Review Article

Use of Anti-VEGF Drugs in Retinal Vein Occlusions

Author(s): Manuel AP Vilela*

Volume 21, Issue 12, 2020

Page: [1181 - 1193] Pages: 13

DOI: 10.2174/1389450121666200428101343

Price: $65

Abstract

Retinal vein occlusion (RVO) is one of the most prevalent causes of visual loss in the Western World. Its pathogenesis is still not completely known. Chronic macular edema and ischemia compromise the functional and anatomical status of the retina. Antivascular endothelial growth factor (anti-VEGF) injections have demonstrated better results than other previous options, including observation or laser therapy. This narrative review aims to analyze the current aspects related to these drugs.

Keywords: Retinal vein occlusion, branch retinal vein occlusion, central retinal vein occlusion, anti-VEGF, ranibizumab, aflibercept, bevacizumab.

Graphical Abstract
[1]
Rogers S, McIntosh RL, Cheung N, et al. International Eye Disease Consortium. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology 2010; 117(2): 313-9.e1.
[http://dx.doi.org/10.1016/j.ophtha.2009.07.017] [PMID: 20022117]
[2]
Campa C, Alivernini G, Bolletta E, Parodi MB, Perri P. Anti-VEGF therapy for retinal vein occlusions. Curr Drug Targets 2016; 17(3): 328-36.
[http://dx.doi.org/10.2174/1573399811666150615151324] [PMID: 26073857]
[3]
Ip M, Hendrick A. Retinal vein occlusion review. Asia Pac J Ophthalmol (Phila) 2018; 7(1): 40-5.
[PMID: 29280368]
[4]
Rothman AL, Thomas AS, Khan K, Fekrat S. Central retinal vein occlusion in young individuals. A comparison of risk factors and clinical outcomes. Retina 2019; 39(10): 1917-24.
[http://dx.doi.org/10.1097/IAE.0000000000002278] [PMID: 30085977]
[5]
Wu CY, Riangwiwat T, Limpruttidham N, Rattanawong P, Rosen RB, Deobhakta A. Association of retinal vein occlusion with cardiovascular events and mortality. A systematic review and meta-analysis. Retina 2019; 39(9): 1635-45.
[http://dx.doi.org/10.1097/IAE.0000000000002472] [PMID: 30829987]
[6]
Michel J. Ueber die anatomischen Ursachen von Veranderungrin des Augenhintergrundes bei einingen Allgemeinerkrankungen. Dtsch Arch Lin Med 1878; 22: 339-45.
[7]
Hayreh SS, van Heuven WAJ, Hayreh MS. Experimental retinal vascular occlusion. I. Pathogenesis of central retinal vein occlusion. Arch Ophthalmol 1978; 96(2): 311-23.
[http://dx.doi.org/10.1001/archopht.1978.03910050179015] [PMID: 415709]
[8]
Jonas JB. Ophthalmodynamometric assessment of the central retinal vein collapse pressure in eyes with retinal vein stasis or occlusion. Graefes Arch Clin Exp Ophthalmol 2003; 241(5): 367-70.
[http://dx.doi.org/10.1007/s00417-003-0643-7] [PMID: 12698255]
[9]
Beaumont PE, Kang HK. Pattern of vascular nonperfusion in retinal venous occlusions occurring within the optic nerve with and without optic nerve head swelling. Arch Ophthalmol 2000; 118(10): 1357-63.
[http://dx.doi.org/10.1001/archopht.118.10.1357] [PMID: 11030817]
[10]
Hvarfner C, Larsson J. Is optic nerve head swelling of prognostic value in central retinal vein occlusion? Graefes Arch Clin Exp Ophthalmol 2003; 241(6): 463-7.
[http://dx.doi.org/10.1007/s00417-003-0662-4] [PMID: 12719999]
[11]
Corvi F, La Spina C, Benatti L, et al. Impact of intravitreal ranibizumab on vessel functionality in patients with retinal vein occlusion. Am J Ophthalmol 2015; 160(1): 45-52.e1.
[http://dx.doi.org/10.1016/j.ajo.2015.04.019] [PMID: 25896458]
[12]
Li J, Paulus YM, Shuai Y, et al. New developments in the classification, pathogenesis, risk factors, natural history, and treatment of branch retinal vein occlusion. J Ophthalmol 2017., 4936924.
[13]
Khayat M, Williams M, Lois N. Ischemic retinal vein occlusion: characterizing the more severe spectrum of retinal vein occlusion. Surv Ophthalmol 2018; 63(6): 816-50.
[http://dx.doi.org/10.1016/j.survophthal.2018.04.005] [PMID: 29705175]
[14]
McAllister IL, Vijayasekaran S, Zhang D, McLenachan S, Chen FK, Yu DY. Neuronal degeneration and associated alterations in cytokine and protein in an experimental branch retinal venous occlusion model. Exp Eye Res 2018; 174: 133-46.
[http://dx.doi.org/10.1016/j.exer.2018.05.025] [PMID: 29803555]
[15]
Hayreh SS. Prevalent misconceptions about acute retinal vascular occlusive disorders. Prog Retin Eye Res 2005; 24(4): 493-519.
[http://dx.doi.org/10.1016/j.preteyeres.2004.12.001] [PMID: 15845346]
[16]
Hayreh SS, Klugman MR, Beri M, Kimura AE, Podhajsky P. Differentiation of ischemic from non-ischemic central retinal vein occlusion during the early acute phase. Graefes Arch Clin Exp Ophthalmol 1990; 228(3): 201-17.
[http://dx.doi.org/10.1007/BF00920022] [PMID: 2361592]
[17]
Shiono A, Kogo J, Sasaki H, et al. Optical coherence tomography findings as a predictor of clinical course in patients with branch retinal vein occlusion treated with Ranibizumab. PLoS One 2018; 2013(6)e0199552
[http://dx.doi.org/10.1371/journal.pone.0199552.]
[18]
Banaee T, Singh RP, Champ K, et al. Ellipsoid zone mapping parameters in retinal venous occlusive disease with associated macular edema. Ophthalmol Retina 2018; 2(8): 836-41.
[http://dx.doi.org/10.1016/j.oret.2017.11.009] [PMID: 30221215]
[19]
Berry D, Thomas AS, Fekrat S, Grewal DS. Association of disorganization of retinal inner layers with ischemic index and visual acuity in central retinal vein occlusion. Ophthalmol Retina 2018; 2(11): 1125-32.
[http://dx.doi.org/10.1016/j.oret.2018.04.019] [PMID: 30511035]
[20]
Yiu G, Welch J, Wang Y, et al. SD-OCT predictors of visual outcomes after Ranibizumab treatment for macular edema due to retinal vein occlusion. Ophthalmol Retina 2019.
[http://dx.doi.org/10.1016/j.oret.2019.08.009] [PMID: 31669329]
[21]
Kwon S, Wykoff CC, Brown DM, van Hemert J, Fan W, Sadda SR. Changes in retinal ischaemic index correlate with recalcitrant macular oedema in retinal vein occlusion: WAVE study. Br J Ophthalmol 2018; 102(8): 1066-71.
[http://dx.doi.org/10.1136/bjophthalmol-2017-311475] [PMID: 29699979]
[22]
Coscas F, Glacet-Bernard A, Miere A, et al. Optical coherence tomography angiography in retinal vein occlusion: evaluation of superficial and deep capillary plexa Am J Ophthalmol 2016; 161: 160-71.e1-2..
[http://dx.doi.org/10.1016/j.ajo.2015.10.008]
[23]
Khayat M, Wright DM, Yeong J, et al. Impact of retinal ischemia on functional and anatomical outcomes after anti-vascular endothelial growth factor therapy in patients with retinal vein occlusion. Retina 2019.
[http://dx.doi.org/10.1097/IAE.0000000000002571] [PMID: 31157714]
[24]
Wang Q, Chan SY, Yan Y, et al. Optical coherence tomography angiography in retinal vein occlusions. Graefes Arch Clin Exp Ophthalmol 2018; 256(9): 1615-22.
[http://dx.doi.org/10.1007/s00417-018-4038-1] [PMID: 29907946]
[25]
Hayreh SS, Zimmerman MB. Branch retinal vein occlusion: natural history of visual outcome. JAMA Ophthalmol 2014; 132(1): 13-22.
[http://dx.doi.org/10.1001/jamaophthalmol.2013.5515] [PMID: 24158729]
[26]
The Branch Vein Occlusion Study Group. Argon laser photocoagulation for macular edema in branch vein occlusion. Am J Ophthalmol 1984; 98(3): 271-82.
[http://dx.doi.org/10.1016/0002-9394(84)90316-7] [PMID: 6383055]
[27]
The Central Retinal Vein Occlusion Group. A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. The Central Vein Occlusion Study Group N report. Ophthalmology 1995; 102(10): 1434-44.
[http://dx.doi.org/10.1016/S0161-6420(95)30848-2] [PMID: 9097789]
[28]
Scott IU, Ip MS, VanVeldhuisen PC, et al. SCORE Study Research Group. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular Edema secondary to branch retinal vein occlusion: the Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 6. Arch Ophthalmol 2009; 127(9): 1115-28.
[http://dx.doi.org/10.1001/archophthalmol.2009.233] [PMID: 19752420]
[29]
Ip MS, Scott IU, VanVeldhuisen PC, et al. SCORE Study Research Group. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: the Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 5. Arch Ophthalmol 2009; 127(9): 1101-14.
[http://dx.doi.org/10.1001/archophthalmol.2009.234] [PMID: 19752419]
[30]
Duker JS, Liang MC. Anti-VEGF Use in Ophthalmology. Thorofare, NJ: SLACK Incorporated 2017.
[31]
Singh SR, Stewart MW. Chattannavar G, for the Ziv-aflibercept Sudy Group. Safety of intravitreal ziv-aflibercept injections. Br J Ophthalmol 2019; 103: 805-10.
[http://dx.doi.org/10.1136/bjophthalmol-2018-312453] [PMID: 30099379]
[32]
Eldeeb M, Chan EW, Dedhia CJ, Mansour A, Chhablani J. One-year outcomes of ziv-aflibercept for macular edema in central retinal vein occlusion. Am J Ophthalmol Case Rep 2017; 8: 58-61.
[http://dx.doi.org/10.1016/j.ajoc.2017.10.011] [PMID: 29260119]
[33]
Sun Z, Zhou H, Lin B, et al. Efficacy and safety of intravitreal Conbercept injections in macular edema secondary to retinal vein occlusion. Retina 2017; 37(9): 1723-30.
[http://dx.doi.org/10.1097/IAE.0000000000001404] [PMID: 27893623]
[34]
Li F, Sun M, Guo J, Ma A, Zhao B. Comparison of Conbercept with Ranibizumab for the treatment of macular edema secondary to branch retinal vein occlusion. Curr Eye Res 2017; 42(8): 1174-8.
[http://dx.doi.org/10.1080/02713683.2017.1285943] [PMID: 28441077]
[35]
Campochiaro PA, Heier JS, Feiner L, et al. BRAVO Investigators. Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 2010; 117(6): 1102-1112.e1.
[http://dx.doi.org/10.1016/j.ophtha.2010.02.021] [PMID: 20398941]
[36]
Ogura Y, Roider J, Korobelnik JF, et al. GALILEO Study Group. Intravitreal aflibercept for macular edema secondary to central retinal vein occlusion: 18-month results of the phase 3 GALILEO study. Am J Ophthalmol 2014; 158(5): 1032-8.
[http://dx.doi.org/10.1016/j.ajo.2014.07.027] [PMID: 25068637]
[37]
Brown DM, Campochiaro PA, Singh RP, et al. CRUISE Investigators. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 2010; 117(6): 1124-1133.e1.
[http://dx.doi.org/10.1016/j.ophtha.2010.02.022] [PMID: 20381871]
[38]
Heier JS, Campochiaro PA, Yau L, et al. Ranibizumab for macular edema due to retinal vein occlusions: long-term follow-up in the HORIZON trial. Ophthalmology 2012; 119(4): 802-9.
[http://dx.doi.org/10.1016/j.ophtha.2011.12.005] [PMID: 22301066]
[39]
Tadayoni R, Waldstein SM, Boscia F, et al. BRIGHTER Study Group. Sustained benefits of ranibizumab with or without laser in branch retinal vein occlusion. 24-month results of the BRIGHTER Study. Ophthalmology 2017; 124(12): 1778-87.
[http://dx.doi.org/10.1016/j.ophtha.2017.06.027] [PMID: 28807635]
[40]
Campochiaro PA, Hafiz G, Mir TA, et al. Scatter photocoagulation does not reduce macular edema or treatment burden in patients with retinal vein occlusion: the RELATE trial. Ophthalmology 2015; 122(7): 1426-37.
[http://dx.doi.org/10.1016/j.ophtha.2015.04.006] [PMID: 25972260]
[41]
Wei W, Weisberger A, Zhu L, Cheng Y, Liu C. BLOSSOM study group. Efficacy and safety of Ranibizumab in Asian patients with branch retinal vein occlusion: results from the randomized BLOSSOM Study. Ophthalmol Retina 2019.
[http://dx.doi.org/10.1016/j.oret.2019.08.001] [PMID: 31902472]
[42]
Brown DM, Heier JS, Clark WL, et al. Intravitreal aflibercept injection for macular edema secondary to central retinal vein occlusion: 1-year results from the phase 3 COPERNICUS study. Am J Ophthalmol 2013; 155(3): 429-437.e7.
[http://dx.doi.org/10.1016/j.ajo.2012.09.026] [PMID: 23218699]
[43]
Heier JS, Clark WL, Boyer DS, et al. Intravitreal aflibercept injection for macular edema due to central retinal vein occlusion: two-year results from the COPERNICUS study. Ophthalmology 2014; 121(7): 1414-1420.e1.
[http://dx.doi.org/10.1016/j.ophtha.2014.01.027] [PMID: 24679444]
[44]
Korobelnik JF, Holz FG, Roider J, et al. GALILEO Study Group. Intravitreal Aflibercept Injection for Macular Edema Resulting from Central Retinal Vein Occlusion: One-Year Results of the Phase 3 GALILEO Study. Ophthalmology 2014; 121(1): 202-8.
[http://dx.doi.org/10.1016/j.ophtha.2013.08.012] [PMID: 24084497]
[45]
Campochiaro PA, Clark WL, Boyer DS, et al. Intravitreal aflibercept for macular edema following branch retinal vein occlusion: the 24-week results of the VIBRANT study. Ophthalmology 2015; 122(3): 538-44.
[http://dx.doi.org/10.1016/j.ophtha.2014.08.031] [PMID: 25315663]
[46]
Clark WL, Boyer DS, Heier JS, et al. Intravitreal Aflibercept for Macular Edema Following Branch Retinal Vein Occlusion: 52-Week Results of the VIBRANT Study. Ophthalmology 2016; 123(2): 330-6.
[http://dx.doi.org/10.1016/j.ophtha.2015.09.035] [PMID: 26522708]
[47]
Scott IU, VanVeldhuisen PC, Ip MS, et al. SCORE2 Investigator Group. Effect of Bevacizumab vs Aflibercept on Visual Acuity Among Patients With Macular Edema Due to Central Retinal Vein Occlusion: The SCORE2 Randomized Clinical Trial. JAMA 2017; 317(20): 2072-87.
[http://dx.doi.org/10.1001/jama.2017.4568] [PMID: 28492910]
[48]
Scott IU, VanVeldhuisen PC, Ip MS, et al. SCORE2 Investigator Group. Baseline factors associated with 6-month visual acuity and retinal thickness outcomes in patients with macular edema secondary to central retinal vein occlusion or hemiretinal vein occlusion. SCORE2 Study Report 4. JAMA Ophthalmol 2017; 135(6): 639-49.
[http://dx.doi.org/10.1001/jamaophthalmol.2017.1141] [PMID: 28492860]
[49]
Hykin P, Prevost AT, Vasconcelos JC, et al. LEAVO Study Group. Clinical effectiveness of intravitreal therapy with Ranibizumab vs Aflibercept vs Bevacizumab for macular edema secondary to central retinal vein occlusion. A randomized clinical trial. JAMA Ophthalmol 2019; 137(11): 1256-64.
[http://dx.doi.org/10.1001/jamaophthalmol.2019.3305] [PMID: 31465100]
[50]
Narayanan R, Panchal B, Stewart MW, et al. MARVEL Study Group. Grid laser with modified pro re nata injection of bevacizumab and ranibizumab in macular edema due to branch retinal vein occlusion: MARVEL report no 2. Clin Ophthalmol 2016; 10(10): 1023-9.
[http://dx.doi.org/10.2147/OPTH.S104459] [PMID: 27330272]
[51]
Lip PL, Malick H, Damer K, et al. One-year outcome of bevacizumab therapy for chronic macular edema in central and branch retinal vein occlusions in real-world clinical practice in the UK. Clin Ophthalmol 2015; 9: 1779-84.
[http://dx.doi.org/10.2147/OPTH.S89147] [PMID: 26445525]
[52]
Jumper JM, Dugel PU, Chen S, Blinder KJ, Walt JG. ECHO Study Group. Anti-VEGF treatment of macular edema associated with retinal vein occlusion: patterns of use and effectiveness in clinical practice (ECHO study report 2). Clin Ophthalmol 2018; 12: 621-9.
[http://dx.doi.org/10.2147/OPTH.S163859] [PMID: 29662298]
[53]
Lotfy A, Solaiman KAM, Abdelrahman A, Samir A. Intravitreal Aflibercept versus Bevacizumab for macular edema secondary to central retinal vein occlusion. Retina 2018; 38(9): 1795-800.
[http://dx.doi.org/10.1097/IAE.0000000000001782] [PMID: 28767552]
[54]
Tao Y, Huang C, Liu M, et al. Short-term effect of intravitreal conbercept injection on major and macular branch retinal vein occlusion. J Int Med Res 2019; 47(3): 1202-9.
[http://dx.doi.org/10.1177/0300060518819613] [PMID: 30678515]
[55]
Campochiaro PA, Sophie R, Pearlman J, et al. RETAIN Study Group. Long-term outcomes in patients with retinal vein occlusion treated with ranibizumab: the RETAIN study. Ophthalmology 2014; 121(1): 209-19.
[http://dx.doi.org/10.1016/j.ophtha.2013.08.038] [PMID: 24112944]
[56]
Khurana RN, Chang LK, Bansal AS, et al. Treat and extend regimen with Aflibercept for chronic central retinal vein occlusion: 2 year results of the NEWTON study. Int J Retina Vitr 2019; 5: 10. eCollection
[http://dx.doi.org/10.1186/s40942-019-0159-x]
[57]
Hattenbach LO, Feltgen N, Bertelmann T. COMRADE Study Group. Head-to-head comparison of Ranibizumab PRN versus single- dose dexamethasone for branch retinal vein occlusion (COMRADE- B). Acta Ophthalmol 2018; 96(1): e 10-8.
[http://dx.doi.org/10.1111/aos.13381]
[58]
Pichi F, Elbarky AM, Elhamaky TR. Outcome of "treat and monitor" regimen of Aflibercept and Ranibizumab in macular edema secondary to non-ischemic branch retinal vein occlusion.Ophthalmol. 2019; 39: pp. (1)145-53.
[59]
Tan MH, McAllister IL, Gillies ME, et al. Randomized controlled trial of intravitreal ranibizumab versus standard grid laser for macular edema following branch retinal vein occlusion. Am J Ophthalmol 2014; 157(1): 237-247.e1.
[http://dx.doi.org/10.1016/j.ajo.2013.08.013] [PMID: 24112635]
[60]
Parodi MB, Iacono P, Bandello F. Subthreshold grid laser versus intravitreal bevacizumab as second-line therapy for macular edema in branch retinal vein occlusion recurring after conventional grid laser treatment. Graefes Arch Clin Exp Ophthalmol 2015; 253(10): 1647-51.
[http://dx.doi.org/10.1007/s00417-014-2845-6] [PMID: 25382074]
[61]
Higashiyama T, Sawada O, Kakinoki M, Sawada T, Kawamura H, Ohji M. Prospective comparisons of intravitreal injections of triamcinolone acetonide and bevacizumab for macular oedema due to branch retinal vein occlusion. Acta Ophthalmol 2013; 91(4): 318-24.
[http://dx.doi.org/10.1111/j.1755-3768.2011.02298.x] [PMID: 22132711]
[62]
Son BK, Kwak HW, Kim ES, Yu SY. Comparison of Ranibizumab and Bevacizumab for macular edema associated with branch retinal vein occlusion. Korean J Ophthalmol 2017; 31(3): 209-16.
[http://dx.doi.org/10.3341/kjo.2015.0158] [PMID: 28471106]
[63]
Rajagopal R, Shah GK, Blinder KJ, et al. Bevacizumab versus Ranibizumab in the treatment of macular edema due to retinal vein occlusion: 6-month results of the CRAVE study. Ophthalmic Surg Lasers Imaging Retina 2015; 46(8): 844-50.
[http://dx.doi.org/10.3928/23258160-20150909-09] [PMID: 26431300]
[64]
Pielen A, Mirshahi A, Feltgen N, et al. RABAMES Study Group. Ranibizumab for Branch Retinal Vein Occlusion Associated Macular Edema Study (RABAMES): six-month results of a prospective randomized clinical trial. Acta Ophthalmol 2015; 93(1): e29-37.
[http://dx.doi.org/10.1111/aos.12488] [PMID: 25042729]
[65]
Terashima H, Hasebe H, Okamoto F, Matsuoka N, Sato Y, Fukuchi T. Combination therapy of intravitreal Ranibizumab and subthreshold micropulse photocoagulation for macular edema secondary to brach retinal vein occlusion. 6-month result. Retina 2019; 39(7): 1377-84.
[http://dx.doi.org/10.1097/IAE.0000000000002165] [PMID: 29689025]
[66]
Cekiç O, Cakır M, Yazıcı AT, Alagöz N, Bozkurt E, Faruk Yılmaz O. A comparison of three different intravitreal treatment modalities of macular edema due to branch retinal vein occlusion. Curr Eye Res 2010; 35(10): 925-9.
[http://dx.doi.org/10.3109/02713683.2010.496540] [PMID: 20858114]
[67]
Kaldırım HE, Yazgan S. A comparison of three different intravitreal treatment modalities of macular edema due to branch retinal vein occlusion. Int Ophthalmol 2018; 38(4): 1549-58.
[http://dx.doi.org/10.1007/s10792-017-0618-z] [PMID: 28646440]
[68]
Larsen M, Waldstein SM, Boscia F, et al. CRYSTAL Study Group. Individualized Ranibizumab regimen driven by stabilization criteria for central retinal vein occlusion. Ophthalmology 2016; 123(5): 1101-11.
[http://dx.doi.org/10.1016/j.ophtha.2016.01.011] [PMID: 26896124]
[69]
Casselholm de Salles M, Amrén U, Kvanta A, Epstein DL. Injection frequency of Aflibercept versus Ranibizumab in a treat-and-extend regimen for central retinal vein occlusion: a randomized clinical trial. Retina 2019; 39(7): 1370-6. [regime
[http://dx.doi.org/10.1097/IAE.0000000000002171] [PMID: 29624543]
[70]
Epstein DL, Algvere PV, von Wendt G, Seregard S, Kvanta A. Bevacizumab for macular edema in central retinal vein occlusion: a prospective, randomized, double-masked clinical study. Ophthalmology 2012; 119(6): 1184-9.
[http://dx.doi.org/10.1016/j.ophtha.2012.01.022] [PMID: 22424833]
[71]
Scott IU, Oden NL, VanVeldhuisen PC, Ip MS, Blodi BA, Chan CK. SCORE2 Investigator Group. Month 24 outcomes after treatment initiation with anti-vascular endothelial growth factor therapy for macular edema due to central retinal or hemiretinal vein occlusion: SCORE2 report 10. A secondary analysis of the SCORE2 randomized clinical trial. JAMA Ophthalmol 2019.
[http://dx.doi.org/10.1001/jamaophthalmol.2019.3947] [PMID: 31600368]
[72]
Hoerauf H, Feltgen N, Weiss C, et al. COMRADE-C Study Group. Clinical Efficacy and Safety of Ranibizumab versus dexamethasone for central retinal vein occlusion (COMRADE-C): A European Label Study. Am J Ophthalmol 2016; 169: 258-67.
[http://dx.doi.org/10.1016/j.ajo.2016.04.020] [PMID: 27163237]
[73]
Ding X, Li J, Hu X, Yu S, Pan J, Tang S. Prospective study of intravitreal triamcinolone acetonide versus bevacizumab for macular edema secondary to central retinal vein occlusion. Retina 2011; 31(5): 838-45.
[http://dx.doi.org/10.1097/IAE.0b013e3181f4420d] [PMID: 21293319]
[74]
Kinge B, Stordahl PB, Forsaa V, et al. Efficacy of ranibizumab in patients with macular edema secondary to central retinal vein occlusion: results from the sham-controlled ROCC study. Am J Ophthalmol 2010; 150(3): 310-4.
[http://dx.doi.org/10.1016/j.ajo.2010.03.028] [PMID: 20591399]
[75]
Gado AS, Macky TA. Dexamethasone intravitreous implant versus bevacizumab for central retinal vein occlusion-related macular oedema: a prospective randomized comparison. Clin Exp Ophthalmol 2014; 42(7): 650-5.
[http://dx.doi.org/10.1111/ceo.12311] [PMID: 24612095]
[76]
Ramezani A, Esfandiari H, Entezari M, et al. Three intravitreal bevacizumab versus two intravitreal triamcinolone injections in recent onset central retinal vein occlusion. Acta Ophthalmol 2014; 92(7): e530-9.
[http://dx.doi.org/10.1111/aos.12317] [PMID: 24373344]
[77]
Saishin Y, Ito Y, Fujikawa M, Sawada T, Ohji M. Comparison between ranibizumab and aflibercept for macular edema associated with central retinal vein occlusion. Jpn J Ophthalmol 2017; 61(1): 67-73.
[http://dx.doi.org/10.1007/s10384-016-0476-7] [PMID: 27660163]
[78]
Rabena MD, Pieramici DJ, Castellarin AA, Nasir MA, Avery RL. Intravitreal bevacizumab (Avastin) in the treatment of macular edema secondary to branch retinal vein occlusion. Retina 2007; 27(4): 419-25.
[http://dx.doi.org/10.1097/IAE.0b013e318030e77e] [PMID: 17420692]
[79]
Mitry D, Bunce C, Charteris D. Anti-vascular endothelial growth factor for macular oedema secondary to branch retinal vein occlusion. Cochrane Database Syst Rev 2013; (1): CD009510 [review
[http://dx.doi.org/10.1002/14651858.CD009510.pub2] [PMID: 23440840]
[80]
Campochiaro PA, Wykoff CC, Singer M, et al. Monthly versus as-needed ranibizumab injections in patients with retinal vein occlusion: the SHORE study. Ophthalmology 2014; 121(12): 2432-42.
[http://dx.doi.org/10.1016/j.ophtha.2014.06.011] [PMID: 25060610]
[81]
Glanville J, Patterson J, McCool R, Ferreira A, Gairy K, Pearce I. Efficacy and safety of widely used treatments for macular oedema secondary to retinal vein occlusion: a systematic review. BMC Ophthalmol 2014; 14: 7.
[http://dx.doi.org/10.1186/1471-2415-14-7] [PMID: 24447389]
[82]
Braithwaite T, Nanji AA, Lindsley K, Greenberg PB. Anti-vascular endothelial growth factor for macular oedema secondary to central retinal vein occlusion. Cochrane Database Syst Rev 2014; (5): CD007325
[http://dx.doi.org/10.1002/14651858.CD007325.pub3] [PMID: 24788977]
[83]
Regnier SA, Larsen M, Bezlyak V, Allen F. Comparative efficacy and safety of approved treatments for macular oedema secondary to branch retinal vein occlusion: a network meta-analysis. BMJ Open 2015; 5(6)e007527
[http://dx.doi.org/10.1136/bmjopen-2014-007527] [PMID: 26048209]
[84]
Panakanti TK, Chhablani J. Clinical trials in branch retinal vein occlusion. Middle East Afr J Ophthalmol 2016; 23(1): 38-43.
[http://dx.doi.org/10.4103/0974-9233.172294] [PMID: 26957837]
[85]
Ehlers JP, Kim SJ, Yeh S, et al. Therapies for macular edema associated with branch retinal vein occlusion. Ophthalmology 2017; 124(9): 1412-23.
[http://dx.doi.org/10.1016/j.ophtha.2017.03.060] [PMID: 28551163]
[86]
Sangroongruangsri S, Ratanapakorn T, Wu O, Anothaisintawee T, Chaikledkaew U. Comparative efficacy of bevacizumab, ranibizumab, and aflibercept for treatment of macular edema secondary to retinal vein occlusion: a systematic review and network meta-analysis. Expert Rev Clin Pharmacol 2018; 11(9): 903-16.
[http://dx.doi.org/10.1080/17512433.2018.1507735] [PMID: 30071180]
[87]
Lashay A, Riazi-Esfahani H, Mirghorbani M, Yaseri M. Riazi-Esfahani, Mirghorbani M, Yaseri M. Intravitreal medications for retinal vein occlusion: systematic review and meta-analysis. J Ophthalmic Vis Res 2019; 14(3): 336-66.
[PMID: 31660113]
[88]
Scott IU, VanVeldhuisen PC, Ip MS, et al. SCORE2 Investigator Group. for the SCORE 2 Investigator Group. Comparison of monthly vs treat-and-extend regimens for individuals with macular edema who respond well to anti-vascular endothelial growth factor medications. Secondary outcomes from the SCORE2 Randomized Clinical trial. JAMA Ophthalmol 2018; 136(4): 337-45.
[http://dx.doi.org/10.1001/jamaophthalmol.2017.6843] [PMID: 29476687]
[89]
Pielen A, Clark WL, Boyer DS, et al. Integrated results from the COPERNICUS and GALILEO studies. Clin Ophthalmol 2017; 11: 1533-40.
[http://dx.doi.org/10.2147/OPTH.S140665] [PMID: 28883712]
[90]
Schmidt-Erfurth U, Garcia-Arumi J, Gerendas BS, et al. Guidelines for the management of retinal vein occlusion by European Society of Retina Specialists (EURETINA). Ophthalmologica 2019; 242(3): 123-62.
[http://dx.doi.org/10.1159/000502041] [PMID: 31412332]
[91]
Vorum H, Olesen TK, Zinck J, Størling Hedegaard M. Real world evidence of use of anti-VEGF therapy in Denmark. Curr Med Res Opin 2016; 32(12): 1943-50.
[http://dx.doi.org/10.1080/03007995.2016.1221803] [PMID: 27494692]
[92]
Vaz-Pereira S, Marques IP, Matias J, Mira F, Ribeiro L, Flores R. real-world outcomes of anti-VEGF treatment for retinal vein occlusion in Portugal. Eur J Ophthalmol 2017; 27(6): 756-61.
[http://dx.doi.org/10.5301/ejo.5000943] [PMID: 28315518]
[93]
Stallworth JY, Thomas AS, Constantine R, et al. Treatment patterns and clinical outcomes for central retinal vein occlusion in the antivascular endothelial growth factor era. J VitreoRetinal Dis 2020; 4(1): 13-21.
[http://dx.doi.org/10.1177/2474126419878922]
[94]
Rani PK, Das T. Evidence-based practice versus economics in treatment of macular edema secondary to central retinal vein occlusion in India. Eye (Lond) 2020; 34(2): 217-8.
[http://dx.doi.org/10.1038/s41433-019-0709-3] [PMID: 31767969]
[95]
Guichard MM, Xavier AR, Türksever C, Pruente C, Hatz K. Spectral-domain optical coherence tomography-driven treat-and-extend and pro re nata regimen in patients with macular oedema due to retinal vein occlusion: 24-month evaluation and outcome predictors. Ophthalmic Res 2018; 60(1): 29-37.
[http://dx.doi.org/10.1159/000487489] [PMID: 29566387]
[96]
Iida-Miwa Y, Muraoka Y, Iida Y, et al. Branch retinal vein occlusion treatment outcomes according to the retinal nonperfusion area, clinical subtype, and crossing pattern. Sci Rep 2019; 9: 6569.
[http://dx.doi.org/10.1038/s41598-019-42982-5]
[97]
Miwa Y, Muraoka Y, Osaka R, et al. Ranibizumab for macular edema after branch retinal vein occlusion. One initial injection versus three monthly injections. Retina 2017; 37(4): 702-9. [REGIME
[http://dx.doi.org/10.1097/IAE.0000000000001224] [PMID: 27471827]
[98]
Moon BG, Cho AR, Kim YN, Kim J-G. Predictors of refractory macular edema after branch retinal vein occlusion following intravitreal Bevacizumab. Retina 2018; 38(6): 1166-74.
[http://dx.doi.org/10.1097/IAE.0000000000001674] [PMID: 28489696]
[99]
Sophie R, Wang PW, Channa R, Quezada-Ruiz C, Clark A, Campochiaro PA. Different factors associated with 2-year outcomes in patients with branch versus central retinal vein occlusion treated with Ranibizumab. Ophthalmology 2019; 126(12): 1695-702.
[http://dx.doi.org/10.1016/j.ophtha.2019.07.018] [PMID: 31543350]
[100]
Flaxel CJ, Adelman R, Bailey ST, et al. Retinal vein occlusion preferred practice pattern. Ophthalmology 2019.
[http://dx.doi.org/10.1016/j.ophtha.2019.09.029] [PMID: 31757503]
[101]
Karth PA, Moshfeghi DM, Blumenkranz MS. Cost and utility analysis of treatment for macular edema in central retinal vein occlusion. Invest Ophthalmol Vis Sci 2015; 56(7): 2143.
[102]
Patel S. Medicare Spending on Anti-Vascular Endothelial Growth Factor Medications. Ophthalmol Retina 2018; 2(8): 785-91.
[http://dx.doi.org/10.1016/j.oret.2017.12.006] [PMID: 31047530]
[103]
Wirth MA, Becker MD, Graf N, Michels S. Aflibercept in branch retinal vein occlusion as second line therapy: clinical outcome 12 months after changing treatment from bevacizumab/ranibizumab-a pilot study. Int J Retina Vitreous 2016; 2: 20.
[http://dx.doi.org/10.1186/s40942-016-0045-8] [PMID: 27847638]
[104]
Tagami M, Sai R, Fukuda M, Azumi A. Prolongation of injection interval after switching therapy from ranibizumab to aflibercept in Japanese patients with macular edema secondary to branch retinal vein occlusion. Clin Ophthalmol 2017; 11: 403-8.
[http://dx.doi.org/10.2147/OPTH.S128651] [PMID: 28260852]
[105]
Sakanishi Y, Usui-Ouchi A, Tamaki K, Mashimo K, Ito R, Ebihara N. Short-term outcomes in patients with branch retinal vein occlusion who received intravitreal aflibercept with or without intravitreal ranibizumab. Clin Ophthalmol 2017; 11: 829-34.
[http://dx.doi.org/10.2147/OPTH.S133594] [PMID: 28496301]
[106]
Mir TA, Kherani S, Hafiz G, et al. Changes in retinal nonperfusion associated with supression of vascular endothelial growth factor in retinal vein occlusion. Ophthalmology 2016; 123(3): 625-34.e1.
[http://dx.doi.org/10.1016/j.ophtha.2015.10.030] [PMID: 26712560]
[107]
Pfau M, Fassnacht-Riederle H, Becker MD, Graf N, Michels S. Clinical outcome after switching therapy from ranibizumab and/or bevacizumab to aflibercept in central retinal vein occlusion. Ophthalmic Res 2015; 54(3): 150-6.
[http://dx.doi.org/10.1159/000439223] [PMID: 26413794]
[108]
Papakostas TD, Lim L, van Zyl T, et al. Intravitreal aflibercept for macular oedema secondary to central retinal vein occlusion in patients with prior treatment with bevacizumab or ranibizumab. Eye (Lond) 2016; 30(1): 79-84.
[http://dx.doi.org/10.1038/eye.2015.175] [PMID: 26449196]
[109]
Lip PL, Cikatricis P, Sarmad A, et al. Efficacy and timing of adjunctive therapy in the anti-VEGF treatment regimen for macular oedema in retinal vein occlusion: 12-month real-world result. Eye (Lond) 2018; 32(3): 537-45.
[http://dx.doi.org/10.1038/eye.2017.230] [PMID: 29099501]
[110]
Haller JA, Bandello F, Belfort R Jr, et al. OZURDEX GENEVA Study Group. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology 2010; 117(6): 1134-1146.e3.
[http://dx.doi.org/10.1016/j.ophtha.2010.03.032] [PMID: 20417567]
[111]
Bandello F, Parravano M, Cavallero E, et al. Prospective evaluation of morphological and functional changes after repeated intravitreal dexamethasone implant (Ozurdex®) for retinal vein occlusion. Ophthalmic Res 2015; 53(4): 207-16.
[http://dx.doi.org/10.1159/000381187] [PMID: 25896233]
[112]
Dugel P, Capone A, Singer M, et al. Two or more dexamethasone intravitreal implants in treatment-naïve patients with macular edema due to retina vein occlusion: subgroup analysis of a retrospective chart review study. BMC Ophthalmol 2015; 15: 118-125. 97.
[113]
Mayer WJ, Remy M, Wolf A, et al. Comparison of intravitreal bevacizumab upload followed by a dexamethasone implant versus dexamethasone implant monotherapy for retinal vein occlusion with macular edema. Ophthalmologica 2012; 228(2): 110-6.
[http://dx.doi.org/10.1159/000338732] [PMID: 22739239]
[114]
Maturi RK, Chen V, Raghinaru D, Bleau L, Stewart MW. A 6-month, subject-masked, randomized controlled study to assess efficacy of dexamethasone as an adjunct to bevacizumab compared with bevacizumab alone in the treatment of patients with macular edema due to central or branch retinal vein occlusion. Clin Ophthalmol 2014; 8: 1057-64.
[PMID: 24940042]
[115]
Singer MA, Jansen ME, Tyler L, et al. Long-term results of combination therapy using anti-VEGF agents and dexamethasone intravitreal implant for retinal vein occlusion: an investigational case series. Clin Ophthalmol 2016; 11: 31-8.
[http://dx.doi.org/10.2147/OPTH.S119373] [PMID: 28031700]
[116]
Giuffrè C, Cicinelli MV, Marchese A, et al. Simultaneous intravitreal dexamethasone and Aflibercept for refractory macular edema secondary to retinal vein occlusion. Graefe's Arch Clin Exp Ophthalm 2020 Jan.
[http://dx.doi.org/10.1007/s00417-019-04577-8]
[117]
Harb W, Chidiac G, Harb G. Outcomes of combination therapy using Aflibercept and dexamethasone intravitreal implant for macular edema secondary to retinal vein occlusion. World J Surg Surgical Res 2019; 2: 1126.
[118]
Campochiaro PA, Wykoff CC, Brown DM, et al. Tanzanite Study Group. Suprachoroidal triamcinolone acetonide for retinal vein occlusion: results of the Tanzanite Study. Ophthalmol Retina 2018; 2(4): 320-8.
[http://dx.doi.org/10.1016/j.oret.2017.07.013] [PMID: 31047241]
[119]
Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond) 2013; 27(7): 787-94.
[http://dx.doi.org/10.1038/eye.2013.107] [PMID: 23722722]
[120]
Karimi S, Mosavi SA, Jadidi K, Nikkhah H, Kheiri B. Which quadrant is less painful for intravitreal injection? A prospective study. Eye (Lond) 2018.
[http://dx.doi.org/10.1038/s41433-018-0208-y] [PMID: 30202072]
[121]
Bilgic A, Kodjikian L, Chhablani J, et al. Sustained intraocular pressure rise after the treat and extend regimen at 3 years: Aflibercept versus Ranibizumab. J Ophthalmol 2020.1037462098
[http://dx.doi.org/10.1155/2020/7462098.]
[122]
Zhong P, He M, Yu H, et al. A meta-analysis of cardiovascular events associated with Intravitreal anti-VEGF treatment in patients with retinal vein occlusion. Curr Eye Res 2019; 7: 1-8.
[http://dx.doi.org/10.1080/02713683.2019.1687727] [PMID: 31670978]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy