Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Biomedical Applications and Patents on Metallic Nanoparticles

Author(s): Geetanjali Singh, Pramod K. Sharma and Rishabha Malviya*

Volume 11, Issue 2, 2021

Published on: 29 April, 2020

Page: [153 - 162] Pages: 10

DOI: 10.2174/2210681210999200430005827

Price: $65

Abstract

Aim: The manuscript aims to discuss the advanced biomedical applications and patents on metallic nanoparticles.

Discussion: The preparation of metallic nanoparticles and their application are an influential area for research. There are various physical and chemical methods (viz. chemical reduction, thermal decomposition, etc.) for synthesizing silver nanoparticles; biological methods have been suggested as possible eco-friendly alternatives. The synthesis of metallic nanoparticles encounters many problems including solvent toxicity, the formation of hazardous by-products and consumption of energy. So it is important to design eco-friendly benign procedures for the synthesis of metallic nanoparticles. It is investigated from the study that metallic nanoparticles are used in the treatment of different diseases. Metallic nanoparticles are also used in the detection and therapy of cancer. These also have antifungal, antibacterial, anti-inflammatory, antiviral and anti-angiogenic properties.

Conclusion: It is concluded from the manuscript that the synthesis of metallic nanoparticles is easy, eco-friendly, less time consuming and affordable. The metallic nanoparticles used in the biomedical field have an emerging future in nanoscience and nanotechnology.

Keywords: Metallic nanoparticles, cancer therapy, gold nanoparticles, silver nanoparticles, antibacterial activity, antimicrobial activity, green synthesis.

Graphical Abstract
[1]
Ocsoy, I.; Tasdemir, D.; Mazicioglu, S.; Celik, C.; Kat, A.; Ulgen, F. Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Mater. Lett., 2018, 212, 45-50.
[http://dx.doi.org/10.1016/j.matlet.2017.10.068]
[2]
Gao, F.; Yuan, Q.; Gao, L.; Cai, P.; Zhu, H.; Liu, R.; Wang, Y.; Wei, Y.; Huang, G.; Liang, J.; Gao, X. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials, 2014, 35(31), 8854-8866.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.004] [PMID: 25064805]
[3]
Cameron, S.J.; Hosseinian, F.; Willmore, W.G. A current overview of the biological and cellular effects of nanosilver. Int. J. Mol. Sci., 2018, 19(7), 1-40.
[http://dx.doi.org/10.3390/ijms19072030] [PMID: 30002330]
[4]
Berry, C.C. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys., 2009, 42(22), 224003.
[http://dx.doi.org/10.1088/0022-3727/42/22/224003]
[5]
Sun, C.; Lee, J.S.; Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 2008, 60(11), 1252-1265.
[http://dx.doi.org/10.1016/j.addr.2008.03.018] [PMID: 18558452]
[6]
Majeed, A.; Ullah, W.; Anwar, W.A.; Shuaib, A.; Ilyas, U.; Khalid, P.; Mustafa, G.; Junaid, M.; Faheem, B.; Ali, S. Cost-effective biosynthesis of silver nanoparticles using different organs of plants and their antimicrobial applications: A review. Mater. Technol., 2016, 33(5), 313-320.
[http://dx.doi.org/10.1080/10667857.2015.1108065]
[7]
Sharma, A.; Sharma, P.K.; Malviya, R. Utilization of plant derived metallic nanoparticles for biomedical applications. Nat. Prod. J., 2020. [Epub ahead of print].
[http://dx.doi.org/10.2174/2210315510666200227110852]
[8]
Ahmad, M.Z.; Akhter, S.; Jain, G.K.; Rahman, M.; Pathan, S.A.; Ahmad, F.J.; Khar, R.K. Metallic nanoparticles: Technology overview & drug delivery applications in oncology. Expert Opin. Drug Deliv., 2010, 7(8), 927-942.
[http://dx.doi.org/10.1517/17425247.2010.498473] [PMID: 20645671]
[9]
Patil, M.P.; Kim, G.D. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf. B Biointerfaces, 2018, 172, 487-495.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.007] [PMID: 30205339]
[10]
Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73(6), 1712-1720.
[http://dx.doi.org/10.1128/AEM.02218-06] [PMID: 17261510]
[11]
Johnson, R.C.; Li, J.; Hupp, J.T.; Schatz, G.C. Hyper-Rayleigh scattering studies of silver, copper, and platinum nanoparticle suspensions. Chem. Phys. Lett., 2002, 356(5-6), 534-540.
[http://dx.doi.org/10.1016/S0009-2614(02)00407-4]
[12]
Eustis, S.; el-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev., 2006, 35(3), 209-217.
[http://dx.doi.org/10.1039/B514191E] [PMID: 16505915]
[13]
Pissuwan, D.; Niidome, T.; Cortie, M.B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release, 2011, 149(1), 65-71.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.006] [PMID: 20004222]
[14]
Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 2008, 60(11), 1307-1315.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[15]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2017, 12, 908.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[16]
Biswas, A.; Bayer, I.S.; Biris, A.S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci., 2012, 170(1-2), 2-27.
[http://dx.doi.org/10.1016/j.cis.2011.11.001] [PMID: 22154364]
[17]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406.
[PMID: 26339255]
[18]
Din, M.I.; Rehan, R. Synthesis, characterization, and applications of copper nanoparticles. Anal. Lett., 2017, 50(1), 50-62.
[http://dx.doi.org/10.1080/00032719.2016.1172081]
[19]
Saratale, R.G.; Saratale, G.D.; Shin, H.S.; Jacob, J.M.; Pugazhendhi, A.; Bhaisare, M.; Kumar, G. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: Current knowledge, their agricultural and environmental applications. Environ. Sci. Pollut. Res. Int., 2018, 25(11), 10164-10183.
[http://dx.doi.org/10.1007/s11356-017-9912-6] [PMID: 28815433]
[20]
Gayda, G.; Demkiv, O.; Stasyuk, N.; Serkiz, R.; Lootsik, M.; Errachid, A.; Nisnevitch, M. Metallic nanoparticles obtained via green synthesis as a platform for biosensor construction. Appl. Sci. (Basel), 2019, 9(4), 1-16.
[http://dx.doi.org/10.3390/app9040720]
[21]
Paul, P.; Pattnik, Y.; Panda, P.K.; Jha, E.; Verma, S.K.; Suar, M. Green synthesized metal oxide Nanomaterials photocatalysis in combating bacterial infection. Green Methods Wastewater Treat., 2019, 35, 73-86.
[http://dx.doi.org/10.1007/978-3-030-16427-0_4]
[22]
Parveen, K.; Banse, V.; Ledwani, L. Green synthesis of nanoparticles: Their advantages and disadvantages. Am. Inst. Phys., 2016, 1724, 1-7.
[http://dx.doi.org/10.1063/1.4945168]
[23]
Abdel-Shafy, H.I.; Mansour, M.S. Green Metal Nanoparticles: Synthesis, Characterization and their Applications; Kanchi, S; Ahmed, S., Ed.; John Wiley & Sons: USA, 2018, p. 321.
[http://dx.doi.org/10.1002/9781119418900.ch11]
[24]
Naimi-Shamel, N.; Pourali, P.; Dolatabadi, S. Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J. Mycol. Med., 2019, 29(1), 7-13.
[http://dx.doi.org/10.1016/j.mycmed.2019.01.005] [PMID: 30709721]
[25]
Awwad, M.A.; Salem, N.M.; Aqarbeh, M.M.; Abdulaziz, F.M. Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation. Int. J. Chem., 2020, 6(1), 42-48.
[26]
Rashid, I. UlHaq, R.; Al-Mdallal, Q.M. Aligned magnetic field effects on water based metallic nanoparticles over a stretching sheet with PST and thermal radiation effects. Phys. E, 2017, 89, 33-42.
[http://dx.doi.org/10.1016/j.physe.2017.01.029]
[27]
Wakif, A.; Boulahia, Z.; Mishra, S.R.; Rashidi, M.M.; Sehaqui, R. Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model. Eur. Phys. J. Plus, 2018, 133(5), 1-16.
[http://dx.doi.org/10.1140/epjp/i2018-12037-7]
[28]
Meva, F.E.; Mbeng, J.O.A.; Ebongue, C.O.; Schlusener, C.; Kokcam-Demir, U.; Ntoumba, A.A.; Kedi, P.B.E.; Elanga, E.; Loudang, E.R.N.; Nko’o, M.H.J.; Tchoumbi, E.; Deli, V.; Nanga, C.C.; Mpondo, E.A.M.; Janiak, C. Stachytarpheta cayennensis aqueous extract, a new bioreactor towards silver nanoparticles for biomedical applications. J. Biomater. Nanobiotechnol., 2019, 10, 102-119.
[http://dx.doi.org/10.4236/jbnb.2019.102006]
[29]
Das, A.; Roy, A.; Kumar, S.R.; Lakshmi, T. Anti-inflammatory activity of turmeric oil medicated silver nanoparticles. Res. J. Pharm. Tech., 2019, 12(7), 3507-3510.
[http://dx.doi.org/10.5958/0974-360X.2019.00596.1]
[30]
Muthuraman, M.S.; Nithya, S.; Vinoth Kumar, V.; Christena, L.R.; Vadivel, V.; Subramanian, N.S.; Anthony, S.P. Green synthesis of silver nanoparticles using Nardostachys jatamansi and evaluation of its anti-biofilm effect against classical colonizers. Microb. Pathog., 2019, 126, 1-5.
[http://dx.doi.org/10.1016/j.micpath.2018.10.024] [PMID: 30352266]
[31]
Fatimah, I. IrganiAftrid, Z.H.V. Characteristics and antibacterial activity of green synthesized silver nanoparticles using red spinach (Amaranthus tricolor L.) leaf extract. Green Chem. Lett. Rev., 2019, 12(1), 25-30.
[http://dx.doi.org/10.1080/17518253.2019.1569729]
[32]
Jemilugba, O.T.; Sakho, E.H.M.; Parani, S.; Mavumengwana, V.; Oluwafemi, O.S. Green synthesis of silver nanoparticles using Combretum erythrophyllum leaves and its antibacterial activities. Colloid Interfac Sci., 2019, 31, 1-6.
[33]
Alyousef, A.A.; Arshad, M.; Al-Akeel, R.; Alqasim, A. Biogenic silver nanoparticles by Myrtuscommunis plant extract: Biosynthesis, characterization and antibacterial activity. Biotechnol. Biotec. Eq., 2019, 33(1), 931-936.
[34]
Rolim, W.R.; Pelegrino, M.T.; de Araujo Lima, B.; Ferraz, L.S.; Costa, F.N.; Bernardes, J.S.; Seabra, A.B. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci., 2018, 463, 66-74.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.203]
[35]
Behravan, M.; Hossein Panahi, A.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol., 2019, 124, 148-154.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.101] [PMID: 30447360]
[36]
Ahmed, S. Saifullah; Ahmad, M.; Swami, B. L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci., 2016, 9(1), 1-7.
[37]
Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci., 2015, 6(3), 399-408.
[http://dx.doi.org/10.1007/s13204-015-0449-z]
[38]
Wu, T.; Duan, X.; Hu, C.; Wu, C.; Chen, X.; Huang, J.; Liu, J.; Cui, S. Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 512-523.
[http://dx.doi.org/10.1080/21691401.2018.1560305] [PMID: 30810403]
[39]
Dudhane, A.A.; Waghmode, S.R.; Dama, L.B.; Mhaindarkar, V.P.; Sonawane, A.; Katariya, S. Synthesis and characterization of gold nanoparticles using plant extract of Terminalia arjuna with antibacterial activity. Int. J. Nanosci. Nanotechnol., 2019, 15(2), 75-82.
[40]
Patil, M.P.; Seo, Y.B.; Lim, H.K.; Kim, G.D. Biofabrication of gold nanoparticles using Agrimonia pilosa extract and their antioxidant and cytotoxic activity. Green Chem. Lett. Rev., 2019, 12(3), 208-216.
[http://dx.doi.org/10.1080/17518253.2019.1623927]
[41]
Sun, B.; Hu, N.; Han, L.; Pi, Y.; Gao, Y.; Chen, K. Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 4012-4019.
[http://dx.doi.org/10.1080/21691401.2019.1575844] [PMID: 31591910]
[42]
Agarwal, H.; Shanmugam, V.K. Synthesis and optimization of zinc oxide nanoparticles using Kalanchoe pinnata towards the evaluation of its anti-inflammatory activity. J. Drug Deliv. Sci. Technol., 2019, 54, 1-38.
[http://dx.doi.org/10.1016/j.jddst.2019.101291]
[43]
Agarwal, H.; Shanmugam, V. A review on anti-inflammatory activity of green synthesized Zinc Oxide nanoparticle: Mechanism-based approach. Bioorg. Chem., 2019, 103423, 1-35.
[PMID: 31776035]
[44]
Shobha, N.; Nanda, N.; Giresha, A.S.; Manjappa, P.;P,S.; Dharmappa, K.K.; Nagabhushana, B.M. Synthesis and characterization of Zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater. Sci. Eng. C, 2019, 97, 842-850.
[http://dx.doi.org/10.1016/j.msec.2018.12.023] [PMID: 30678976]
[45]
Rahman, M.; Ahmad, M.Z.; Kazmi, I.; Akhter, S.; Afzal, M.; Gupta, G.; Jalees Ahmed, F.; Anwar, F. Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opin. Drug Deliv., 2012, 9(4), 367-381.
[http://dx.doi.org/10.1517/17425247.2012.668522] [PMID: 22400808]
[46]
Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[47]
Lopez, E.S.; Gomes, D.; Esteruelas, G. Meaal based nanoparticles as antimicrobial agents: An overview. Nanomaterials (Basel), 2020, 10, 292.
[http://dx.doi.org/10.3390/nano10020292]
[48]
Her, S.; Jaffray, D.A.; Allen, C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv. Drug Deliv. Rev., 2017, 109, 84-101.
[http://dx.doi.org/10.1016/j.addr.2015.12.012] [PMID: 26712711]
[49]
Rao, P.V.; Nallappan, D.; Madhavi, K.; Rahman, S.; Jun, Wei; L., Gan S.H. Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxid. Med. Cell. Longev., 2016, 2016, 3685671.
[http://dx.doi.org/10.1155/2016/3685671] [PMID: 27057273]
[50]
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine (Lond.), 2010, 6(2), 257-262.
[http://dx.doi.org/10.1016/j.nano.2009.07.002] [PMID: 19616126]
[51]
Vines, J.B.; Yoon, J.H.; Ryu, N.E.; Lim, D.J.; Park, H. Gold nanoparticles for photothermal cancer therapy. Front Chem., 2019, 7, 167.
[http://dx.doi.org/10.3389/fchem.2019.00167] [PMID: 31024882]
[52]
Darweesh, R.S.; Ayoub, N.M.; Nazzal, S. Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications. Int. J. Nanomed., 2019, 14, 7643-7663.
[http://dx.doi.org/10.2147/IJN.S223941] [PMID: 31571869]
[53]
Schröfel, A.; Kratošová, G.; Šafařík, I.; Šafaříková, M.; Raška, I.; Shor, L.M. Applications of biosynthesized metallic nanoparticles - a review. Acta Biomater., 2014, 10(10), 4023-4042.
[http://dx.doi.org/10.1016/j.actbio.2014.05.022] [PMID: 24925045]
[54]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci., 2008, 23(3), 217-228.
[http://dx.doi.org/10.1007/s10103-007-0470-x] [PMID: 17674122]
[55]
Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev., 2012, 41(6), 2256-2282.
[http://dx.doi.org/10.1039/C1CS15166E] [PMID: 22130549]
[56]
Bosetti, M.; Massè, A.; Tobin, E.; Cannas, M. Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity. Biomaterials, 2002, 23(3), 887-892.
[http://dx.doi.org/10.1016/S0142-9612(01)00198-3] [PMID: 11771707]
[57]
Kotcherlakota, R.; Das, S.; Patra, C.R. Therapeutic applications of green-synthesized silver nanoparticles; green synthesis, characterization and applications of nanoparticles 2019, 2019, 389-428.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00017-4]
[58]
Kumar, C.G.; Poornachandra, Y. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles. Colloids Surf. B Biointerfaces, 2015, 125, 110-119.
[http://dx.doi.org/10.1016/j.colsurfb.2014.11.025] [PMID: 25460601]
[59]
Gurunathan, S.; Han, J.W.; Eppakayala, V.; Jeyaraj, M.; Kim, J.H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res. Int., 2013, 2013(535696), 535796.
[http://dx.doi.org/10.1155/2013/535796] [PMID: 23936814]
[60]
Ruparelia, J.P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater., 2008, 4(3), 707-716.
[http://dx.doi.org/10.1016/j.actbio.2007.11.006] [PMID: 18248860]
[61]
Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv., 2010, 7(9), 1063-1077.
[http://dx.doi.org/10.1517/17425247.2010.502560] [PMID: 20716019]
[62]
Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int., 2017, 43(1), 907-914.
[http://dx.doi.org/10.1016/j.ceramint.2016.10.051]
[63]
Espitia, P.J.P.; Ferreira Soares, N.D.F.; Reis Coimbra, J.S.D.; Andrade, N.J.D.; Cruz, R.S.; Alves Medeiros, E.A. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol., 2012, 5(5), 1447-1464.
[http://dx.doi.org/10.1007/s11947-012-0797-6]
[64]
Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C, 2014, 44, 278-284.
[http://dx.doi.org/10.1016/j.msec.2014.08.031] [PMID: 25280707]
[65]
Garcia, M.A. Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D Appl. Phys., 2011, 44(28), 1-20.
[http://dx.doi.org/10.1088/0022-3727/44/28/283001]
[66]
Bishop, P.T.; Marsh, P.A.; Suzanne Thiebaut, B.J.; Wagland, A.M. Gold nanoparticles. International Patent, WO01/68596A1, 2001.
[67]
Bishop, P.T.; Marsh, P.A.; Suzanne Thiebaut, B.J.; Wagland, A.M. Method of decorating a substrate by application of gold nanoparticles., U.S. Patent 6,875,465 B2, 2005.
[68]
Ah, C.S.; Yun, W.S.; Yun, Y.J.; Ha, D.H. Gold nanoparticles and methods of synthesizing the same., U.S. Patent 2006/0021468A1, 2006.
[69]
Brisson, A.; Mornet, S. Functionalization of gold nanoparticles with oriented proteins, application to the high-density labelling of cell membranes. U.S. Patent 2009/0098574 A1, 2009.
[70]
Pop, C.V. Transport and delivery of Glutathione into human cells using gold nanoparticles. U.S. Patent 2011/0111002 A1, 2011.
[71]
Guo, J.W.; He, X.M.; Wang, C.; Liu, Z.X.; Pu, W.H.; Li, J.J. Method for synthesizing gold nanoparticles. U.S. Patent 2012/0046482 A1, 2012.
[72]
Mirkin, C.A.; Omary, R.A.; Eifler, A.; Mouli, S.K.; McMahon, K.; Larson, A.; Thaxton, C.S. Localized delivery of gold nanoparticles for therapeutic and diagnostic applications. U.S. Patent 2012/0277283 A1, 2012.
[73]
Sun, D.; Chen, H.; Qian, W.; Che, Y.; Ito, M.; Paholak, H.; Sansanaphongpricha, K. 4 Conjugated gold nanoparticles., U.S. Patent 9234,078 B2, 2016.
[74]
Chi, H.A.; Tian, D.A. Application of gold nanoparticles bonded directly to luminol in immuneassay., European Patent 2437048B1, 2016.
[75]
Chang, Y.C.; Schmittou, E.R.; Cowdery-corvan, P.J.; Jagannathan, S. Silver nanoparticles made in solvent. U.S. Patent 7,329,301 B2, 2008.
[76]
Park, S.B. Nanosoap containing silver nanoparticles. U.S. Patent 2010/0056485 A1, 2010.
[77]
Meledandri, C.J.; Schwass, D.R.; Cotton, G.C.; Duncan, W.J. Antimicrobial gel containing silver nanoparticles U.S. Patent 2019/0000759A1, 2019.
[78]
Gao, X.; Kong, L. Treatment of cancer with selenium nanoparticles. U.S. Patent 2011/0262564 A1, 2011.
[79]
Pan, W.; Vail, A. Electrochemical synthesis of selenium nanoaprticles. U.S. Patent 2014/0158021 A1, 2014.
[80]
Pi, J.; Cai, J.; Jin, H. Oridonin functionalized selenium nanoparticles and method of preparation thereof. U.S. Patent 9,624,237 B2, 2017.
[81]
Zhong, C.J.; Mott, D. Oxidation –resistant, ligand-cappaed copper nanoparticles and methods for fabricating them. U.S. Patent 2008/0278181 A1, 2008.
[82]
Omary, M.A.; Hu, Z.; Marpu, S.; Elbjeirami, O. Gold, silver, and copper nanoparticles stabilized in biocompatible aqueous media U.S. Patent 2010/0172997 A1, 2010.
[83]
Lee, Y.; Joung, J.W. Method for manufacturing copper nanoparticles using microwaves U.S. Patent 8,864,871 B2, 2014.
[84]
Shah, M.R.; Hoyer, M.K.; Klein, C.; Baldassare, J. Zinc nanoparticles for the treatment of infections and cancer., International Patent WO2011022350A1, 2011.
[85]
Cheon, J.; Jun, Y.W.; Jang Jung, J.T. Magnetic resonance imaging contrast agents comprising zinc- containg magnetic metal oxide nanoparticles U.S. Patent 9,375,495 B2, 2016.
[86]
Woźniak, A.; Malankowska, A.; Nowaczyk, G.; Grześkowiak, B.F.; Tuśnio, K.; Słomski, R.; Zaleska-Medynska, A.; Jurga, S. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med., 2017, 28(6), 92.
[http://dx.doi.org/10.1007/s10856-017-5902-y] [PMID: 28497362]
[87]
Amini, S.M. Preparation of antimicrobial metallic nanoparticles with bioactive compounds. Mater. Sci. Eng. C, 2019, 103(2019), 109809.
[http://dx.doi.org/10.1016/j.msec.2019.109809]
[88]
Khodashenas, B.; Ghorbani, H.R. Synthesis of silver nanoparticles with different shapes. Arab. J. Chem., 2015, 12(8), 1823-1838.
[http://dx.doi.org/10.1016/j.arabjc.2014.12.014]
[89]
Niazi, J.H.; Gu, M.B. Toxicity of metallic nanoparticles in microorganisms-a review. Atmospheric Biol. Environ. Monitor, 2009, 193-206.
[http://dx.doi.org/10.1007/978-1-4020-9674-7_12]
[90]
Vimbela, G.V.; Ngo, S.M.; Fraze, C.; Yang, L.; Stout, D.A. Antibacterial properties and toxicity from metallic nanomaterials. Int. J. Nanomed., 2017, 12, 3941-3965.
[http://dx.doi.org/10.2147/IJN.S134526] [PMID: 28579779]
[91]
Zhu, X.; Chang, Y.; Chen, Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 2010, 78(3), 209-215.
[http://dx.doi.org/10.1016/j.chemosphere.2009.11.013] [PMID: 19963236]
[92]
Cox, A.; Venkatachalam, P.; Sahi, S.; Sharma, N. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol. Biochem., 2016, 107, 147-163.
[http://dx.doi.org/10.1016/j.plaphy.2016.05.022] [PMID: 27288991]
[93]
Feng, X.; Chen, A.; Zhang, Y.; Wang, J.; Shao, L.; Wei, L. Central nervous system toxicity of metallic nanoparticles. Int. J. Nanomed., 2015, 10, 4321-4340.
[PMID: 26170667]
[94]
Akhter, S.; Ahmad, Z.; Singh, A.; Ahmad, I.; Rahman, M.; Anwar, M.; Jain, G.K.; Ahmad, F.J.; Khar, R.K. Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr. Pharm. Des., 2011, 17(18), 1834-1850.
[http://dx.doi.org/10.2174/138161211796391001] [PMID: 21568874]
[95]
Wu, Y.; Kong, L. Advance on toxicity of metal nickel nanoparticles. Environ. Geochem. Health, 2020, 1-10.
[http://dx.doi.org/10.1007/s10653-019-00491-4] [PMID: 31894452]
[96]
Sanvicens, N.; Marco, M.P. Multifunctional nanoparticles-properties and prospects for their use in human medicine. Trends Biotechnol., 2008, 26(8), 425-433.
[http://dx.doi.org/10.1016/j.tibtech.2008.04.005] [PMID: 18514941]
[97]
Gopinath, K.; Venkatesh, K.S.; Ilangovan, R.; Sankaranarayanan, K.; Arumugam, A. Green synthesis of gold nanoparticles from leaf extract of Terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity. Ind. Crops Prod., 2013, 50, 737-742.
[http://dx.doi.org/10.1016/j.indcrop.2013.08.060]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy