Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

p-Benzoquinone as a Privileged Scaffold of Pharmacological Significance: A Review

Author(s): Pragati Silakari, Priyanka and Poonam Piplani*

Volume 20, Issue 16, 2020

Page: [1586 - 1609] Pages: 24

DOI: 10.2174/1389557520666200429101451

Price: $65

Abstract

Quinones are a huge class of compounds with affluent and captivating chemistry. p-Benzoquinone (p-BNZ) or 1,4-Benzoquinone is the key structural motif of numerous biologically active synthetic and natural compounds. This draws interest in its biological exploration to assess prospective therapeutic implications. It possesses immense therapeutic potential depending on different substitutions. This moiety has a marvelous potential to regulate a varied range of different cellular pathways which can be investigated for various selective activities. p-Benzoquinones have been a requisite core for the development of novel therapeutic molecules with minimum side effects. In this review, various synthetic, pharmacological approaches and structure-activity relationship studies focusing on the chemical groups responsible for evoking the pharmacological potential of p-benzoquinone derivatives have been emphasized. Additionally, the compilation highlights the chemical, pharmaceutical and medicinal aspects of synthetic and natural benzoquinone derivatives. The natural occurrences of p-benzoquinone derivatives with different pharmacological significance have also been reported in this review.

Keywords: p-Benzoquinone, quinone, natural occurrences, anti-Alzheimer, antioxidant, anti-inflammatory.

Graphical Abstract
[1]
Monks, T.J.; Hanzlik, R.P.; Cohen, G.M.; Ross, D.; Graham, D.G. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol., 1992, 112(1), 2-16.
[http://dx.doi.org/10.1016/0041-008X(92)90273-U] [PMID: 1733045]
[2]
Storozhok, N.M.; Drulle, A.Ia.; Login, IaI.a.; Dregeris, IaI.a.; Khrapova, N.G.; Burlakova, E.B. Antioxidant activity of natural and synthetic quinones. Vopr. Med. Khim., 1995, 41(1), 16-21.
[PMID: 7771081]
[3]
Krylova, N.G.; Kulahava, T.A.; Cheschevik, V.T.; Dremza, I.K.; Semenkova, G.N.; Zavodnik, I.B. Redox regulation of mitochondrial functional activity by quinones. Physiol. Int., 2016, 103(4), 439-458.
[http://dx.doi.org/10.1556/2060.103.2016.4.4] [PMID: 28229632]
[4]
Batra, M.; Kriplani, P.; Batra, C.; Ojha, K.G. An efficient synthesis and biological activity of substituted p-benzoquinones. Bioorg. Med. Chem., 2006, 14(24), 8519-8526.
[http://dx.doi.org/10.1016/j.bmc.2006.08.036] [PMID: 16971128]
[5]
Cavalli, A.; Bolognesi, M.L.; Capsoni, S.; Andrisano, V.; Bartolini, M.; Margotti, E.; Cattaneo, A.; Recanatini, M.; Melchiorre, C. A small molecule targeting the multifactorial nature of Alzheimer’s disease. Angew. Chem. Int. Ed. Engl., 2007, 46(20), 3689-3692.
[http://dx.doi.org/10.1002/anie.200700256] [PMID: 17397121]
[6]
Bolognesi, M.L.; Cavalli, A.; Melchiorre, C. Memoquin: A multi-target-directed ligand as an innovative therapeutic opportunity for Alzheimer’s disease. Neurotherapeutics, 2009, 6(1), 152-162.
[http://dx.doi.org/10.1016/j.nurt.2008.10.042] [PMID: 19110206]
[7]
Nepovimova, E.; Uliassi, E.; Korabecny, J.; Peña-Altamira, L.E.; Samez, S.; Pesaresi, A.; Garcia, G.E.; Bartolini, M.; Andrisano, V.; Bergamini, C.; Fato, R.; Lamba, D.; Roberti, M.; Kuca, K.; Monti, B.; Bolognesi, M.L. Multitarget drug design strategy: Quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J. Med. Chem., 2014, 57(20), 8576-8589.
[http://dx.doi.org/10.1021/jm5010804] [PMID: 25259726]
[8]
Gupta, S.P. Quantitative structure-activity relationship studies on anticancer drugs. Chem. Rev., 1994, 94(6), 1507-1551.
[http://dx.doi.org/10.1021/cr00030a003]
[9]
Silva, A.J.M.; Netto, C.D.; Pacienza-Lima, W.; Torres-Santos, E.C.; Rossi-Bergmann, B.; Maurel, S.; Valentin, A.; Costa, P.R.R. Antitumoral, antileishmanial and antimalarial activity of pentacyclic 1,4-naphthoquinone derivatives. J. Braz. Chem. Soc., 2009, 20(1), 176-182.
[http://dx.doi.org/10.1590/S0103-50532009000100026]
[10]
Kim, W.; Lee, J.S.; Lee, D.; Cai, X.F.; Shin, J.C.; Lee, K.; Lee, C.H.; Ryu, S.; Paik, S.G.; Lee, J.J.; Hong, Y.S. Mutasynthesis of geldanamycin by the disruption of a gene producing starter unit: generation of structural diversity at the benzoquinone ring. ChemBioChem, 2007, 8(13), 1491-1494.
[http://dx.doi.org/10.1002/cbic.200700196] [PMID: 17661303]
[11]
O’Brien, P.J. Molecular mechanisms of quinone cytotoxicity. Chem. Biol. Interact., 1991, 80(1), 1-41.
[http://dx.doi.org/10.1016/0009-2797(91)90029-7] [PMID: 1913977]
[12]
Deniz, N.G.; Ibis, C.; Gokmen, Z.; Stasevych, M.; Novikov, V.; Komarovska-Porokhnyavets, O.; Ozyurek, M.; Guclu, K.; Karakas, D.; Ulukaya, E. Design, synthesis, biological evaluation, and antioxidant and cytotoxic activity of Heteroatom-Substituted 1,4-Naphtho- and benzoquinones. Chem. Pharm. Bull. (Tokyo), 2015, 63(12), 1029-1039.
[http://dx.doi.org/10.1248/cpb.c15-00607] [PMID: 26633024]
[13]
Koyama, J. Anti-infective quinone derivatives of recent patents. Rec. Pat. Antiinfect. Drug Discov., 2006, 1(1), 113-125.
[http://dx.doi.org/10.2174/157489106775244073] [PMID: 18221140]
[14]
Długosz, A.; Kuźniar, J.; Sawicka, E.; Marchewka, Z.; Lembas-Bogaczyk, J.; Sajewicz, W.; Boratyńska, M. Oxidative stress and coenzyme Q10 supplementation in renal transplant recipients. Int. Urol. Nephrol., 2004, 36(2), 253-258.
[http://dx.doi.org/10.1023/B:UROL.0000034652.88578.a8] [PMID: 15368706]
[15]
Papucci, L.; Schiavone, N.; Witort, E.; Donnini, M.; Lapucci, A.; Tempestini, A.; Formigli, L.; Zecchi-Orlandini, S.; Orlandini, G.; Carella, G.; Brancato, R.; Capaccioli, S. Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J. Biol. Chem., 2003, 278(30), 28220-28228.
[http://dx.doi.org/10.1074/jbc.M302297200] [PMID: 12736273]
[16]
Chew, G.T.; Watts, G.F. Coenzyme Q10 and diabetic endotheliopathy: Oxidative stress and the ‘recoupling hypothesis’. QJM, 2004, 97(8), 537-548.
[http://dx.doi.org/10.1093/qjmed/hch089] [PMID: 15256611]
[17]
Pravst, I.; Zmitek, K.; Zmitek, J. Coenzyme Q10 contents in foods and fortification strategies. Crit. Rev. Food Sci. Nutr., 2010, 50(4), 269-280.
[http://dx.doi.org/10.1080/10408390902773037] [PMID: 20301015]
[18]
Werz, O. Inhibition of 5-lipoxygenase product synthesis by natural compounds of plant origin. Planta Med., 2007, 73(13), 1331-1357.
[http://dx.doi.org/10.1055/s-2007-990242] [PMID: 17939102]
[19]
Singh, N.; Mahmood, U.; Kaul, V.K.; Gupta, A.P.; Jirovetz, L. A new alkylated benzoquinone from rhizomes of Iris kumaonensis. Nat. Prod. Res., 2006, 20(1), 75-78.
[http://dx.doi.org/10.1080/14786410500045721] [PMID: 16286313]
[20]
Underwood, H.W. Jr.; Walsh, W.L. “Quinone. In: Org. Synth; , 1936; vol 2, p. 553. Collective
[22]
Teuber, H.J.; Glosauer, O. Reaktionen mit Nitrosodisulfonat, XXIX: Cyclische Chinonimide der Indolin‐Reihe sowie der Di‐und Tetrahydrochinolin‐Reihe. Chem. Ber., 1965, 98(9), 2939-2953.
[http://dx.doi.org/10.1002/cber.19650980924]
[23]
Vliet, E.B. An annual publication of satisfactory methods for the preparation of organic chemicals. Organic Syntheses; Wiley & Sons: New York, 1932, Vol. 1, p. 482.
[24]
Musgrave, O.C. Oxidation of alkyl aryl ethers. Chem. Rev., 1969, 69(4), 499-531.
[http://dx.doi.org/10.1021/cr60260a002]
[25]
Snyder, C.D.; Rapoport, H. Oxidative cleavage of hydroquinone ethers with argentic oxide. J. Am. Chem. Soc., 1972, 94(1), 227-231.
[http://dx.doi.org/10.1021/ja00756a040]
[26]
Coombes, C.L.; Moody, C.J. First syntheses of 2,2-dimethyl-7-(2′-methylbut-3′-en-2′-yl)-2H-chromen-6-ol and 2-(3′-methylbut-2′-enyl)-5-(2′-methylbut-3′-en-2′-yl)-1,4-benzoquinone, novel prenylated quinone derivatives from the New Zealand brown alga Perithalia capillaris. J. Org. Chem., 2008, 73(17), 6758-6762.
[http://dx.doi.org/10.1021/jo801057x] [PMID: 18681403]
[27]
Hewson, A.T.; Sharpe, D.A.; Wadsworth, A.H. Synthesis of P-benzoquinones by oxidation of N-Arylsulphonamides. Synth. Commun., 1989, 19(11-12), 2095-2099.
[http://dx.doi.org/10.1080/00397918908052603]
[28]
Perri, S.T.; Foland, L.D.; Decker, O.H.W.; Moore, H.W. Synthesis of benzoquinones and annulated derivatives from conjugated ketenes. J. Org. Chem., 1986, 51(15), 3067-3068.
[http://dx.doi.org/10.1021/jo00365a044]
[29]
Xiong, Y.; Moore, H.W. Ring expansion of 4-alkynylcyclo-butenones. Synthesis of piperidinoquinones, highly substituted dihydrophenanthridines, benzophenanthridines, and the naturally occurring pyrrolophenanthridine, assoanine. J. Org. Chem., 1996, 61(26), 9168-9177.
[http://dx.doi.org/10.1021/jo9613803]
[30]
Fieser, L.F.; Fieser, M. Organic Chemistry, 3rd ed; D. C. Heath & Comp.: Boston, 1956.
[31]
Hashemi, M.M.; Eftekhari-Sis, B.; Khalili, B.; Karimi-Jaberi, Z. Solid state oxidation of phenols to quinones with sodium perborate on wet montmorillonite K10. J. Braz. Chem. Soc., 2005, 16(5), 1082-1084.
[http://dx.doi.org/10.1590/S0103-50532005000600029]
[32]
Guan, J.; Brossi, A.; Zhu, X.K.; Wang, H.K.; Lee, K.H. Oxidation products of phenolic thiocolchicines: Ring A quinones and dienones. Synth. Commun., 1998, 28(9), 1585-1591.
[http://dx.doi.org/10.1080/00397919808006862]
[33]
Khan, F.A.; Chaudhary, S. Synthesis and electrochemical properties of substituted para-benzoquinone derivatives. Tetrahedron Lett., 2010, 51(18), 2541-2544.
[http://dx.doi.org/10.1016/j.tetlet.2010.03.007]
[34]
Jacob, P., III; Callery, P.S.; Shulgin, A.T.; Castagnoli, N. Jr A convenient synthesis of quinones from hydroquinone dimethyl ethers. Oxidative demethylation with ceric ammonijm nitrate. J. Org. Chem., 1976, 41(22), 3627-3629.
[http://dx.doi.org/10.1021/jo00884a035] [PMID: 985642]
[35]
Hardy, J. Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J. Alzheimers Dis., 2006, 9(3)(Suppl.), 151-153.
[http://dx.doi.org/10.3233/JAD-2006-9S317] [PMID: 16914853]
[36]
Kopeikina, K.J.; Carlson, G.A.; Pitstick, R.; Ludvigson, A.E.; Peters, A.; Luebke, J.I.; Koffie, R.M.; Frosch, M.P.; Hyman, B.T.; Spires-Jones, T.L. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer’s disease brain. Am. J. Pathol., 2011, 179(4), 2071-2082.
[http://dx.doi.org/10.1016/j.ajpath.2011.07.004] [PMID: 21854751]
[37]
Tran, H.T.; LaFerla, F.M.; Holtzman, D.M.; Brody, D.L. Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-β accumulation and independently accelerates the development of tau abnormalities. J. Neurosci., 2011, 31(26), 9513-9525.
[http://dx.doi.org/10.1523/JNEUROSCI.0858-11.2011] [PMID: 21715616]
[38]
Wadsworth, T.L.; Bishop, J.A.; Pappu, A.S.; Woltjer, R.L.; Quinn, J.F. Evaluation of coenzyme Q as an antioxidant strategy for Alzheimer’s disease. J. Alzheimers Dis., 2008, 14(2), 225-234.
[http://dx.doi.org/10.3233/JAD-2008-14210] [PMID: 18560133]
[39]
Crane, F.L.; Hatefi, Y.; Lester, R.L.; Widmer, C. Isolation of a quinone from beef heart mitochondria. Biochim. Biophys. Acta, 1957, 25(1), 220-221.
[http://dx.doi.org/10.1016/0006-3002(57)90457-2] [PMID: 13445756]
[40]
James, A.M.; Cochemé, H.M.; Smith, R.A.; Murphy, M.P. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J. Biol. Chem., 2005, 280(22), 21295-21312.
[http://dx.doi.org/10.1074/jbc.M501527200] [PMID: 15788391]
[41]
Bolognesi, M.L.; Simoni, E.; Rosini, M.; Minarini, A.; Tumiatti, V.; Melchiorre, C. Multitarget-directed ligands: innovative chemical probes and therapeutic tools against Alzheimer’s disease. Curr. Top. Med. Chem., 2011, 11(22), 2797-2806.
[http://dx.doi.org/10.2174/156802611798184373] [PMID: 22039879]
[42]
Cavalli, A.; Bolognesi, M.L. Multitargeted Drugs for Treatment of Alzheimer’s Disease; Polypharmacol. Drug Discov, 2012, pp. 441-458.
[43]
Bolognesi, M.L.; Bartolini, M.; Tarozzi, A.; Morroni, F.; Lizzi, F.; Milelli, A.; Minarini, A.; Rosini, M.; Hrelia, P.; Andrisano, V.; Melchiorre, C. Multitargeted drugs discovery: balancing anti-amyloid and anticholinesterase capacity in a single chemical entity. Bioorg. Med. Chem. Lett., 2011, 21(9), 2655-2658.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.093] [PMID: 21236667]
[44]
Melchiorre, C.; Angeli, P.; Brasili, L.; Giardina’, D.; Pigini, M.; Quaglia, W. Polyamines: A possible “passe-partout” for receptor characterization; Actualités de Chemie Therapeutique, 1988, pp. 149-168.
[45]
Bolognesi, M.L.; Minarini, A.; Budriesi, R.; Cacciaguerra, S.; Chiarini, A.; Spampinato, S.; Tumiatti, V.; Melchiorre, C. Universal template approach to drug design: polyamines as selective muscarinic receptor antagonists. J. Med. Chem., 1998, 41(21), 4150-4160.
[http://dx.doi.org/10.1021/jm981038d] [PMID: 9767650]
[46]
Melchiorre, C.; Andrisano, V.; Bolognesi, M.L.; Budriesi, R.; Cavalli, A.; Cavrini, V.; Rosini, M.; Tumiatti, V.; Recanatini, M. Acetylcholinesterase noncovalent inhibitors based on a polyamine backbone for potential use against Alzheimer’s disease. J. Med. Chem., 1998, 41(22), 4186-4189.
[http://dx.doi.org/10.1021/jm9810452] [PMID: 9784091]
[47]
Beal, M.F. Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s diseases and coenzyme Q10 as a potential treatment. J. Bioenerg. Biomembr., 2004, 36(4), 381-386.
[http://dx.doi.org/10.1023/B:JOBB.0000041772.74810.92] [PMID: 15377876]
[48]
Bragin, V.; Chemodanova, M.; Dzhafarova, N.; Bragin, I.; Czerniawski, J.L.; Aliev, G. Integrated treatment approach improves cognitive function in demented and clinically depressed patients. Am. J. Alzheimers Dis. Other Demen., 2005, 20(1), 21-26.
[http://dx.doi.org/10.1177/153331750502000103] [PMID: 15751450]
[49]
Diamant, S.; Podoly, E.; Friedler, A.; Ligumsky, H.; Livnah, O.; Soreq, H. Butyrylcholinesterase attenuates amyloid fibril formation in vitro. Proc. Natl. Acad. Sci. USA, 2006, 103(23), 8628-8633.
[http://dx.doi.org/10.1073/pnas.0602922103] [PMID: 16731619]
[50]
Bolognesi, M.L.; Banzi, R.; Bartolini, M.; Cavalli, A.; Tarozzi, A.; Andrisano, V.; Minarini, A.; Rosini, M.; Tumiatti, V.; Bergamini, C.; Fato, R.; Lenaz, G.; Hrelia, P.; Cattaneo, A.; Recanatini, M.; Melchiorre, C. Novel class of quinone-bearing polyamines as multi-target-directed ligands to combat Alzheimer’s disease. J. Med. Chem., 2007, 50(20), 4882-4897.
[http://dx.doi.org/10.1021/jm070559a] [PMID: 17850125]
[51]
Makawiti, D.W.; Konji, V.N.; Olowookere, J.O. Interaction of benzoquinones with mitochondria interferes with oxidative phosphorylation characteristics. FEBS Lett., 1990, 266(1-2), 26-28.
[http://dx.doi.org/10.1016/0014-5793(90)81497-C] [PMID: 2365068]
[52]
Wang, H.X.; Ng, T.B. Dendrocin, a distinctive antifungal protein from bamboo shoots. Biochem. Biophys. Res. Commun., 2003, 307(3), 750-755.
[http://dx.doi.org/10.1016/S0006-291X(03)01229-4] [PMID: 12893287]
[53]
DeBoer, C.; Meulman, P.A.; Wnuk, R.J.; Peterson, D.H. Geldanamycin, a new antibiotic. J. Antibiot. (Tokyo), 1970, 23(9), 442-447.
[http://dx.doi.org/10.7164/antibiotics.23.442] [PMID: 5459626]
[54]
Andrus, M.B.; Meredith, E.L.; Simmons, B.L.; Soma Sekhar, B.B.V.; Hicken, E.J. Total synthesis of (+)-geldanamycin and (-)-o-quinogeldanamycin with use of asymmetric anti- and syn-glycolate aldol reactions. Org. Lett., 2002, 4(20), 3549-3552.
[http://dx.doi.org/10.1021/ol0267432] [PMID: 12323066]
[55]
Omura, S.; Iwai, Y.; Takahashi, Y.; Sadakane, N.; Nakagawa, A.; Oiwa, H.; Hasegawa, Y.; Ikai, T. Herbimycin, a new antibiotic produced by a strain of Streptomyces. J. Antibiot. (Tokyo), 1979, 32(4), 255-261.
[http://dx.doi.org/10.7164/antibiotics.32.255] [PMID: 468713]
[56]
Muroi, M.; Haibara, K.; Asai, M.; Kamiya, K.; Kishi, T. The structures of macbecin I and II: New antitumor antibiotics. Tetrahedron, 1981, 37(6), 1123-1130.
[http://dx.doi.org/10.1016/S0040-4020(01)92041-1]
[57]
Damberg, M.; Russ, P.; Zeeck, A. Die konstitution der fungistatischen ansamycin-antibiotica ansatrienin A und B. Tetrahedron Lett., 1982, 23(1), 59-62.
[http://dx.doi.org/10.1016/S0040-4039(00)97531-2]
[58]
Sugita, M.; Furihata, K.; Seto, H. OTAKE, N.; Sasaki, T. The Structures of Myocotrienins I. and II, a Novel Class of Ansamycin Antibiotic. Agric. Biol. Chem., 1982, 46(4), 1111-1113.
[59]
Stead, P.; Latif, S.; Blackaby, A.P.; Sidebottom, P.J.; Deakin, A.; Taylor, N.L.; Life, P.; Spaull, J.; Burrell, F.; Jones, R.; Lewis, J.; Davidson, I.; Mander, T. Discovery of novel ansamycins possessing potent inhibitory activity in a cell-based oncostatin M signalling assay. J. Antibiot. (Tokyo), 2000, 53(7), 657-663.
[http://dx.doi.org/10.7164/antibiotics.53.657] [PMID: 10994806]
[60]
Shibata, K.; Satsumabayashi, S.; Sano, H.; Komiyama, K.; Nakagawa, A.; Omura, S. Chemical modification of herbimycin A. Synthesis and in vivo antitumor activities of halogenated and other related derivatives of herbimycin A. J. Antibiot. (Tokyo), 1986, 39(3), 415-423.
[http://dx.doi.org/10.7164/antibiotics.39.415] [PMID: 3700243]
[61]
Sasaki, K.; Yasuda, H.; Onodera, K. Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives. J. Antibiot. (Tokyo), 1979, 32(8), 849-851.
[http://dx.doi.org/10.7164/antibiotics.32.849] [PMID: 500504]
[62]
Rascher, A.; Hu, Z.; Viswanathan, N.; Schirmer, A.; Reid, R.; Nierman, W.C.; Lewis, M.; Hutchinson, C.R. Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol. Lett., 2003, 218(2), 223-230.
[http://dx.doi.org/10.1016/S0378-1097(02)01148-5] [PMID: 12586396]
[63]
Nishina, A.; Uchibori, T. Antimicrobial activity of 2, 6-dimethoxy-p-benzoquinone, isolated from thick-stemmed bamboo, its analogs. Agric. Biol. Chem., 1991, 55(9), 2395-2398.
[64]
Doskočil, J.; Kalvoda, L.; Krupička, J. β-D-Ribofluranosyl-1,4-benzoquinone - antibacterial agent with showdomycin-like mode of action. Biochem. Biophys. Res. Commun., 1975, 64(3), 932-938.
[http://dx.doi.org/10.1016/0006-291X(75)90137-0] [PMID: 1096888]
[65]
Cui, C.B.; Han, B.; Cai, B.; Wang, H. Pseudoverticin, a novel benzoquinone-derived ansamycin antibiotic obtained as new cell cycle inhibitor from Streptomyces pseudoverticillus YN17707. Tetrahedron Lett., 2007, 48(28), 4839-4843.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.052]
[66]
Cho, S.C.; Sultan, M.Z.; Moon, S.S. Anti-acne activities of pulsaquinone, hydropulsaquinone, and structurally related 1, 4-quinone derivatives. Arch. Pharm. Res., 2009, 32(4), 489-494.
[http://dx.doi.org/10.1007/s12272-009-1402-z] [PMID: 19407964]
[67]
Inatsu, S.; Ohsaki, A.; Nagata, K. Idebenone acts against growth of Helicobacter pylori by inhibiting its respiration. Antimicrob. Agents Chemother., 2006, 50(6), 2237-2239.
[http://dx.doi.org/10.1128/AAC.01118-05] [PMID: 16723594]
[68]
So, K. Effects of various fungicides against less carpropamid-sensitive rice blast fungus isolated from the northwest area in Saga Prefecture. Jpn. J. Phytopathol., 2002, 68, 262.
[69]
Ueno, M.; Yoshikiyo, K. 2, 6‐Dimethoxy‐1, 4‐Benzoquinone enhances resistance against the rice blast fungus magnaporthe oryzae. J. Phytopathol., 2014, 162(11-12), 731-736.
[http://dx.doi.org/10.1111/jph.12253]
[70]
Kupchan, S.M.; Obasi, M.E. A note on the occurrence of 2, 6-dimethoxybenzoquinone in Rauwolfia vomitoria. J Am Pharm Assoc Am Pharm Assoc, 1960, 49, 257-258.
[PMID: 13853494]
[71]
Jones, E.; Ekundayo, O.; Kingstone, D.G.I. Plant anticancer agents. XI. 2,6-dimethoxybenzoquinone as a cytotoxic constituent of Tibouchina pulchra. J. Nat. Prod., 1981, 44(4), 493-494.
[http://dx.doi.org/10.1021/np50016a019]
[72]
Tandon, V.K.; Kumar, S.; Mishra, N.N.; Shukla, P.K. Micelles catalyzed chemo- and regio-selective one pot and one step synthesis of 2,3,5,6-tetrakis(alkyl and arylsulfanyl)-1,4-benzoquinones and 2,5-diaminosubstituted-1,4-benzoquinones “In-Water” and their biological evaluation as antibacterial and antifungal agents. Eur. J. Med. Chem., 2012, 56, 375-386.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.022] [PMID: 22939606]
[73]
Almog, N. Molecular mechanisms underlying tumor dormancy. Cancer Lett., 2010, 294(2), 139-146.
[http://dx.doi.org/10.1016/j.canlet.2010.03.004] [PMID: 20363069]
[74]
Pietras, K.; Östman, A. Hallmarks of cancer: interactions with the tumor stroma. Exp. Cell Res., 2010, 316(8), 1324-1331.
[http://dx.doi.org/10.1016/j.yexcr.2010.02.045] [PMID: 20211171]
[75]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[76]
Yoshimoto, M.; Miyazawa, H.; Nakao, H.; Shinkai, K.; Arakawa, M. Quantitative structure-activity relationships in 2,5-bis(1-aziridinyl)-p-benzoquinone derivatives against leukemia L-1210. J. Med. Chem., 1979, 22(5), 491-496.
[http://dx.doi.org/10.1021/jm00191a006] [PMID: 458799]
[77]
Domagk, G.; Petersen, S.; Gauss, W. Experimental chemotherapy of tumors. Z. Krebsforsch., 1954, 59(6), 617-622.
[http://dx.doi.org/10.1007/BF00631303] [PMID: 13188198]
[78]
Domagk, G. Histologische Veränderungen an experimentellen und menschlichen Tumoren nach Darreichung von Zytostatika. Dtsch. Med. Wochenschr., 1956, 81(21), 801-806.
[http://dx.doi.org/10.1055/s-0028-1115792] [PMID: 13330468]
[79]
Berg, S.L.; Balis, F.M.; Zimm, S.; Murphy, R.F.; Holcenberg, J.; Sato, J.; Reaman, G.; Steinherz, P.; Gillespie, A.; Doherty, K. Phase I/II trial and pharmacokinetics of intrathecal diaziquone in refractory meningeal malignancies. J. Clin. Oncol., 1992, 10(1), 143-148.
[http://dx.doi.org/10.1200/JCO.1992.10.1.143] [PMID: 1727916]
[80]
Prins, B.; Koster, A.S.; Verboom, W.; Reinhoudt, D.N. Microsomal superoxide anion production and NADPH-oxidation in a series of 22 aziridinylbenzoquinones. Biochem. Pharmacol., 1989, 38(21), 3753-3757.
[http://dx.doi.org/10.1016/0006-2952(89)90581-9] [PMID: 2557029]
[81]
Doroshow, J.H. Role of hydrogen peroxide and hydroxyl radical formation in the killing of Ehrlich tumor cells by anticancer quinones. Proc. Natl. Acad. Sci. USA, 1986, 83(12), 4514-4518.
[http://dx.doi.org/10.1073/pnas.83.12.4514] [PMID: 3086887]
[82]
Alley, S.C.; Brameld, K.A.; Hopkins, P.B. DNA Interstrand Crosslinking by 2,5-Bis(1-aziridinyl)-1,4-benzoquinone: Nucleotide Sequence Preferences and Covalent Structure of the dG-to-dG Cross-Links at 5′-d(GNnC) in Synthetic Oligonucleotide Duplexes. J. Am. Chem. Soc., 1994, 116(7), 2734-2741.
[http://dx.doi.org/10.1021/ja00086a006]
[83]
Benites, J.; Valderrama, J.A.; Rivera, F.; Rojo, L.; Campos, N.; Pedro, M.; José Nascimento, M.S. Studies on quinones. Part 42: Synthesis of furylquinone and hydroquinones with antiproliferative activity against human tumor cell lines. Bioorg. Med. Chem., 2008, 16(2), 862-868.
[http://dx.doi.org/10.1016/j.bmc.2007.10.028] [PMID: 17964791]
[84]
Chaaban, I.; El-Sayeda, E.K.; Mahran, M.; El-Sayed, O.; El-Saidi, H.; Aboul-Enen, H. Design, synthesis, and in vitro evaluation of cytotoxic activity of new substituted 1, 4-benzoquinones and hydroquinones. Med. Chem. Res., 2007, 16(2), 49-77.
[http://dx.doi.org/10.1007/s00044-007-9001-3]
[85]
Schwartz, H.S.; Sodergren, J.E.; Philips, F.S.; Mitomycin, C Chemical and biological studies on alkylation. Science, 1963, 142(3596), 1181-1183.
[http://dx.doi.org/10.1126/science.142.3596.1181] [PMID: 14069241]
[86]
Zhao, Y.; Lu, Y.; Li, R.; He, J.; Zhang, H.; Wang, X.; Ge, Z.; Li, R. Discovery and optimization of 2-thio-5-amino substituted benzoquinones as potent anticancer agents. Eur. J. Med. Chem., 2018, 149, 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.059] [PMID: 29486369]
[87]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[88]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[89]
Rådmark, O.; Werz, O.; Steinhilber, D.; Samuelsson, B. 5-Lipoxygenase: Regulation of expression and enzyme activity. Trends Biochem. Sci., 2007, 32(7), 332-341.
[http://dx.doi.org/10.1016/j.tibs.2007.06.002] [PMID: 17576065]
[90]
Peters-Golden, M.; Henderson, W.R. Jr Leukotrienes. N. Engl. J. Med., 2007, 357(18), 1841-1854.
[http://dx.doi.org/10.1056/NEJMra071371] [PMID: 17978293]
[91]
Carter, G.W.; Young, P.R.; Albert, D.H.; Bouska, J.; Dyer, R.; Bell, R.L.; Summers, J.B.; Brooks, D.W. 5-lipoxygenase inhibitory activity of zileuton. J. Pharmacol. Exp. Ther., 1991, 256(3), 929-937.
[PMID: 1848634]
[92]
Giannini, C.; Debitus, C.; Lucas, R.; Ubeda, A.; Payá, M.; Hooper, J.N.; D’Auria, M.V. New sesquiterpene derivatives from the sponge Dysidea species with a selective inhibitor profile against human phospholipase A2 and other leukocyte functions. J. Nat. Prod., 2001, 64(5), 612-615.
[http://dx.doi.org/10.1021/np000637w] [PMID: 11374954]
[93]
Bomalaski, J.S.; Clark, M.A. Phospholipase A2 and arthritis. Arthritis Rheum., 1993, 36(2), 190-198.
[http://dx.doi.org/10.1002/art.1780360208] [PMID: 8431207]
[94]
Wright, G.W.; Ooi, C.E.; Weiss, J.; Elsbach, P. Purification of a cellular (granulocyte) and an extracellular (serum) phospholipase A2 that participate in the destruction of Escherichia coli in a rabbit inflammatory exudate. J. Biol. Chem., 1990, 265(12), 6675-6681.
[PMID: 2182625]
[95]
Petronzi, C.; Filosa, R.; Peduto, A.; Monti, M.C.; Margarucci, L.; Massa, A.; Ercolino, S.F.; Bizzarro, V.; Parente, L.; Riccio, R.; de Caprariis, P. Structure-based design, synthesis and preliminary anti-inflammatory activity of bolinaquinone analogues. Eur. J. Med. Chem., 2011, 46(2), 488-496.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.028] [PMID: 21163556]
[96]
Filosa, R.; Peduto, A.; Aparoy, P.; Schaible, A.M.; Luderer, S.; Krauth, V.; Petronzi, C.; Massa, A.; de Rosa, M.; Reddanna, P.; Werz, O. Discovery and biological evaluation of novel 1,4-benzoquinone and related resorcinol derivatives that inhibit 5-lipoxygenase. Eur. J. Med. Chem., 2013, 67, 269-279.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.039] [PMID: 23871907]
[97]
Filosa, R.; Peduto, A.; Schaible, A.M.; Krauth, V.; Weinigel, C.; Barz, D.; Petronzi, C.; Bruno, F.; Roviezzo, F.; Spaziano, G.; D’Agostino, B.; De Rosa, M.; Werz, O. Novel series of benzoquinones with high potency against 5-lipoxygenase in human polymorphonuclear leukocytes. Eur. J. Med. Chem., 2015, 94, 132-139.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.042] [PMID: 25765759]
[98]
Zhang, Y.; Fang, Y.; Liang, H.; Wang, H.; Hu, K.; Liu, X.; Yi, X.; Peng, Y. Synthesis and antioxidant activities of 2-oxo-quinoline-3-carbaldehyde Schiff-base derivatives. Bioorg. Med. Chem. Lett., 2013, 23(1), 107-111.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.006] [PMID: 23206864]
[99]
Poulsen, H.E.; Prieme, H.; Loft, S. Role of oxidative DNA damage in cancer initiation and promotion. Eur. J. Cancer Prev., 1998, 7(1), 9-16.
[PMID: 9511847]
[100]
Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition, 2002, 18(10), 872-879.
[http://dx.doi.org/10.1016/S0899-9007(02)00916-4] [PMID: 12361782]
[101]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[102]
Wang, J.; Li, S.; Yang, T.; Yang, J. Synthesis and antioxidant activities of Coenzyme Q analogues. Eur. J. Med. Chem., 2014, 86, 710-713.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.042] [PMID: 25232967]
[103]
Duveau, D.Y.; Arce, P.M.; Schoenfeld, R.A.; Raghav, N.; Cortopassi, G.A.; Hecht, S.M. Synthesis and characterization of mitoQ and idebenone analogues as mediators of oxygen consumption in mitochondria. Bioorg. Med. Chem., 2010, 18(17), 6429-6441.
[http://dx.doi.org/10.1016/j.bmc.2010.06.104] [PMID: 20691600]
[104]
Fash, D.M.; Khdour, O.M.; Sahdeo, S.J.; Goldschmidt, R.; Jaruvangsanti, J.; Dey, S.; Arce, P.M.; Collin, V.C.; Cortopassi, G.A.; Hecht, S.M. Effects of alkyl side chain modification of coenzyme Q10 on mitochondrial respiratory chain function and cytoprotection. Bioorg. Med. Chem., 2013, 21(8), 2346-2354.
[http://dx.doi.org/10.1016/j.bmc.2013.01.075] [PMID: 23473946]
[105]
Madathil, M.M.; Khdour, O.M.; Jaruvangsanti, J.; Hecht, S.M. Synthesis and biological activities of N-(3-carboxylpropyl)-5-amino-2-hydroxy-3-tridecyl-1,4-benzoquinone and analogues. J. Nat. Prod., 2012, 75(12), 2209-2215.
[http://dx.doi.org/10.1021/np3007099] [PMID: 23190044]
[106]
Gulaboski, R.; Bogeski, I.; Kokoskarova, P.; Haeri, H.H.; Mitrev, S.; Stefova, M.; Stanoeva, J.P.; Markovski, V.; Mirčeski, V.; Hoth, M.; Kappl, R. New insights into the chemistry of Coenzyme Q-0: A voltammetric and spectroscopic study. Bioelectrochemistry, 2016, 111, 100-108.
[http://dx.doi.org/10.1016/j.bioelechem.2016.05.008] [PMID: 27268099]
[107]
Bogeski, I.; Gulaboski, R.; Kappl, R.; Mirceski, V.; Stefova, M.; Petreska, J.; Hoth, M. Calcium binding and transport by coenzyme Q. J. Am. Chem. Soc., 2011, 133(24), 9293-9303.
[http://dx.doi.org/10.1021/ja110190t] [PMID: 21548646]
[108]
Gulaboski, R.; Bogeski, I.; Mirčeski, V.; Saul, S.; Pasieka, B.; Haeri, H.H.; Stefova, M.; Stanoeva, J.P.; Mitrev, S.; Hoth, M.; Kappl, R. Hydroxylated derivatives of dimethoxy-1,4-benzoquinone as redox switchable earth-alkaline metal ligands and radical scavengers. Sci. Rep., 2013, 3, 1865.
[http://dx.doi.org/10.1038/srep01865] [PMID: 23689559]
[109]
Gulaboski, R.; Markovski, V.; Jihe, Z. Redox chemistry of coenzyme Q—a short overview of the voltammetric features. J. Solid State Electrochem., 2016, 20, 3229-3238.
[http://dx.doi.org/10.1007/s10008-016-3230-7]
[110]
Bergamini, C.; Cicoira, M.; Rossi, A.; Vassanelli, C. Oxidative stress and hyperuricaemia: pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure. Eur. J. Heart Fail., 2009, 11(5), 444-452.
[http://dx.doi.org/10.1093/eurjhf/hfp042] [PMID: 19346534]
[111]
Izumiya, Y.; Kim, S.; Izumi, Y.; Yoshida, K.; Yoshiyama, M.; Matsuzawa, A.; Ichijo, H.; Iwao, H. Apoptosis signal-regulating kinase 1 plays a pivotal role in angiotensin II-induced cardiac hypertrophy and remodeling. Circ. Res., 2003, 93(9), 874-883.
[http://dx.doi.org/10.1161/01.RES.0000100665.67510.F5] [PMID: 14551246]
[112]
Lim, J.Y.; Park, S.J.; Hwang, H.Y.; Park, E.J.; Nam, J.H.; Kim, J.; Park, S.I. TGF-β1 induces cardiac hypertrophic responses via PKCdependent ATF-2 activation. J. Mol. Cell. Cardiol., 2005, 39(4), 627-636.
[http://dx.doi.org/10.1016/j.yjmcc.2005.06.016] [PMID: 16125722]
[113]
Nakagami, H.; Takemoto, M.; Liao, J.K. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J. Mol. Cell. Cardiol., 2003, 35(7), 851-859.
[http://dx.doi.org/10.1016/S0022-2828(03)00145-7] [PMID: 12818576]
[114]
Turunen, M.; Olsson, J.; Dallner, G. Metabolism and function of coenzyme Q. Biochim. Biophys. Acta, 2004, 1660(1-2), 171-199.
[http://dx.doi.org/10.1016/j.bbamem.2003.11.012] [PMID: 14757233]
[115]
Overvad, K.; Diamant, B.; Holm, L.; Hølmer, G.; Mortensen, S.A.; Stender, S. Coenzyme Q10 in health and disease. Eur. J. Clin. Nutr., 1999, 53(10), 764-770.
[http://dx.doi.org/10.1038/sj.ejcn.1600880] [PMID: 10556981]
[116]
Frei, B.; Kim, M.C.; Ames, B.N. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl. Acad. Sci. USA, 1990, 87(12), 4879-4883.
[http://dx.doi.org/10.1073/pnas.87.12.4879] [PMID: 2352956]
[117]
Ernster, L.; Dallner, G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta, 1995, 1271(1), 195-204.
[http://dx.doi.org/10.1016/0925-4439(95)00028-3] [PMID: 7599208]
[118]
Houston, M.C. Nutrition and nutraceutical supplements in the treatment of hypertension. Expert Rev. Cardiovasc. Ther., 2010, 8(6), 821-833.
[http://dx.doi.org/10.1586/erc.10.63] [PMID: 20528640]
[119]
Weldon, P.J. Defensive anointing: extended chemical phenotype and unorthodox ecology. Chemoecology, 2004, 14(1), 1-4.
[http://dx.doi.org/10.1007/s00049-003-0259-8]
[120]
Bodner, M.; Vagalinski, B.; Makarov, S.E.; Antić, D.Ž.; Vujisić, L.V.; Leis, H.J.; Raspotnig, G. “Quinone millipedes” reconsidered: evidence for a mosaic-like taxonomic distribution of phenol-based secretions across the Julidae. J. Chem. Ecol., 2016, 42(3), 249-258.
[http://dx.doi.org/10.1007/s10886-016-0680-4] [PMID: 26971956]
[121]
Valderrama, X.; Robinson, J.G.; Attygalle, A.B.; Eisner, T. Seasonal anointment with millipedes in a wild primate: A chemical defense against insects? J. Chem. Ecol., 2000, 26(12), 2781-2790.
[http://dx.doi.org/10.1023/A:1026489826714]
[122]
Weldon, P.J.; Aldrich, J.R.; Klun, J.A.; Oliver, J.E.; Debboun, M. Benzoquinones from millipedes deter mosquitoes and elicit self-anointing in capuchin monkeys (Cebus spp.). Naturwissenschaften, 2003, 90(7), 301-304.
[http://dx.doi.org/10.1007/s00114-003-0427-2] [PMID: 12883771]
[123]
Brunmark, A.; Cadenas, E. Redox and addition chemistry of quinoid compounds and its biological implications. Free Radic. Biol. Med., 1989, 7(4), 435-477.
[http://dx.doi.org/10.1016/0891-5849(89)90126-3] [PMID: 2691341]
[124]
Bolton, J.L.; Trush, M.A.; Penning, T.M.; Dryhurst, G.; Monks, T.J. Role of quinones in toxicology. Chem. Res. Toxicol., 2000, 13(3), 135-160.
[http://dx.doi.org/10.1021/tx9902082] [PMID: 10725110]
[125]
Shu, N.; Hägglund, P.; Cai, H.; Hawkins, C.L.; Davies, M.J. Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway. Redox Biol., 2020, 29101400
[http://dx.doi.org/10.1016/j.redox.2019.101400] [PMID: 31926625]
[126]
Stokes, S.E.; Winn, L.M. NF-κB signaling is increased in HD3 cells following exposure to 1,4-benzoquinone: Role of reactive oxygen species and p38-MAPK. Toxicol. Sci., 2014, 137(2), 303-310.
[http://dx.doi.org/10.1093/toxsci/kft256] [PMID: 24213144]
[127]
Nawrat, C.C.; Lewis, W.; Moody, C.J. Synthesis of amino-1,4-benzoquinones and their use in Diels-Alder approaches to the aminonaphthoquinone antibiotics. J. Org. Chem., 2011, 76(19), 7872-7881.
[http://dx.doi.org/10.1021/jo201320g] [PMID: 21866924]
[128]
Hartinger, C.G. Trapping unstable benzoquinone analogues by coordination to a [(η(5)-C(5)Me(5))Ir] fragment and the anticancer activity of the resulting complexes. Angew. Chem. Int. Ed. Engl., 2010, 49(45), 8304-8305.
[http://dx.doi.org/10.1002/anie.201003565] [PMID: 20803595]
[129]
Silva, A.J.M.; Netto, C.D.; Pacienza-Lima, W.; Torres-Santos, E.C.; Rossi-Bergmann, B.; Maurel, S.; Valentin, A.; Costa, P.R.R. Antitumoral, antileishmanial and antimalarial activity of pentacyclic 1, 4-naphthoquinone derivatives. J. Braz. Chem. Soc., 2009, 20(1), 176-182.
[http://dx.doi.org/10.1590/S0103-50532009000100026]
[130]
Porter, T.H.; Folkers, K. Antimetabolites of coenzyme Q. Their potential application as antimalarials. Angew. Chem. Int. Ed. Engl., 1974, 13(9), 559-569.
[http://dx.doi.org/10.1002/anie.197405591] [PMID: 4214098]
[131]
Lin, T.S.; Zhu, L.Y.; Xu, S.P.; Divo, A.A.; Sartorelli, A.C. Synthesis and antimalarial activity of 2-aziridinyl- and 2,3-bis(aziridinyl)-1,4-naphthoquinonyl sulfonate and acylate derivatives. J. Med. Chem., 1991, 34(5), 1634-1639.
[http://dx.doi.org/10.1021/jm00109a016] [PMID: 2033589]
[132]
Lin, A.J.; Lillis, B.J.; Sartorelli, A.C. Potential bioreductive alkylating agents. 5. Antineoplastic activity of quinoline-5,8-diones, naphthazarins, and naphthoquinones. J. Med. Chem., 1975, 18(9), 917-921.
[http://dx.doi.org/10.1021/jm00243a012] [PMID: 1159713]
[133]
Dowd, P.; Zheng, Z.B. On the mechanism of the anticlotting action of vitamin E quinone. Proc. Natl. Acad. Sci. USA, 1995, 92(18), 8171-8175.
[http://dx.doi.org/10.1073/pnas.92.18.8171] [PMID: 7667263]
[134]
González-Ibarra, M.; Farfán, N.; Trejo, C.; Uribe, S.; Lotina-Hennsen, B. Selective herbicide activity of 2,5-di(benzylamine)-p-benzoquinone against the monocot weed Echinochloa crusgalli. An in vivo analysis of photosynthesis and growth. J. Agric. Food Chem., 2005, 53(9), 3415-3420.
[http://dx.doi.org/10.1021/jf047883o] [PMID: 15853381]
[135]
Sansom, C.E.; Larsen, L.; Perry, N.B.; Berridge, M.V.; Chia, E.W.; Harper, J.L.; Webb, V.L. An antiproliferative bis-prenylated quinone from the New Zealand brown alga Perithalia capillaris. J. Nat. Prod., 2007, 70(12), 2042-2044.
[http://dx.doi.org/10.1021/np070436t] [PMID: 18052030]
[136]
Bernays, E.; Lupi, A.; Bettolo, R.M.; Matrofrancesco, C.; Tagaliatesta, P. Antifeedant nature of the quinone primin and its quinol miconidin from Miconia spp. Experientia, 1984, 40(9), 1010-1011.
[http://dx.doi.org/10.1007/BF01946484]
[137]
Lima, O.G.; Marini-Bettolo, G.B.; Monache, F.D.; Coelho, J.S. de B.; d’Albuquerque, L.I.; Maciel, G.M.; Lacerda, A.; Martins, D.G.D.; Albuquerque, I.V.; Maciel, G.M. Substâncias antimicrobianas de plantas superiores. Rev. Inst. Antibiot. (Recife), 1970, 10, 29.
[138]
Marini-Bettolo, G.B.; Monache, F.D.; Gonçalves, O.L.; Coelho, S.B. Miconidin, a new hydroquinone from the wood of Miconia sp.(Melastomaceae). Gazz. Chim. Ital., 1971, 101, 41.
[139]
Mozaina, K.; Cantrell, C.L.; Mims, A.B.; Lax, A.R.; Tellez, M.R.; Osbrink, W.L.A. Activity of 1,4-benzoquinones against formosan subterranean termites (Coptotermes formosanus). J. Agric. Food Chem., 2008, 56(11), 4021-4026.
[http://dx.doi.org/10.1021/jf800331r] [PMID: 18461966]
[140]
Ashiralieva, A.; Kleiner, D. Polyhalogenated benzo- and naphthoquinones are potent inhibitors of plant and bacterial ureases. FEBS Lett, 2003, 555(2), 367-370.
[http://dx.doi.org/10.1016/S0014-5793(03)01289-4] [PMID: 14644444]
[141]
Huang, P-L.; Gan, K-H.; Wu, R-R.; Lin, C-N. Benzoquinones, a homoisoflavanone and other constitutents from Polygonatum alte-lobatum. Phytochemistry, 1997, 44(7), 1369-1373.
[http://dx.doi.org/10.1016/S0031-9422(96)00652-8] [PMID: 9115701]
[142]
Mossa, J.S.; Muhammad, I.; Ramadan, A.F.; Mirza, H.H.; El-Feraly, F.S.; Hufford, C.D. Alkylated benzoquinone derivatives from Maesa lanceolata. Phytochemistry, 1999, 50(6), 1063-1068.
[http://dx.doi.org/10.1016/S0031-9422(98)00626-8]
[143]
Mahmood, U.; Kaul, V.K.; Jirovetz, L. Alkylated benzoquinones from Iris kumaonensis. Phytochemistry, 2002, 61(8), 923-926.
[http://dx.doi.org/10.1016/S0031-9422(02)00474-0] [PMID: 12453518]
[144]
Tansuwan, S.; Pornpakakul, S.; Roengsumran, S.; Petsom, A.; Muangsin, N.; Sihanonta, P.; Chaichit, N. Antimalarial benzoquinones from an endophytic fungus, Xylaria sp. J. Nat. Prod., 2007, 70(10), 1620-1623.
[http://dx.doi.org/10.1021/np0701069] [PMID: 17892262]
[145]
Lund, A.K.; Lemmich, J.; Adsersen, A.; Olsen, C.E. Benzoquinones from Embelia angustifolia. Phytochemistry, 1997, 44(4), 679-681.
[http://dx.doi.org/10.1016/S0031-9422(96)00606-1]
[146]
McErlean, C.S.P.; Moody, C.J. First synthesis of N-(3-carboxylpropyl)-5-amino-2-hydroxy-3- tridecyl-1,4-benzoquinone, an unusual quinone isolated from Embelia ribes. J. Org. Chem., 2007, 72(26), 10298-10301.
[http://dx.doi.org/10.1021/jo702101w] [PMID: 17999537]
[147]
Lin, P.; Li, S.; Wang, S.; Yang, Y.; Shi, J. A nitrogen-containing 3-alkyl-1,4-benzoquinone and a gomphilactone derivative from Embelia ribes. J. Nat. Prod., 2006, 69(11), 1629-1632.
[http://dx.doi.org/10.1021/np060284m] [PMID: 17125236]
[148]
Arot Manguro, L.O.; Midiwo, J.O.; Kraus, W.; Ugi, I. Benzoquinone derivatives of Myrsine africana and Maesa lanceolata. Phytochemistry, 2003, 64(4), 855-862.
[http://dx.doi.org/10.1016/S0031-9422(03)00428-X] [PMID: 14559281]
[149]
Nkomo, M.; Nkeh-Chungag, B.N.; Kambizi, L.; Ndebia, E.J.; Iputo, J.E. Antinociceptive and anti-inflammatory properties of Gunnera perpensa (Gunneraceae). Afr. J. Pharm. Pharmacol., 2010, 4(5), 263-269.
[150]
Khan, F.; Peter, X.K.; Mackenzie, R.M.; Katsoulis, L.; Gehring, R.; Munro, O.Q.; van Heerden, F.R.; Drewes, S.E. Venusol from Gunnera perpensa: Structural and activity studies. Phytochemistry, 2004, 65(8), 1117-1121.
[http://dx.doi.org/10.1016/j.phytochem.2004.02.024] [PMID: 15110692]
[151]
Drewes, S.E.; Khan, F.; van Vuuren, S.F.; Viljoen, A.M. Simple 1,4-benzoquinones with antibacterial activity from stems and leaves of Gunnera perpensa. Phytochemistry, 2005, 66(15), 1812-1816.
[http://dx.doi.org/10.1016/j.phytochem.2005.05.024] [PMID: 16019043]
[152]
Faulkner, D.J. Marine natural products. Nat. Prod. Rep., 2001, 18(1), 1-49.
[http://dx.doi.org/10.1039/b006897g] [PMID: 11245399]
[153]
Oda, T.; Wang, W.; Ukai, K.; Nakazawa, T.; Mochizuki, M. A sesquiterpene quinone, 5-Epi-smenospongine, promotes TNF-α production in LPS-stimulated RAW 264.7 Cells. Mar. Drugs, 2007, 5(4), 151-156.
[http://dx.doi.org/10.3390/md504151] [PMID: 18463729]
[154]
Shigemori, H.; Madono, T.; Sasaki, T.; Mikami, Y.; Kobayashi, J. Nakijiquinones A and B, new antifungal sesquiterpenoid quinones with an amino acid residue from an Okinawan marine sponge. Tetrahedron, 1994, 50(28), 8347-8354.
[http://dx.doi.org/10.1016/S0040-4020(01)85557-5]
[155]
Kobayashi, J. Madono; T.; Shigemori, H. Nakijiquinones C and D, new sesquiterpenoid quinones with a hydroxy amino acid residue from a marine sponge inhibiting c-erbB-2 kinase. Tetrahedron, 1995, 51(40), 10867-10874.
[http://dx.doi.org/10.1016/0040-4020(95)00661-Q]
[156]
Takahashi, Y.; Kubota, T.; Ito, J.; Mikami, Y.; Fromont, J.; Kobayashi, J. Nakijiquinones G-I, new sesquiterpenoid quinones from marine sponge. Bioorg. Med. Chem., 2008, 16(16), 7561-7564.
[http://dx.doi.org/10.1016/j.bmc.2008.07.028] [PMID: 18676149]
[157]
Takahashi, Y.; Kubota, T.; Kobayashi, J. Nakijiquinones E and F, new dimeric sesquiterpenoid quinones from marine sponge. Bioorg. Med. Chem., 2009, 17(6), 2185-2188.
[http://dx.doi.org/10.1016/j.bmc.2008.10.080] [PMID: 19017563]
[158]
Stahl, P.; Kissau, L.; Mazitschek, R.; Huwe, A.; Furet, P.; Giannis, A.; Waldmann, H. Total synthesis and biological evaluation of the nakijiquinones. J. Am. Chem. Soc., 2001, 123(47), 11586-11593.
[http://dx.doi.org/10.1021/ja011413i] [PMID: 11716712]
[159]
Luibrandt, R.T.; Erdman, T.R.; Vollmer, J.J.; Scheuer, P.J.; Finer, J. Ilimaquinone, a sesquiterpenoid quinone from a marine sponge. Tetrahedron, 1979, 35(5), 609-612.
[http://dx.doi.org/10.1016/0040-4020(79)87004-0]
[160]
Aoki, S.; Kong, D.; Matsui, K.; Rachmat, R.; Kobayashi, M. Sesquiterpene aminoquinones, from a marine sponge, induce erythroid differentiation in human chronic myelogenous leukemia, K562 cells. Chem. Pharm. Bull. (Tokyo), 2004, 52(8), 935-937.
[http://dx.doi.org/10.1248/cpb.52.935] [PMID: 15304984]
[161]
Takahashi, Y.; Kubota, T.J.F.; Kobayashi, J. Metachromins L–Q, new sesquiterpenoid quinones with an amino acid residue from sponge Spongia sp. Tetrahedron, 2007, 63(36), 8770-8773.
[http://dx.doi.org/10.1016/j.tet.2007.06.031]
[162]
Swersey, J.C.; Barroes, L.R.; Ireland, C.M. Mamanuthaquinone: an antimicrobial and cytotoxic metabolite of Fasciospongia sp. Tetrahedron Lett., 1991, 32(46), 6687-6690.
[http://dx.doi.org/10.1016/S0040-4039(00)93575-5]
[163]
Wijeratne, E.M.K.; Paranagama, P.A.; Marron, M.T.; Gunatilaka, M.K.; Arnold, A.E.; Gunatilaka, A.A.L. Sesquiterpene quinones and related metabolites from Phyllosticta spinarum, a fungal strain endophytic in Platycladus orientalis of the Sonoran Desert. J. Nat. Prod., 2008, 71(2), 218-222.
[http://dx.doi.org/10.1021/np070600c] [PMID: 18247573]
[164]
Abourashed, E.A.; El-Feraly, F.S.; Hufford, C.D. Carboxylic acid microbial metabolites of the natural benzoquinone, maesanin. J. Nat. Prod., 1999, 62(5), 714-716.
[http://dx.doi.org/10.1021/np9804942] [PMID: 10346952]
[165]
Hammond, B.; Kontos, H.A.; Hess, M.L. Oxygen radicals in the adult respiratory distress syndrome, in myocardial ischemia and reperfusion injury, and in cerebral vascular damage. Can. J. Physiol. Pharmacol., 1985, 63(3), 173-187.
[http://dx.doi.org/10.1139/y85-034] [PMID: 2985221]
[166]
Coyle, J.T.; Puttfarcken, P. Oxidative stress, glutamate, and neurodegenerative disorders. Science, 1993, 262(5134), 689-695.
[http://dx.doi.org/10.1126/science.7901908] [PMID: 7901908]
[167]
Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem., 1992, 59(5), 1609-1623.
[http://dx.doi.org/0.1111/j.1471-4159.1992.tb10990.x] [PMID: 1402908]
[168]
Lee, I.K.; Yun, B.S.; Cho, S.M.; Kim, W.G.; Kim, J.P.; Ryoo, I.J.; Koshino, H.; Yoo, I.D. Betulinans A and B, two benzoquinone compounds from Lenzites betulina. J. Nat. Prod., 1996, 59(11), 1090-1092.
[http://dx.doi.org/10.1021/np960253z] [PMID: 8946751]
[169]
Wang, H.; Gloer, K.B.; Gloer, J.B.; Scott, J.A.; Malloch, D. Anserinones A and B: new antifungal and antibacterial benzoquinones from the coprophilous fungus Podospora anserina. J. Nat. Prod., 1997, 60(6), 629-631.
[http://dx.doi.org/10.1021/np970071k] [PMID: 9214737]
[170]
Yang, X.; Gulder, T.A.M.; Reichert, M.; Tang, C.; Ke, C.; Ye, Y.; Bringmann, G. Parvistemins A–D, a new type of dimeric phenylethyl benzoquinones from Stemona parviflora Wright. Tetrahedron, 2007, 63(22), 4688-4694.
[http://dx.doi.org/10.1016/j.tet.2007.03.093]
[171]
Ogawa, H.; Sakaki, S.; Yoshihira, K.; Natori, S. The structures of ardisiaquinones A, B and C, bis (benzoquinonyl)-olefine derivatives from ardisia sieboldii miquel. Tetrahedron Lett., 1968, 9(11), 1387-1392.
[http://dx.doi.org/10.1016/S0040-4039(01)98959-2]
[172]
Fukuyama, Y.; Kiriyama, Y.; Kodama, M.; Iwaki, H.; Hosozawa, S.; Aki, S.; Matsui, K. Naturally occurring 5-lipoxygenase inhibitors. VI. Structures of ardisiaquinones D, E, and F from Ardisia sieboldii. Chem. Pharm. Bull. (Tokyo), 1995, 43(8), 1391-1394.
[http://dx.doi.org/10.1248/cpb.43.1391] [PMID: 7553985]
[173]
Fukuyama, Y.; Kiriyama, Y.; Kodama, M. Naturally occurring 5-lipoxygenase inhibitors. VII. Practical synthesis of ardisiaquinones D, E and F. Chem. Pharm. Bull. (Tokyo), 1998, 46(11), 1770-1775.
[http://dx.doi.org/10.1248/cpb.46.1770]
[174]
Yang, L.K.; Khoo-Beattie, C.; Goh, K.L.; Chng, B.L.; Yoganathan, K.; Lai, Y.H.; Butler, M.S. Ardisiaquinones from Ardisia teysmanniana. Phytochemistry, 2001, 58(8), 1235-1238.
[http://dx.doi.org/10.1016/S0031-9422(01)00317-X] [PMID: 11738414]
[175]
Lana, E.J.L.; Carazza, F.; Takahashi, J.A. Antibacterial evaluation of 1,4-benzoquinone derivatives. J. Agric. Food Chem., 2006, 54(6), 2053-2056.
[http://dx.doi.org/10.1021/jf052407z] [PMID: 16536574]
[176]
Yeo, H.; Kim, J. A benzoquinone from Cynanchum wilfordii. Phytochemistry, 1997, 46(6), 1103-1105.
[http://dx.doi.org/10.1016/S0031-9422(97)00403-2]
[177]
Suzuki, Y.; Kono, Y.; Inoue, T.; Sakurai, A. A potent antifungal benzoquinone in etiolated sorghum seedlings and its metabolites. Phytochemistry, 1998, 47(6), 997-1001.
[http://dx.doi.org/10.1016/S0031-9422(98)80060-5]
[178]
Kanakubo, A.; Isobe, M. Isolation of brominated quinones showing chemiluminescence activity from luminous acorn worm, Ptychodera flava. Bioorg. Med. Chem., 2005, 13(8), 2741-2747.
[http://dx.doi.org/10.1016/j.bmc.2005.02.028] [PMID: 15781385]
[179]
Nojima, S.; Schal, C.; Webster, F.X.; Santangelo, R.G.; Roelofs, W.L. Identification of the sex pheromone of the German cockroach, Blattella germanica. Science, 2005, 307(5712), 1104-1106.
[http://dx.doi.org/10.1126/science.1107163] [PMID: 15718472]
[180]
Ma, B.; Carr, B.A.; Krolikowski, P.; Chang, F.N. Cytotoxicity of a quinone-containing cockroach sex pheromone in human lung adenocarcinoma cells. Chem. Res. Toxicol., 2007, 20(1), 72-78.
[http://dx.doi.org/10.1021/tx060166z] [PMID: 17226928]
[181]
Carcamo-Noriega, E.N.; Sathyamoorthi, S.; Banerjee, S.; Gnanamani, E.; Mendoza-Trujillo, M.; Mata-Espinosa, D.; Hernández-Pando, R.; Veytia-Bucheli, J.I.; Possani, L.D.; Zare, R.N. 1,4-Benzoquinone antimicrobial agents against Staphylococcus aureus and Mycobacterium tuberculosis derived from scorpion venom. Proc. Natl. Acad. Sci. USA, 2019, 116(26), 12642-12647.
[http://dx.doi.org/10.1073/pnas.1812334116] [PMID: 31182590]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy