghamati, A.; Farid, T.; Farvid, M.; Feigin, V.; Ding, E.L.; Fowkes, G.; Gebrehiwot, T.; Gillum, R.; Gold, A.; Gona, P.; Gupta, R.; Habtewold, T.D.; Hafezi-Nejad, N.; Hailu, T.; Hailu, G.B.; Hankey, G.; Hassen, H.Y.; Abate, K.H.; Havmoeller, R.; Hay, S.I.; Horino, M.; Hotez, P.J.; Jacobsen, K.; James, S.; Javanbakht, M.; Jeemon, P.; John, D.; Jonas, J.; Kalkonde, Y.; Karimkhani, C.; Kasaeian, A.; Khader, Y.; Khan, A.; Khang, Y.H.; Khera, S.; Khoja, A.T.; Khubchandani, J.; Kim, D.; Kolte, D.; Kosen, S.; Krohn, K.J.; Kumar, G.A.; Kwan, G.F.; Lal, D.K.; Larsson, A.; Linn, S.; Lopez, A.; Lotufo, P.A.; El Razek, H.M.A.; Malekzadeh, R.; Mazidi, M.; Meier, T.; Meles, K.G.; Mensah, G.; Meretoja, A.; Mezgebe, H.; Miller, T.; Mirrakhimov, E.; Mohammed, S.; Moran, A.E.; Musa, K.I.; Narula, J.; Neal, B.; Ngalesoni, F.; Nguyen, G.; Obermeyer, C.M.; Owolabi, M.; Patton, G.; Pedro, J.; Qato, D.; Qorbani, M.; Rahimi, K.; Rai, R.K.; Rawaf, S.; Ribeiro, A.; Safiri, S.; Salomon, J.A.; Santos, I.; Santric Milicevic, M.; Sartorius, B.; Schutte, A.; Sepanlou, S.; Shaikh, M.A.; Shin, M.J.; Shishehbor, M.; Shore, H.; Silva, D.A.S.; Sobngwi, E.; Stranges, S.; Swaminathan, S.; Tabarés-Seisdedos, R.; Tadele Atnafu, N.; Tesfay, F.; Thakur, J.S.; Thrift, A.; Topor-Madry, R.; Truelsen, T.; Tyrovolas, S.; Ukwaja, K.N.; Uthman, O.; Vasankari, T.; Vlassov, V.; Vollset, S.E.; Wakayo, T.; Watkins, D.; Weintraub, R.; Werdecker, A.; Westerman, R.; Wiysonge, C.S.; Wolfe, C.; Workicho, A.; Xu, G.; Yano, Y.; Yip, P.; Yonemoto, N.; Younis, M.; Yu, C.; Vos, T.; Naghavi, M.; Murray, C. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol., 2017, 70(1), 1-25.
[http://dx.doi.org/10.1016/j.jacc.2017.04.052] [PMID: 28527533]
[4]
Robinson, J.G.; Williams, K.J.; Gidding, S.; Borén, J.; Tabas, I.; Fisher, E.A.; Packard, C.; Pencina, M.; Fayad, Z.A.; Mani, V.; Rye, K.A.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; Douglas, P.S.; Nicholls, S.J.; Pagidipati, N.; Sniderman, A. Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins earlier in life. J. Am. Heart Assoc., 2018, 7(20), 1-20.
[http://dx.doi.org/10.1161/JAHA.118.009778] [PMID: 30371276]
[5]
Aziz, M.; Yadav, K.S. Pathogenesis of atherosclerosis. Med Clin Rev., 2016, 2(3), 1-6.
[http://dx.doi.org/10.21767/2471-299X.100031 ]
[6]
Insull, W., Jr The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am. J. Med., 2009, 122(1)(Suppl.), S3-S14.
[http://dx.doi.org/10.1016/j.amjmed.2008.10.013]] [PMID: 19110086]
[7]
Kunnumakkara, A.B.; Sailo, B.L.; Banik, K.; Harsha, C.; Prasad, S.; Gupta, S.C.; Bharti, A.C.; Aggarwal, B.B. Chronic diseases, inflammation, and spices: how are they linked? J. Transl. Med., 2018, 16(1), 14.
[http://dx.doi.org/10.1186/s12967-018-1381-2] [PMID: 29370858]
[8]
Tsui, P.F.; Lin, C.S.; Ho, L.J.; Lai, J.H. Spices and atherosclerosis. Nutrients, 2018, 10(11), 1724.
[http://dx.doi.org/10.3390/nu10111724] [PMID: 30423840]
[9]
Vasanthi, H.R.; Parameswari, R.P. Indian spices for healthy heart - an overview. Curr. Cardiol. Rev., 2010, 6(4), 274-279.
[http://dx.doi.org/10.2174/157340310793566172] [PMID: 22043203]
[10]
Aquila, G.; Marracino, L.; Martino, V.; Calabria, D.; Campo, G.; Caliceti, C.; Rizzo, P. The use of nutraceuticals to counteract atherosclerosis: the role of the notch pathway. Oxid. Med. Cell. Longev., 2019, 20195470470
[http://dx.doi.org/10.1155/2019/5470470] [PMID: 31915510]
[11]
Chen, F.Y.; Zhou, J.; Guo, N.; Ma, W.G.; Huang, X.; Wang, H.; Yuan, Z.Y. Curcumin retunes cholesterol transport homeostasis and inflammation response in M1 macrophage to prevent atherosclerosis. Biochem. Biophys. Res. Commun., 2015, 467(4), 872-878.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.051] [PMID: 26471308]
[12]
Yang, X.; He, T.; Han, S.; Zhang, X.; Sun, Y.; Xing, Y.; Shang, H. The role of traditional chinese medicine in the regulation of oxidative stress in treating coronary heart disease. Oxid. Med. Cell. Longev., 2019, 20193231424
[http://dx.doi.org/10.1155/2019/3231424] [PMID: 30918578]
[13]
Razak, S.I.; Anwar Hamzah, M.S.; Yee, F.C.; Kadir, M.R.; Nayan, N.H. A review on medicinal properties of saffron toward major diseases. J. Herbs Spices Med. Plants, 2017, 23(2), 98-116.
[http://dx.doi.org/10.1080/10496475.2016.1272522]
[14]
Basith, S.; Cui, M.; Hong, S.; Choi, S. Harnessing the therapeutic potential of capsaicin and its analogues in pain and other diseases. Molecules, 2016, 21(8), 966.
[http://dx.doi.org/10.3390/molecules21080966] [PMID: 27455231]
[15]
McCarty, M.F.; DiNicolantonio, J.J.; O’Keefe, J.H. Capsaicin may have important potential for promoting vascular and metabolic health. Open Heart, 2015, 2(1)e000262
[http://dx.doi.org/10.1136/openhrt-2015-000262] [PMID: 26113985]
[16]
Luqman, S.; Rizvi, S.I. Protection of lipid peroxidation and carbonyl formation in proteins by capsaicin in human erythrocytes subjected to oxidative stress. Phytother. Res., 2006, 20(4), 303-306.
[http://dx.doi.org/10.1002/ptr.1861] [PMID: 16557614]
[17]
Wang, Q.; Ma, S.; Li, D.; Zhang, Y.; Tang, B.; Qiu, C.; Yang, Y.; Yang, D. Dietary capsaicin ameliorates pressure overload-induced cardiac hypertrophy and fibrosis through the transient receptor potential vanilloid type 1. Am. J. Hypertens., 2014, 27(12), 1521-1529.
[http://dx.doi.org/10.1093/ajh/hpu068] [PMID: 24858305]
[18]
Sun, F.; Xiong, S.; Zhu, Z. Dietary capsaicin protects cardiometabolic organs from dysfunction. Nutrients, 2016, 8(5), 1-13.
[http://dx.doi.org/10.3390/nu8050174] [PMID: 27120617]
[19]
Kempaiah, R.K.; Manjunatha, H.; Srinivasan, K. Protective effect of dietary capsaicin on induced oxidation of low-density lipoprotein in rats. Mol. Cell. Biochem., 2005, 275(1-2), 7-13.
[http://dx.doi.org/10.1007/s11010-005-7643-3] [PMID: 16335782]
[20]
Kang, J.H.; Kim, C.S.; Han, I.S.; Kawada, T.; Yu, R. Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages. FEBS Lett., 2007, 581(23), 4389-4396.
[http://dx.doi.org/10.1016/j.febslet.2007.07.082] [PMID: 17719033]
[21]
Tang, J.; Luo, K.; Li, Y.; Chen, Q.; Tang, D.; Wang, D.; Xiao, J. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα. Int. Immunopharmacol., 2015, 28(1), 264-269.
[http://dx.doi.org/10.1016/j.intimp.2015.06.007] [PMID: 26093270]
[22]
Hu, Y.W.; Ma, X.; Huang, J.L.; Mao, X.R.; Yang, J.Y.; Zhao, J.Y.; Li, S.F.; Qiu, Y.R.; Yang, J.; Zheng, L.; Wang, Q. Dihydrocapsaicin attenuates plaque formation through a PPARγ/LXRα pathway in ApoE−/− mice fed a high-fat/high-cholesterol diet. PLoS One, 2013, 8(6)e66876
[http://dx.doi.org/10.1371/journal.pone.0066876] [PMID: 23840542]
[23]
Zhao, J.J.; Hu, Y.W.; Huang, C.; Ma, X.; Kang, C.M.; Zhang, Y.; Guo, F.X.; Lu, J.B.; Xiu, J.C.; Qiu, Y.R.; Sha, Y.H.; Gao, J.J.; Wang, Y.C.; Li, P.; Xu, B.M.; Zheng, L.; Wang, Q. Dihydrocapsaicin suppresses proinflammatory cytokines expression by enhancing nuclear factor IA in a NF-κB-dependent manner. Arch. Biochem. Biophys., 2016, 604, 27-35.
[http://dx.doi.org/10.1016/j.abb.2016.06.002] [PMID: 27267730]
[24]
Zhao, J-Y.; Hu, Y-W.; Li, S-F.; Hu, Y-R.; Ma, X.; Wu, S-G.; Wang, Y-C.; Gao, J-J.; Sha, Y-H.; Zheng, L.; Wang, Q. Dihydrocapsaicin down-regulates apoM expression through inhibiting Foxa2 expression and enhancing LXR α expression in HepG2 cells. Lipids Health Dis., 2014, 13(50), 1-8.
[http://dx.doi.org/10.1186/1476-511x-13-50] [PMID: 24642298]
[25]
Yu, Y-M.; Lin, H-C.; Chang, W-C. Carnosic acid prevents the migration of human aortic smooth muscle cells by inhibiting the activation and expression of matrix metalloproteinase-9. Br. J. Nutr., 2008, 100(4), 731-738.
[http://dx.doi.org/10.1017/S0007114508923710] [PMID: 18298869]
[26]
Kuo, C-F.; Su, J-D.; Chiu, C-H.; Peng, C-C.; Chang, C-H.; Sung, T-Y.; Huang, S-H.; Lee, W-C.; Chyau, C-C. Anti-inflammatory effects of supercritical carbon dioxide extract and its isolated carnosic acid from Rosmarinus officinalis leaves. J. Agric. Food Chem., 2011, 59(8), 3674-3685.
[http://dx.doi.org/10.1021/jf104837w] [PMID: 21375325]
[27]
Arranz, E.; Jaime, L.; Garc, M.R.; Fornari, T.; Reglero, G.; Santoyo, S. Anti-inflammatory activity of rosemary extracts obtained by supercritical carbon dioxide enriched in carnosic acid and carnosol. Int. J. Food Sci. Technol., 2015, 50, 674-681.
[http://dx.doi.org/10.1111/ijfs.12656]
[28]
Yu, Y.M.; Lin, C.H.; Chan, H.C.; Tsai, H.D. Carnosic acid reduces cytokine-induced adhesion molecules expression and monocyte adhesion to endothelial cells. Eur. J. Nutr., 2009, 48(2), 101-106.
[http://dx.doi.org/10.1007/s00394-008-0768-x] [PMID: 19142568]
[29]
Lee, K.P.; Sudjarwo, G.W.; Jung, S.H.; Lee, D.; Lee, D.Y.; Lee, G.B.; Baek, S.; Kim, D.Y.; Lee, H.M.; Kim, B.; Kwon, S.C.; Won, K.J. Carvacrol inhibits atherosclerotic neointima formation by downregulating reactive oxygen species production in vascular smooth muscle cells. Atherosclerosis, 2015, 240(2), 367-373.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.03.038] [PMID: 25875388]
[30]
Chen, Y.; Ba, L.; Huang, W.; Liu, Y.; Pan, H.; Mingyao, E.; Shi, P.; Wang, Y.; Li, S.; Qi, H.; Sun, H.; Cao, Y. Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/eNOS signaling pathways. Eur. J. Pharmacol., 2017, 796, 90-100.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.053] [PMID: 27916558]
[31]
Spalletta, S.; Flati, V.; Toniato, E.; Di Gregorio, J.; Marino, A.; Pierdomenico, L.; Marchisio, M.; D’Orazi, G.; Cacciatore, I.; Robuffo, I. Carvacrol reduces adipogenic differentiation by modulating autophagy and ChREBP expression. PLoS One, 2018, 13(11)e0206894
[http://dx.doi.org/10.1371/journal.pone.0206894] [PMID: 30418986]
[32]
Zhou, H.; Yu, X.; Zhou, G. Carvacrol protects against tumor necrosis factor-mediated inflammation in vascular smooth muscle cell through NF-κB pathway. Int. J. Clin. Exp. Pathol., 2017, 10(1), 206-214.
[33]
Ezhumalai, M.; Ashokkumar, N.; Pugalendi, K.V. RETRACTED: Combination of carvacrol and rosiglitazone ameliorates high fat diet induced changes in lipids and inflammatory markers in C57BL/6J mice. Biochimie, 2015, 110, 129-136.
[http://dx.doi.org/10.1016/j.biochi.2014.12.005] [PMID: 25527325]
[34]
Muhammad, D.R.; Dewettinck, K. Cinnamon and its derivatives as potential ingredient in functional food—a review. Int. j. Food prop., 2017, 20(2), 2237-2263.
[35]
Li, W.; Zhi, W.; Zhao, J.; Yao, Q.; Liu, F.; Niu, X. Cinnamaldehyde protects VSMCs against ox-LDL-induced proliferation and migration through S arrest and inhibition of p38, JNK/MAPKs and NF-κB. Vascul. Pharmacol., 2018, 108, 57-66.
[http://dx.doi.org/10.1016/j.vph.2018.05.005] [PMID: 29777873]
[36]
Liao, B.C.; Hsieh, C.W.; Liu, Y.C.; Tzeng, T.T.; Sun, Y.W.; Wung, B.S. Cinnamaldehyde inhibits the tumor necrosis factor-α-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-kappaB activation: effects upon IkappaB and Nrf2. Toxicol. Appl. Pharmacol., 2008, 229(2), 161-171.
[http://dx.doi.org/10.1016/j.taap.2008.01.021] [PMID: 18304597]
[37]
Dorri, M.; Hashemitabar, S.; Hosseinzadeh, H. Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chem. Toxicol., 2018, 41(3), 338-351.
[http://dx.doi.org/10.1080/01480545.2017.1417995] [PMID: 29319361]
[38]
Buglak, N.E.; Jiang, W.; Bahnson, E.S.M. Cinnamic aldehyde inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia in Zucker Diabetic Fatty rats. Redox Biol., 2018, 19, 166-178.
[http://dx.doi.org/10.1016/j.redox.2018.08.013] [PMID: 30172101]
[39]
Li, W.; Zhi, W.; Zhao, J.; Li, W.; Zang, L.; Liu, F.; Niu, X. Cinnamaldehyde attenuates atherosclerosis via targeting the IκB/NF-κB signaling pathway in high fat diet-induced ApoE-/- mice. Food Funct., 2019, 10(7), 4001-4009.
[http://dx.doi.org/10.1039/C9FO00396G] [PMID: 31210194]
[40]
Jin, Y.H.; Kim, S.A. 2-Methoxycinnamaldehyde inhibits the TNF-α-induced proliferation and migration of human aortic smooth muscle cells. Int. J. Mol. Med., 2017, 39(1), 191-198.
[http://dx.doi.org/10.3892/ijmm.2016.2818] [PMID: 27922672]
[41]
Kwon, J.Y.; Hong, S.H.; Park, S.D.; Ahn, S.G.; Yoon, J.H.; Kwon, B.M.; Kim, S.A. 2′-Benzoyloxycinnamaldehyde inhibits nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells via regulation of AP-1 pathway. Eur. J. Pharmacol., 2012, 696(1-3), 179-186.
[http://dx.doi.org/10.1016/j.ejphar.2012.09.027] [PMID: 23036374]
[42]
Nour, O.A.A.; Shehatou, G.S.G.; Rahim, M.A.; El-Awady, M.S.; Suddek, G.M. Cinnamaldehyde exerts vasculoprotective effects in hypercholestrolemic rabbits. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(11), 1203-1219.
[http://dx.doi.org/10.1007/s00210-018-1547-8] [PMID: 30058017]
[43]
Min, K.J.; Um, H.J.; Cho, K.H.; Kwon, T.K. Curcumin inhibits oxLDL-induced CD36 expression and foam cell formation through the inhibition of p38 MAPK phosphorylation. Food Chem. Toxicol., 2013, 58, 77-85.
[http://dx.doi.org/10.1016/j.fct.2013.04.008] [PMID: 23603106]
[44]
Sahebkar, A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil. Steril., 2010, 94(5), e75-e76.
[http://dx.doi.org/10.1016/j.fertnstert.2010.07.1071] [PMID: 20797714]
[45]
Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res. (Stuttg.), 2017, 67(4), 244-251.
[http://dx.doi.org/10.1055/s-0043-100019] [PMID: 28158893]
[46]
Iranshahi, M.; Sahebkar, A.; Takasaki, M.; Konoshima, T.; Tokuda, H. Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur. J. Cancer Prev., 2009, 18(5), 412-415.
[http://dx.doi.org/10.1097/CEJ.0b013e32832c389e] [PMID: 19531956]
[47]
Rezaee, R.; Momtazi, A.A.; Monemi, A.; Sahebkar, A. Curcumin: a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol. Res., 2017, 117, 218-227.
[http://dx.doi.org/10.1016/j.phrs.2016.12.037] [PMID: 28042086]
[48]
Abdollahi, E.; Momtazi, A.A.; Johnston, T.P.; Sahebkar, A. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made jack-of-all-trades? J. Cell. Physiol., 2018, 233(2), 830-848.
[http://dx.doi.org/10.1002/jcp.25778] [PMID: 28059453]
[49]
Karimian, M.S.; Pirro, M.; Majeed, M.; Sahebkar, A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev., 2017, 33, 55-63.
[http://dx.doi.org/10.1016/j.cytogfr.2016.10.001] [PMID: 27743775]
[50]
Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Simental-Mendía, L.E.; Majeed, M.; Sahebkar, A. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed. Pharmacother., 2016, 82, 578-582.
[http://dx.doi.org/10.1016/j.biopha.2016.05.037] [PMID: 27470399]
[51]
Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 89-101.
[http://dx.doi.org/10.1080/10408398.2017.1358139] [PMID: 28799796]
[52]
Ricci, C.; Ferri, N. Naturally occurring PDGF receptor inhibitors with potential anti-atherosclerotic properties. Vascul. Pharmacol., 2015, 70, 1-7.
[http://dx.doi.org/10.1016/j.vph.2015.02.002] [PMID: 25737405]
[53]
Zingg, J.M.; Hasan, S.T.; Cowan, D.; Ricciarelli, R.; Azzi, A.; Meydani, M. Regulatory effects of curcumin on lipid accumulation in monocytes/macrophages. J. Cell. Biochem., 2012, 113(3), 833-840.
[http://dx.doi.org/10.1002/jcb.23411] [PMID: 22021079]
[54]
Kapakos, G.; Youreva, V.; Srivastava, A.K. Cardiovascular protection by curcumin: molecular aspects. Indian J. Biochem. Biophys., 2012, 49(5), 306-315.
[PMID: 23259317]
[55]
Zingg, J.M.; Hasan, S.T.; Meydani, M. Molecular mechanisms of hypolipidemic effects of curcumin. Biofactors, 2013, 39(1), 101-121.
[http://dx.doi.org/10.1002/biof.1072] [PMID: 23339042]
[56]
Zhou, Y.; Zhang, T.; Wang, X.; Wei, X.; Chen, Y.; Guo, L.; Zhang, J.; Wang, C. Curcumin modulates macrophage polarization through the inhibition of the toll-like receptor 4 expression and its signaling pathways. Cell. Physiol. Biochem., 2015, 36(2), 631-641.
[http://dx.doi.org/10.1159/000430126] [PMID: 25998190]
[57]
Zingg, J.M.; Hasan, S.T.; Nakagawa, K.; Canepa, E.; Ricciarelli, R.; Villacorta, L.; Azzi, A.; Meydani, M. Modulation of cAMP levels by high-fat diet and curcumin and regulatory effects on CD36/FAT scavenger receptor/fatty acids transporter gene expression. Biofactors, 2017, 43(1), 42-53.
[http://dx.doi.org/10.1002/biof.1307] [PMID: 27355903]
[58]
Khalil, A.A. ur Rahman, U.; Khan, M.R.; Sahar, A.; Mehmood, T.; Khan, M. Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Advances, 2017, 7(52), 32669-32681.
[http://dx.doi.org/10.1039/C7RA04803C]
[59]
Narasimhulu, C.A.; Vardhan, S. Therapeutic potential of Ocimum tenuiflorum as MPO inhibitor with implications for atherosclerosis prevention. J. Med. Food, 2015, 18(5), 507-515.
[http://dx.doi.org/10.1089/jmf.2014.0125] [PMID: 25764050]
[60]
Suanarunsawat, T.; Ayutthaya, W.D.; Songsa, T.; Rattanamahaphoom, J. Anti-lipidemic actions of essential oil extracted from Ocimum sanctum L. leaves in rats fed with high cholesterol diet. J. Appl. Biomed., 2009, 7(1), 45-53.
[http://dx.doi.org/10.32725/jab.2009.004]]
[61]
Huang, M-Z.; Lu, X-R.; Yang, Y-J.; Liu, X-W.; Qin, Z.; Li, J-Y. Cellular metabolomics reveal the mechanism underlying the anti-atherosclerotic effects of aspirin eugenol ester on vascular endothelial dysfunction. Int. J. Mol. Sci., 2019, 20(13), 3165.
[http://dx.doi.org/10.3390/ijms20133165] [PMID: 31261711]
[62]
Ma, N.; Yang, Y.; Liu, X.; Kong, X.; Li, S.; Qin, Z.; Jiao, Z.; Li, J. UPLC-Q-TOF/MS-based metabonomic studies on the intervention effects of aspirin eugenol ester in atherosclerosis hamsters. Sci. Rep., 2017, 7(1), 10544.
[http://dx.doi.org/10.1038/s41598-017-11422-7] [PMID: 28874840]
[63]
Ma, N.; Yang, G-Z.; Liu, X-W.; Yang, Y-J.; Mohamed, I.; Liu, G-R.; Li, J-Y. Impact of aspirin eugenol ester on cyclooxygenase-1, cyclooxygenase-2, c-reactive protein, prothrombin and arachidonate 5-lipoxygenase in healthy rats. Iran. J. Pharm. Res., 2017, 16(4), 1443-1451.
[PMID: 29552053]
[64]
Rusmana, D.; Elisabeth, M.; Widowati, W.; Fauziah, N.; Maesaroh, M. Inhibition of inflammatory agent production by ethanol extract and eugenol of Syzygium aromaticum (L.) flower bud (clove) in LPS-stimulated Raw 264.7 cells. Res. J. Med. Plant, 2015, 9(6), 264-274.
[http://dx.doi.org/10.3923/rjmp.2015.264.274]
[65]
Naderi, G.A.; Asgary, S.; Ani, M.; Sarraf-Zadegan, N.; Safari, M.R. Effect of some volatile oils on the affinity of intact and oxidized low-density lipoproteins for adrenal cell surface receptors. Mol. Cell. Biochem., 2004, 267(1-2), 59-66.
[http://dx.doi.org/10.1023/B:MCBI.0000049365.60694.81] [PMID: 15663186]
[66]
Karam, I.; Yang, Y.J.; Li, J.Y. Hyperlipidemia background and progress. SM Atheroscler. J., 2017, 1(1), 1003.
[67]
Liu, C.; Xie, T.; He, C.; Xu, L.; Liu, Z. Study on the interaction of gingerol and Sudan dye. Adv. Mater. Res., 2011, 236, 2894-2898.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.236-238.2894 ]
[68]
Lee, Y.J.; Jang, Y.N.; Han, Y.M.; Kim, H.M.; Seo, H.S. 6-gingerol normalizes the expression of biomarkers related to hypertension via PPARδ in HUVECs, HEK293, and differentiated 3T3-L1 cells. PPAR Res., 2018, 20186485064
[http://dx.doi.org/10.1155/2018/6485064] [PMID: 30643517]
[69]
Wang, S.; Tian, M.; Yang, R.; Jing, Y.; Chen, W.; Wang, J.; Zheng, X.; Wang, F. 6-Gingerol ameliorates behavioral changes and atherosclerotic lesions in ApoE−/− mice exposed to chronic mild stress. Cardiovasc. Toxicol., 2018, 18(5), 420-430.
[http://dx.doi.org/10.1007/s12012-018-9452-4] [PMID: 29605868]
[70]
Kamato, D.; Babaahmadi Rezaei, H.; Getachew, R.; Thach, L.; Guidone, D.; Osman, N.; Roufogalis, B.; Duke, C.C.; Tran, V.H.; Zheng, W.; Little, P.J. (S)-[6]-Gingerol inhibits TGF-β-stimulated biglycan synthesis but not glycosaminoglycan hyperelongation in human vascular smooth muscle cells. J. Pharm. Pharmacol., 2013, 65(7), 1026-1036.
[http://dx.doi.org/10.1111/jphp.12060] [PMID: 23738730]
[71]
Yusof, Y.A.M. Gingerol and its role in chronic diseases. Adv. Exp. Med. Biol., 2016, 929, 177-207.
[http://dx.doi.org/10.1007/978-3-319-41342-6_8] [PMID: 27771925]
[72]
Seo, C.S.; Kim, O.S.; Kim, Y.; Shin, H.K. Simultaneous quantification and inhibitory effect on LDL oxidation of the traditional Korean medicine, Leejung-tang. BMC Complement. Altern. Med., 2014, 14(1), 3.
[http://dx.doi.org/10.1186/1472-6882-14-3] [PMID: 24383717 ]
[73]
Mao, Z.; Gan, C.; Zhu, J.; Ma, N.; Wu, L.; Wang, L.; Wang, X. Anti-atherosclerotic activities of flavonoids from the flowers of Helichrysum arenarium L. MOENCH through the pathway of anti-inflammation. Bioorg. Med. Chem. Lett., 2017, 27(12), 2812-2817.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.076] [PMID: 28479197]
[74]
Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M.J.; Wielinga, P.Y.; Kooistra, T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis, 2011, 218(1), 44-52.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.023] [PMID: 21601209]
[75]
Luo, Y.; Shang, P.; Li, D.; Chapple, S.J. Luteolin: a flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front. Pharmacol., 2017, 8, 692.
[http://dx.doi.org/10.3389/fphar.2017.00692] [PMID: 29056912]
[76]
Bhaskar, S.; Sudhakaran, P.R.; Helen, A. Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway. Cell. Immunol., 2016, 310, 131-140.
[http://dx.doi.org/10.1016/j.cellimm.2016.08.011] [PMID: 27585526]
[77]
Kong, L.; Luo, C.; Li, X.; Zhou, Y.; He, H. The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits. Lipids Health Dis., 2013, 12(115), 115.
[http://dx.doi.org/10.1186/1476-511X-12-115] [PMID: 23895132]
[78]
Del Rio, D.; Costa, L.G.; Lean, M.E.J.; Crozier, A. Polyphenols and health: what compounds are involved? Nutr. Metab. Cardiovasc. Dis., 2010, 20(1), 1-6.
[http://dx.doi.org/10.1016/j.numecd.2009.05.015] [PMID: 19713090]
[79]
Millar, C.L.; Duclos, Q.; Blesso, C.N. Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function. Adv. Nutr., 2017, 8(2), 226-239.
[http://dx.doi.org/10.3945/an.116.014050] [PMID: 28298268]
[80]
Calabriso, N.; Scoditti, E.; Massaro, M.; Pellegrino, M.; Storelli, C.; Ingrosso, I.; Giovinazzo, G.; Carluccio, M.A. Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression. Eur. J. Nutr., 2016, 55(2), 477-489.
[http://dx.doi.org/10.1007/s00394-015-0865-6] [PMID: 25724173]
[81]
Nickel, T.; Hanssen, H.; Sisic, Z.; Pfeiler, S.; Summo, C.; Schmauss, D.; Hoster, E.; Weis, M. Immunoregulatory effects of the flavonol quercetin in vitro and in vivo. Eur. J. Nutr., 2011, 50(3), 163-172.
[http://dx.doi.org/10.1007/s00394-010-0125-8] [PMID: 20652710]
[82]
Thilakarathna, S.H.; Rupasinghe, H.P.V. Anti-atherosclerotic effects of fruit bioactive compounds : a review of current scientific evidence. Can. J. Plant Sci., 2012, 92, 407-419.
[http://dx.doi.org/10.4141/cjps2011-090]
[83]
Hung, C.H.; Chan, S.H.; Chu, P.M.; Tsai, K.L. Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Mol. Nutr. Food Res., 2015, 59(10), 1905-1917.
[http://dx.doi.org/10.1002/mnfr.201500144] [PMID: 26202455]
[84]
Lee, J.J.; Lee, J.H.; Gu, M.J.; Han, J.H.; Cho, W.K.; Ma, J.Y. Agastache rugosa Kuntze extract, containing the active component rosmarinic acid, prevents atherosclerosis through up-regulation of the cyclin-dependent kinase inhibitors p21WAF1/CIP1 and p27KIP1. J. Funct. Foods, 2017, 30, 30-38.
[http://dx.doi.org/10.1016/j.jff.2016.12.025]
[85]
Naito, Y.; Oka, S.; Yoshikawa, T. Inflammatory response in the pathogenesis of atherosclerosis and its prevention by rosmarinic acid, a functional ingredient of rosemary. Food Fact. Hea. Pro. Dis. Prev., 2003, 851, 208-212.
[http://dx.doi.org/10.1021/bk-2003-0851.ch018]
[86]
Huang, S-S.; Zheng, R-L. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett., 2006, 239(2), 271-280.
[http://dx.doi.org/10.1016/j.canlet.2005.08.025] [PMID: 16239062]
[87]
Ferreira, L.G.; Celotto, A.C.; Capellini, V.K.; Albuquerque, A.A.S.; de Nadai, T.R.; de Carvalho, M.T.M.; Evora, P.R.B. Does rosmarinic acid underestimate as an experimental cardiovascular drug? Acta Cir. Bras., 2013, 28(1), 83-87.
[http://dx.doi.org/10.1590/S0102-86502013001300016] [PMID: 23381830]
[88]
Lin, C-H.; Shen, M-L.; Zhou, N.; Lee, C-C.; Kao, S-T.; Wu, D.C. Protective effects of the polyphenol sesamin on allergen-induced T(H)2 responses and airway inflammation in mice. PLoS One, 2014, 9(4)e96091
[http://dx.doi.org/10.1371/journal.pone.0096091] [PMID: 24755955]
[89]
Loke, W.M.; Proudfoot, J.M.; Hodgson, J.M.; McKinley, A.J.; Hime, N.; Magat, M.; Stocker, R.; Croft, K.D. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol., 2010, 30(4), 749-757.
[http://dx.doi.org/10.1161/ATVBAHA.109.199687] [PMID: 20093625]
[90]
Liu, N.; Wu, C.; Sun, L.; Zheng, J.; Guo, P. Sesamin enhances cholesterol efflux in RAW264.7 macrophages. Molecules, 2014, 19(6), 7516-7527.
[http://dx.doi.org/10.3390/molecules19067516] [PMID: 24914897]
[91]
Narasimhulu, C.A.; Burge, K.Y.; Doomra, M.; Riad, A.; Parthasarathy, S. Primary prevention of atherosclerosis by pretreatment of low-density lipoprotein receptor knockout mice with sesame oil and its aqueous components. Sci. Rep., 2018, 8(1), 12270.
[http://dx.doi.org/10.1038/s41598-018-29849-x] [PMID: 30115989]
[92]
Jun, H.J.; Hoang, M.H.; Yeo, S.K.; Jia, Y.; Lee, S.J. Induction of ABCA1 and ABCG1 expression by the liver X receptor modulator cineole in macrophages. Bioorg. Med. Chem. Lett., 2013, 23(2), 579-583.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.012] [PMID: 23246324]
[93]
Linghu, K.; Lin, D.; Yang, H.; Xu, Y.; Zhang, Y.; Tao, L.; Chen, Y.; Shen, X. Ameliorating effects of 1,8-cineole on LPS-induced human umbilical vein endothelial cell injury by suppressing NF-κB signaling in vitro. Eur. J. Pharmacol., 2016, 789, 195-201.
[http://dx.doi.org/10.1016/j.ejphar.2016.07.039] [PMID: 27455900]
[94]
Cho, K.H. 1,8-cineole protected human lipoproteins from modification by oxidation and glycation and exhibited serum lipid-lowering and anti-inflammatory activity in zebrafish. BMB Rep., 2012, 45(10), 565-570.
[http://dx.doi.org/10.5483/BMBRep.2012.45.10.044] [PMID: 23101510]
[95]
Linghu, K-G.; Wu, G-P.; Fu, L-Y.; Yang, H.; Li, H-Z.; Chen, Y.; Yu, H.; Tao, L.; Shen, X-C. 1, 8-Cineole ameliorates LPS-Induced vascular endothelium dysfunction in mice via PPAR-γ dependent regulation of NF-κB. Front. Pharmacol., 2019, 10, 178.
[http://dx.doi.org/10.3389/fphar.2019.00178] [PMID: 30930772]
[96]
de Andrade, T.U.; Brasil, G.A.; Endringer, D.C.; da Nóbrega, F.R.; de Sousa, D.P. Cardiovascular activity of the chemical constituents of essential oils. Molecules, 2017, 22(9), 1539.
[http://dx.doi.org/10.3390/molecules22091539] [PMID: 28926969]
[97]
Xi, L.; Qian, Z. Pharmacological properties of crocetin and crocin (digentiobiosyl ester of crocetin) from saffron. Nat. Prod. Commun., 2006, 1(1), 65-75.
[http://dx.doi.org/10.1177/1934578X0600100112]
[98]
Tong, L.; Qi, G. Crocin prevents platelet derived growth factor BB induced vascular smooth muscle cells proliferation and phenotypic switch. Mol. Med. Rep., 2018, 17(6), 7595-7602.
[http://dx.doi.org/10.3892/mmr.2018.8854] [PMID: 29620234]
[99]
Alavizadeh, S.H.; Hosseinzadeh, H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem. Toxicol., 2014, 64, 65-80.
[http://dx.doi.org/10.1016/j.fct.2013.11.016] [PMID: 24275090]
[100]
He, S.Y.; Qian, Z.Y.; Tang, F.T.; Wen, N.; Xu, G.L.; Sheng, L. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci., 2005, 77(8), 907-921.
[http://dx.doi.org/10.1016/j.lfs.2005.02.006] [PMID: 15964309]
[101]
Li, J.; Lei, H.T.; Cao, L.; Mi, Y.N.; Li, S.; Cao, Y.X. Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization. Int. Immunopharmacol., 2018, 55, 120-127.
[http://dx.doi.org/10.1016/j.intimp.2017.11.037] [PMID: 29248792]
[102]
Lari, P.; Rashedinia, M.; Abnous, K.; Hosseinzadeh, H. Crocin improves lipid dysregulation in subacute diazinon exposure through ERK1/2 pathway in rat liver. Drug Res. (Stuttg.), 2014, 64(6), 301-305.
[http://dx.doi.org/10.1055/s-0033-1357196] [PMID: 24132704]
[103]
Paulis, G. Inflammatory mechanisms and oxidative stress in prostatitis: the possible role of antioxidant therapy. Res. Rep. Urol., 2018, 10, 75-87.
[http://dx.doi.org/10.2147/RRU.S170400] [PMID: 30271757]
[104]
Opdyke, D.L. Fragrance raw materials monographs. Chenopodium oil. Food Chem. Toxicol., 1976, 14, 713-715.
[105]
Huseini, H.F.; Anvari, M.S.; Khoob, Y.T.; Rabbani, S.; Sharifi, F.; Arzaghi, S.M.; Fakhrzadeh, H. Anti-hyperlipidemic and anti-atherosclerotic effects of Pinus eldarica Medw. nut in hypercholesterolemic rabbits. Daru, 2015, 23(1), 32.
[http://dx.doi.org/10.1186/s40199-015-0114-9] [PMID: 26054525]
[106]
de Lavor, É.M.; Fernandes, A.W.C.; de Andrade Teles, R.B.; Leal, A.E.B.P.; de Oliveira Júnior, R.G.; Gama, E. Silva, M.; de Oliveira, A.P.; Silva, J.C.; de Moura Fontes Araújo, M.T.; Coutinho, H.D.M.; de Menezes, I.R.A.; Picot, L.; da Silva Almeida, J.R.G. Essential oils and their major compounds in the treatment of chronic inflammation: A review of antioxidant potential in preclinical studies and molecular mechanisms. Oxid. Med. Cell. Longev., 2018, 20186468593
[http://dx.doi.org/10.1155/2018/6468593] [PMID: 30671173]
[107]
Jiang, Q.; Hao, R.; Wang, W.; Gao, H.; Wang, C. SIRT1/Atg5/autophagy are involved in the antiatherosclerosis effects of ursolic acid. Mol. Cell. Biochem., 2016, 420(1-2), 171-184.
[http://dx.doi.org/10.1007/s11010-016-2787-x] [PMID: 27514536]
[108]
Lv, Y.Y.; Jin, Y.; Han, G.Z.; Liu, Y.X.; Wu, T.; Liu, P.; Zhou, Q.; Liu, K.X.; Sun, H.J. Ursolic acid suppresses IL-6 induced C-reactive protein expression in HepG2 and protects HUVECs from injury induced by CRP. Eur. J. Pharm. Sci., 2012, 45(1-2), 190-194.
[http://dx.doi.org/10.1016/j.ejps.2011.11.002] [PMID: 22108347]
[109]
Ullevig, S.L.; Zhao, Q.; Zamora, D.; Asmis, R. Ursolic acid protects diabetic mice against monocyte dysfunction and accelerated atherosclerosis. Atherosclerosis, 2011, 219(2), 409-416.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.06.013] [PMID: 21752377]
[110]
Messner, B.; Zeller, I.; Ploner, C.; Frotschnig, S.; Ringer, T.; Steinacher-Nigisch, A.; Ritsch, A.; Laufer, G.; Huck, C.; Bernhard, D. Ursolic acid causes DNA-damage, p53-mediated, mitochondria- and caspase-dependent human endothelial cell apoptosis, and accelerates atherosclerotic plaque formation in vivo. Atherosclerosis, 2011, 219(2), 402-408.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.05.025] [PMID: 21703625]
[111]
Li, Q.; Zhao, W.; Zeng, X. Hao, Zhihui. Ursolic acid attenuates atherosclerosis in ApoE−/− mice: role of LOX-1 mediated by ROS/NF-κB pathway. Molecules, 2018, 23(5), 1101.
[http://dx.doi.org/10.3390/molecules23051101] [PMID: 29735887]
[112]
Tannock, L.R. Ursolic acid effect on atherosclerosis: apples and apples, or apples and oranges? Atherosclerosis, 2011, 219(2), 397-398.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.09.029] [PMID: 21993411]
[113]
Ullevig, S.L.; Kim, H.S.; Nguyen, H.N.; Hambright, W.S.; Robles, A.J.; Tavakoli, S.; Asmis, R. Ursolic acid protects monocytes against metabolic stress-induced priming and dysfunction by preventing the induction of Nox4. Redox Biol., 2014, 2, 259-266.
[http://dx.doi.org/10.1016/j.redox.2014.01.003] [PMID: 24494201]
[114]
Zhang, Q.; Chang, Z.; Wang, Q. Ursane triterpenoids inhibit atherosclerosis and xanthoma in LDL receptor knockout mice. Cardiovasc. Drugs Ther., 2006, 20(5), 349-357.
[http://dx.doi.org/10.1007/s10557-006-0509-4] [PMID: 17136324]
[115]
Leng, S.; Iwanowycz, S.; Saaoud, F.; Wang, J.; Wang, Y.; Sergin, I.; Razani, B.; Fan, D. Ursolic acid enhances macrophage autophagy and attenuates atherogenesis. J. Lipid Res., 2016, 57(6), 1006-1016.
[http://dx.doi.org/10.1194/jlr.M065888] [PMID: 27063951]
[116]
Wang, Y.L.; Wang, Z.J.; Shen, H.L.; Yin, M.; Tang, K.X. Effects of artesunate and ursolic acid on hyperlipidemia and its complications in rabbit. Eur. J. Pharm. Sci., 2013, 50(3-4), 366-371.
[http://dx.doi.org/10.1016/j.ejps.2013.08.003] [PMID: 23954455]
[117]
Liu, D.S.; Gao, W.; Liang, E.S.; Wang, S.L.; Lin, W.W.; Zhang, W.D.; Jia, Q.; Guo, R.C.; Zhang, J.D. Effects of allicin on hyperhomocysteinemia-induced experimental vascular endothelial dysfunction. Eur. J. Pharmacol., 2013, 714(1-3), 163-169.
[http://dx.doi.org/10.1016/j.ejphar.2013.05.038] [PMID: 23792140]
[118]
Chan, J.Y.; Yuen, A.C.; Chan, R.Y.; Chan, S.W. A review of the cardiovascular benefits and antioxidant properties of allicin. Phytother. Res., 2013, 27(5), 637-646.
[http://dx.doi.org/10.1002/ptr.4796] [PMID: 22888009]
[119]
El-Gamal, E-K.M.M.; El-Gazzar, U.B.M. Biochemical therapeutic benefits of garlic on atherosclerosis induced by soybean in rats. Biochem. Mol. Biol. J., 2017, 3(19), 1-6.
[http://dx.doi.org/10.21767/2471-8084.100047 ]
[120]
Kim, J.; Lee, K.P.; Lee, D.W.; Lim, K. Piperine enhances carbohydrate/fat metabolism in skeletal muscle during acute exercise in mice. Nutr. Metab. (Lond.), 2017, 14(1), 43.
[http://dx.doi.org/10.1186/s12986-017-0194-2] [PMID: 28680454]
[121]
Matsuda, D.; Ohte, S.; Ohshiro, T.; Jiang, W.; Rudel, L.; Hong, B.; Si, S.; Tomoda, H. Molecular target of piperine in the inhibition of lipid droplet accumulation in macrophages. Biol. Pharm. Bull., 2008, 31(6), 1063-1066.
[http://dx.doi.org/10.1248/bpb.31.1063] [PMID: 18520030]
[122]
Wang, L.; Palme, V.; Rotter, S.; Schilcher, N.; Cukaj, M.; Wang, D.; Ladurner, A.; Heiss, E.H.; Stangl, H.; Dirsch, V.M.; Atanasov, A.G. Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP-1-derived macrophages. Mol. Nutr. Food Res., 2017, 61(4)1500960
[http://dx.doi.org/10.1002/mnfr.201500960] [PMID: 27862930]
[123]
Mueller, M.; Hobiger, S.; Jungbauer, A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem., 2010, 122(4), 987-996.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.041]
[124]
Son, D.J.; Kim, S.Y.; Han, S.S.; Kim, C.W.; Kumar, S.; Park, B.S.; Lee, S.E.; Yun, Y.P.; Jo, H.; Park, Y.H. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling. Biochem. Biophys. Res. Commun., 2012, 427(2), 349-354.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.061] [PMID: 22995306]
[125]
Bezerra, D.P.; Pessoa, C.; de Moraes, M.O.; Saker-Neto, N.; Silveira, E.R.; Costa-Lotufo, L.V. Overview of the therapeutic potential of piplartine (piperlongumine). Eur. J. Pharm. Sci., 2013, 48(3), 453-463.
[http://dx.doi.org/10.1016/j.ejps.2012.12.003] [PMID: 23238172]
[126]
Vazquez-Prieto, M.A.; Miatello, R.M. Organosulfur compounds and cardiovascular disease. Mol. Aspects Med., 2010, 31(6), 540-545.
[http://dx.doi.org/10.1016/j.mam.2010.09.009] [PMID: 20940019]
[127]
Evans, P.C. The influence of sulforaphane on vascular health and its relevance to nutritional approaches to prevent cardiovascular disease. EPMA J., 2011, 2(1), 9-14.
[http://dx.doi.org/10.1007/s13167-011-0064-3] [PMID: 23199123]
[128]
Conzatti, A.; Fróes, F.C.; Schweigert Perry, I.D.; Souza, C.G.; Perry, S.; De Souza, C.G. Clinical and molecular evidence of the consumption of broccoli, glucoraphanin and sulforaphane in humans. Nutr. Hosp., 2014, 31(2), 559-569.
[http://dx.doi.org/10.3305/nh.2015.31.2.7685] [PMID: 25617536]
[129]
Kwon, J-S.; Joung, H.; Kim, Y.S.; Shim, Y.S.; Ahn, Y.; Jeong, M.H.; Kee, H.J. Sulforaphane inhibits restenosis by suppressing inflammation and the proliferation of vascular smooth muscle cells. Atherosclerosis, 2012, 225(1), 41-49.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.07.040] [PMID: 22898620]
[130]
Shehatou, G.S.G.; Suddek, G.M. Sulforaphane attenuates the development of atherosclerosis and improves endothelial dysfunction in hypercholesterolemic rabbits. Exp. Biol. Med. (Maywood), 2016, 241(4), 426-436.
[http://dx.doi.org/10.1177/1535370215609695] [PMID: 26490346]
[131]
Shehatou, G.S.G.; Suddek, G.M. Sulforaphane attenuates the development of atherosclerosis and improves endothelial dysfunction in hypercholesterolemic rabbits. Exp. Biol. Med. (Maywood), 2015, 2, 1-11.
[http://dx.doi.org/10.1177/1535370215609695] [PMID: 26490346]
[132]
Zhu, H.; Jia, Z.; Strobl, J.S.; Ehrich, M.; Misra, H.P.; Li, Y. Potent induction of total cellular and mitochondrial antioxidants and phase 2 enzymes by cruciferous sulforaphane in rat aortic smooth muscle cells: cytoprotection against oxidative and electrophilic stress. Cardiovasc. Toxicol., 2008, 8(3), 115-125.
[http://dx.doi.org/10.1007/s12012-008-9020-4] [PMID: 18607771]
[133]
Hung, C.N.; Huang, H.P.; Wang, C.J.; Liu, K.L.; Lii, C.K. Sulforaphane inhibits TNF-α-induced adhesion molecule expression through the Rho A/ROCK/NF-κB signaling pathway. J. Med. Food, 2014, 17(10), 1095-1102.
[http://dx.doi.org/10.1089/jmf.2013.2901] [PMID: 25238321]
[134]
Juurlink, B.H.J. Dietary Nrf2 activators inhibit atherogenic processes. Atherosclerosis, 2012, 225(1), 29-33.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.08.032] [PMID: 22986182]
[135]
Huang, C.S.; Lin, A.H.; Liu, C.T.; Tsai, C.W.; Chang, I.S.; Chen, H.W.; Lii, C.K. Isothiocyanates protect against oxidized LDL-induced endothelial dysfunction by upregulating Nrf2-dependent antioxidation and suppressing NFκB activation. Mol. Nutr. Food Res., 2013, 57(11), 1918-1930.
[http://dx.doi.org/10.1002/mnfr.201300063] [PMID: 23836589]
[136]
Yoo, S.H.; Lim, Y.; Kim, S.J.; Yoo, K.D.; Yoo, H.S.; Hong, J.T.; Lee, M.Y.; Yun, Y.P. Sulforaphane inhibits PDGF-induced proliferation of rat aortic vascular smooth muscle cell by up-regulation of p53 leading to G1/S cell cycle arrest. Vascul. Pharmacol., 2013, 59(1-2), 44-51.
[http://dx.doi.org/10.1016/j.vph.2013.06.003] [PMID: 23810908]
[137]
Matsui, T.; Nakamura, N.; Ojima, A.; Nishino, Y.; Yamagishi, S-I. Sulforaphane reduces advanced glycation end products (AGEs)-induced inflammation in endothelial cells and rat aorta. Nutr. Metab. Cardiovasc. Dis., 2016, 26(9), 797-807.
[http://dx.doi.org/10.1016/j.numecd.2016.04.008] [PMID: 27212619]
[138]
Panahi, Y.; Khalili, N.; Hosseini, M.S.; Abbasinazari, M.; Sahebkar, A. Lipid-modifying effects of adjunctive therapy with curcuminoids-piperine combination in patients with metabolic syndrome: results of a randomized controlled trial. Complement. Ther. Med., 2014, 22(5), 851-857.
[http://dx.doi.org/10.1016/j.ctim.2014.07.006] [PMID: 25440375]
[139]
Cicero, A.F.; Sahebkar, A.; Fogacci, F.; Bove, M.; Giovannini, M.; Borghi, C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: a double-blind, placebo-controlled clinical trial. Eur. J. Nutr., 2020, 59(2), 477-483.
[http://dx.doi.org/10.1007/s00394-019-01916-7] [PMID: 30796508]
[140]
Gao, W.; Sun, Y.; Cai, M.; Zhao, Y.; Cao, W.; Liu, Z.; Cui, G.; Tang, B. Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis. Nat. Commun., 2018, 9(1), 231.
[http://dx.doi.org/10.1038/s41467-017-02657-z] [PMID: 29335450]
[141]
El-Sheakh, A.R.; Ghoneim, H.A.; Suddek, G.M.; Ammar, E.S.M. Attenuation of oxidative stress, inflammation and endothelial dysfunction in hypercholesterolemic rabbits by allicin. Can. J. Physiol. Pharmacol., 2016, 94(2), 216-224.
[http://dx.doi.org/10.1139/cjpp-2015-0267] [PMID: 26618400]
[142]
Liu, D.S.; Wang, S.L.; Li, J.M.; Liang, E.S.; Yan, M.Z.; Gao, W. Allicin improves carotid artery intima-media thickness in coronary artery disease patients with hyperhomocysteinemia. Exp. Ther. Med., 2017, 14(2), 1722-1726.
[http://dx.doi.org/10.3892/etm.2017.4698] [PMID: 28810641]
[143]
Vijayakumar, R.S.; Surya, D.; Senthilkumar, R.; Nalini, N. Hypolipidemic effect of black pepper (Piper nigrum Linn.) in rats fed high fat diet. J. Clin. Biochem. Nutr., 2002, 32, 31-42.
[http://dx.doi.org/10.3164/jcbn.32.31]
[144]
Chen, S.; Tang, Y.; Qian, Y.; Chen, R.; Zhang, L.; Wo, L.; Chai, H. Allicin prevents H2O2-induced apoptosis of HUVECs by inhibiting an oxidative stress pathway. BMC Complement. Altern. Med., 2014, 14(1), 321.
[http://dx.doi.org/10.1186/1472-6882-14-321] [PMID: 25174844]
[145]
Gonen, A.; Harats, D.; Rabinkov, A.; Miron, T.; Mirelman, D.; Wilchek, M.; Weiner, L.; Ulman, E.; Levkovitz, H.; Ben-Shushan, D.; Shaish, A. The antiatherogenic effect of allicin: possible mode of action. Pathobiology, 2005, 72(6), 325-334.
[http://dx.doi.org/10.1159/000091330] [PMID: 16582584]
[146]
Park, S.H.; Sung, Y.Y.; Nho, K.J.; Kim, H.K. Protective activity ethanol extract of the fruits of Illicium verum against atherogenesis in apolipoprotein E knockout mice. BMC Complement. Altern. Med., 2015, 15(1), 232.
[http://dx.doi.org/10.1186/s12906-015-0750-0] [PMID: 26174316]
[147]
de Cássia da Silveira, E. Sá, R.; Andrade, L.N.; de Oliveira, R.D.R.B.; de Sousa, D.P. A review on anti-inflammatory activity of phenylpropanoids found in essential oils. Molecules, 2014, 19(2), 1459-1480.
[http://dx.doi.org/10.3390/molecules19021459] [PMID: 24473208]
[148]
Aggarwal, B.B.; Prasad, S.; Reuter, S.; Kannappan, R.; Yadev, V.R.; Park, B.; Kim, J.H.; Gupta, S.C.; Phromnoi, K.; Sundaram, C.; Prasad, S.; Chaturvedi, M.M.; Sung, B. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “reverse pharmacology” and “bedside to bench” approach. Curr. Drug Targets, 2011, 12(11), 1595-1653.
[http://dx.doi.org/10.2174/138945011798109464] [PMID: 21561421]
[149]
Chuengsamarn, S.; Rattanamongkolgul, S.; Phonrat, B.; Tungtrongchitr, R.; Jirawatnotai, S. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: a randomized controlled trial. J. Nutr. Biochem., 2014, 25(2), 144-150.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.013] [PMID: 24445038]
[150]
Daneshi-Maskooni, M.; Keshavarz, S.A.; Mansouri, S.; Qorbani, M.; Alavian, S.M.; Badri-Fariman, M.; Jazayeri-Tehrani, S.A.; Sotoudeh, G. The effects of green cardamom on blood glucose indices, lipids, inflammatory factors, paraxonase-1, sirtuin-1, and irisin in patients with nonalcoholic fatty liver disease and obesity: study protocol for a randomized controlled trial. Trials, 2017, 18(1), 260.
[http://dx.doi.org/10.1186/s13063-017-1979-3] [PMID: 28592311]
[151]
Murad, S.; Khokhar, A.Q.; Marwat, I.U.R.; Saif, S.; Abbasi, G.M.; Shafique, A.; Ghaffar, A. Flavoring agents used in cuisine may be used as treatment of disease. Int. J. Res. Pharm. Biosci., 2019, 6(7), 14-17.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy