Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

In vitro α-amylase and α-glucosidase Inhibition, Antioxidant, Anti- Inflammatory Activity and GC-MS Profiling of Avicennia alba Blume

Author(s): Swagat K. Das*, Sagarika Dash, Hrudayanath Thatoi and Jayanta K. Patra*

Volume 23 , Issue 9 , 2020

Page: [945 - 954] Pages: 10

DOI: 10.2174/1386207323666200428081748

Price: $65

Abstract

Background: Avicennia alba Blume, is a well-known mangrove plant used in traditional medicinal practices for several human ailments.

Objective: The study aimed at the evaluation of antidiabetic, antioxidant, anti-inflammatory and cytotoxic activities of A. alba ethanolic leaf (AAL) and bark (AAB) extract along with phytochemical investigation.

Methods: In vitro antidiabetic study was done by α-amylase, α-glucosidase enzyme inhibition assay; antioxidant study by DPPH, ABTS, superoxide, and metal chelating assays, antiinflammatory study by protein denaturation assay. The cytotoxicity study was done on TC1 murine cell line. Further, GC-MS analysis was carried out for AAL extracts.

Results: AAL exhibited better antidiabetic activities with IC50 values of 1.18 and 0.87 mg/ml against α-amylase and α-glucosidase enzymes respectively. The AAL exhibited better ABTS, superoxide scavenging and metal chelating potential with IC50 values of 0.095, 0.127 and 0.444 mg/ml. However, AAB showed higher DPPH scavenging potential with IC50 value of 0.163 mg/ml. The AAL also exhibited higher protein denaturation potential with IC50 value of 0.370 mg/ml. The bark extract exhibited better cytotoxic activity as compared to leaf extracts on the TC1 murine cell line. The phytochemical study revealed higher total phenol (25.64 mg GAE/g), flavonoid (205.09 mg QE/g), and tannin content (251.17 mg GAE/g) in AAL. The GC-MS analysis revealed the presence of several compounds in AAL extract.

Conclusion: The result of the present study highlights the antidiabetic, antioxidant and cytotoxic activities of mangrove plant Avicennia alba.

Keywords: Avicennia alba, antidiabetic, antioxidant, anti-inflammatory, GC-MS analysis, cytotoxic.

[1]
The Plant List. Available at , http://www.plantlist.org
[2]
Bandaranayake, W.M. Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wet. Eco. Man., 2002, 10, 421-452.
[http://dx.doi.org/10.1023/A:1021397624349]
[3]
Ito, C.; Katsuno, S.; Kondo, Y.; Tan, H.T.; Furukawa, H. Chemical constituents of Avicennia alba. Isolation and structural elucidation of new naphthoquinones and their analogues. Chem. Pharm. Bull. (Tokyo), 2000, 48(3), 339-343.
[http://dx.doi.org/10.1248/cpb.48.339] [PMID: 10726853]
[4]
Kar, D.R.; Kumar, P.S.; Ghosh, G.; Sahu, P.K. Isolation and characterization of flavone from the aerial parts of Avicennia alba Blume. Orient. J. Chem., 2014, 30, 705-711.
[http://dx.doi.org/10.13005/ojc/300242]
[5]
Thatoi, H.; Das, S.K.; Samantaray, D. The genus Avicennia, a pioneer group of dominant mangrove plant species with potential medicinal values: a review. Front. Life Sci., 2016, 9, 267-291.
[http://dx.doi.org/10.1080/21553769.2016.1235619]
[6]
Vadlapudi, V. In vitro antimicrobial activity of plant extracts of Avicennia alba against some important pathogens. Asian Pac. J. Trop. Dis., 2012, 2, S408-S411.
[http://dx.doi.org/10.1016/S2222-1808(12)60192-3]
[7]
Vadlapudi, V.; Naidu, K.C. Evaluation of antioxidant potential of selected mangrove plants. J. Pharm. Res., 2009, 2, 1742-1745.
[8]
Aftef, M.A.A. Protective effect of Avicennia alba leaves extract on gastric mucosal damage induced by ethanol. Res. J. Med. Plant, 2011, 1, 5477-5490.
[9]
Rahman, M.A. Antidiarrhoeal and antinociceptive activity of leaf Avicennia alba. Pharmacologyonline, 2011, 1, 492-500.
[10]
Sumithra, M.; Kumar, J.V.; Kancharana, V.S. Influence of methanolic extract of Avicennia officinalis leaves on acute.; subacute and chronic inflammatory models. Int. J. Pharm. Tech. Res., 2011, 3, 763-768.
[11]
Gowri, P.M.; Tiwari, A.K.; Ali, A.Z.; Rao, J.M. Inhibition of α-glucosidase and amylase by bartogenic acid isolated from Barringtonia racemosa Roxb. seeds. Phytother. Res., 2007, 21(8), 796-799.
[http://dx.doi.org/10.1002/ptr.2176] [PMID: 17533638]
[12]
Maisuthisakul, P.; Suttajit, M.; Pongsawatmanit, R. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem., 2007, 100, 1409-1418.
[http://dx.doi.org/10.1016/j.foodchem.2005.11.032]
[13]
Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS.; DPPH.; FRAP.; and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal., 2006, 19, 669-675.
[http://dx.doi.org/10.1016/j.jfca.2006.01.003]
[14]
Das, S.K.; Samanta, L.; Thatoi, H. In vitro antidiabetic and antioxidant potentials of leaf and stem bark extracts of a mangrove plant, Xylocarpus granatum. J. Herbs Spices Med. Plants, 2016, 22, 105-117.
[http://dx.doi.org/10.1080/10496475.2015.1057352]
[15]
Haro-Vicente, J.F.; Martinez-Gracia, C.; Ros, G. Optimization of in vitro measurement of available iron from different fortificants in citric fruit juices. Food Chem., 2006, 98, 639-648.
[http://dx.doi.org/10.1016/j.foodchem.2005.06.040]
[16]
Murugan, R.; Parimelazhagan, T. Comparative evaluation of different extraction methods for antioxidant and anti-inflammatory properties from Osbeckia parvifolia Arn- An in vitro approach. J. King Saud. Univ. Sci., 2014, 26, 267-275.
[http://dx.doi.org/10.1016/j.jksus.2013.09.006]
[17]
Harborne, B. Phytochemical Methods; Springer: London, 1998.
[18]
Keskes, H. Belhadj, S.; Jlail, L.; El Feki, A.; Damak, M.; Sayadi, S.; Allouche, N. LC-MS-MS and GC-MS analyses of biologically active extracts and fractions from Tunisian Juniperus phoenice leaves. Pharm. Biol., 2017, 55(1), 88-95.
[http://dx.doi.org/10.1080/13880209.2016.1230139] [PMID: 27925471]
[19]
O’Keefe, J.H.; Bell, D.S. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am. J. Cardiol., 2007, 100(5), 899-904.
[http://dx.doi.org/10.1016/j.amjcard.2007.03.107] [PMID: 17719342]
[20]
Das, S.K.; Samantaray, D.; Patra, J.K.; Samanta, L.; Thatoi, H. Antidiabetic potential of mangrove plants: a review. Front. Life Sci., 2016, 9, 75-88.
[http://dx.doi.org/10.1080/21553769.2015.1091386]
[21]
Thatoi, H.N.; Patra, J.K.; Das, S.K. Free radical scavenging and antioxidant potential of mangrove plants: a review. Acta Physiol. Plant., 2014, 36, 561-579.
[http://dx.doi.org/10.1007/s11738-013-1438-z]
[22]
Patra, J.K.; Dhal, N.K.; Thatoi, H.N. Free radical scavenging potential of four ethnomedicinally important mangrove plants along Odisha coast.; India. Indian J. Geo-Mar. Sci., 2014, 43, 1-9.
[23]
Gan, R.Y.; Xu, X.R.; Song, F.L.; Kuang, L.; Li, H.B. Antioxidant activity and total phenolic content of medicinal plants associated with prevention and treatment of cardiovascular and cerebrovascular diseases. J. Med. Plants Res., 2010, 4, 2438-2444.
[24]
Soler-Rivas, C.; Espin, J.C.; Wichers, H.J. An easy and fast test to compare total free radical scavenger capacity of foodstuffs. Phytochem. Anal., 2000, 11, 330-338.
[http://dx.doi.org/10.1002/1099-1565(200009/10)11:5<330::AID-PCA534>3.0.CO;2-G]
[25]
Leelaprakash, G.; Dass, S.M. In vitro anti-inflammatory activity of methanol extract of Enicostemma axillare. Int. J. Drug Dev. Res., 2011, 3, 189-196.
[26]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96(2-3), 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[27]
Collier, A.C.; Pritsos, C.A. The mitochondrial uncoupler dicumarol disrupts the MTT assay. Biochem. Pharmacol., 2003, 66(2), 281-287.
[http://dx.doi.org/10.1016/S0006-2952(03)00240-5] [PMID: 12826270]
[28]
Rahman, N.H.; Vigneswari, S.; Ahmad, A.; Mohamad, H.; Muhammad, T.S.T. Cytotoxic effects and evidence of apoptosis from Avecennia alba extracts on human breast cancer cell line (MCF-7). J. Sustain. Sci. Manag., 2017, 12(2), 80-88.
[29]
Eswaraiah, G.; Peele, K.A.; Krupanidhi, S.; Kumar, R.B.; Venkateswarulu, T.C. Identification of bioactive compounds in leaf extract of Avicennia alba by GC-MS analysis and evaluation of its in vitro anticancer potential against MCF7 and HeLa cell lines. J. King Saud. Univ. Sci., 2019, 32, 1-5.
[30]
Swaya, T.O.; Aduma, P.; Chelimo, K.; Were, O. Assessment of Anti-Proliferative Activities of Selected Medicinal Plant Extracts Used for Management of Diseases around Lake Victoria Basin. J. Carcinog. Mutagen., 2017, 8(2), 1-9.
[http://dx.doi.org/10.4172/2157-2518.1000286]
[31]
Iranawati, F.; Muhammad, F.; Fajri, H.; Kasitowati, R.D.; Arifin, S. The potential of mangrove Avicennia marina and A. Alba from Nguling district, Pasuruan, East Java as an antioxidant. IOP Conf. Ser.: Earth Environ. Sci., 2018, 137, 1-5.
[32]
Biswas, B.; Golder, M.; Islam, T.; Sadhu, S.K. Comparative antioxidative and antihyperglycemic profiles of pneumatophores of two mangrove species Avicennia alba and Sonneratia apetala. Dhaka Univ. J. Pharm. Sci., 2018, 17(2), 205-211.
[http://dx.doi.org/10.3329/dujps.v17i2.39177]
[33]
Akachukwu, D.; Uchegbu, R.I.G.C-M.S. Antimicrobial and in vitro antioxidant assay of the leaf extract of Alternanthera dentate. J. Adv. Med. Pharma. Sci., 2016, 11(2), 1-7.
[34]
Selvi, S.V.; Basker, A. Phytochemical Analysis and GC-MS profiling in the leaves of Sauropus androgynus (l) MERR. Int. J. Drug Dev. Res., 2012, 4(1), 162-167.
[35]
Adeoye-Isijola, M.O.; Olajuyigbe, O.O.; Jonathan, S.G.; Coopoosamy, R.M. Bioactive compounds in ethanol extract of Lentinus squarrosulus Mont - a nigerian medicinal macrofungus. Afr. J. Tradit. Complement. Altern. Med., 2018, 15(2), 42-50.
[http://dx.doi.org/10.21010/ajtcamv15i2.6]
[36]
Mary, A.P.F.; Giri, R.S. Phytochemical screening and GC-MS analysis in ethanolic leaf extracts of Ageratum conyzoides (L.). World J. Pharma. Res., 2016, 5, 1019-1029.
[37]
Evans, R.G.; Day, K.H.; Roman, R.J.; Hopp, K.H.; Anderson, W.P. Effects of intrarenal infusion of 17-octadecynoic acid on renal antihypertensive mechanisms in anesthetized rabbits. Am. J. Hypertens., 1998, 11(7), 803-812.
[http://dx.doi.org/10.1016/S0895-7061(98)00045-4] [PMID: 9683041]
[38]
Cotrim, B.A.; Joglar, J.; Rojas, M.J.; del Olmo, J.M.; Macias-González, M.; Cuevas, M.R.; Fitó, M.; Muñoz-Aguayo, D.; Planells, M.I.; Farré, M.; de Fonseca, F.R.; de la Torre, R. Unsaturated fatty alcohol derivatives of olive oil phenolic compounds with potential low-density lipoprotein (LDL) antioxidant and antiobesity properties. J. Agric. Food Chem., 2012, 60(4), 1067-1074.
[http://dx.doi.org/10.1021/jf203814r] [PMID: 22220510]
[39]
Shinbori, C.; Saito, M.; Kinoshita, Y.; Satoh, I.; Kono, T.; Hanada, T.; Nanba, E.; Adachi, K.; Suzuki, H.; Yamada, M.; Satoh, K. Cyclohexenonic long-chain fatty alcohol has therapeutic effects on diabetes-induced angiopathy in the rat aorta. Eur. J. Pharmacol., 2007, 567(1-2), 139-144.
[http://dx.doi.org/10.1016/j.ejphar.2007.04.009] [PMID: 17499713]
[40]
Das, M.N.; Sivakama, S.S.; Karuppusamy, S.; Mohan, V.R.; Parthipan, B. GC - MS analysis of leaf and stem bark of Cleidion nitidum (MUELL.-ARG.) Thw Ex Kurz (Euphorbiaceae). Asian J. Pharm. Clin. Res., 2014, 7(2), 41-47.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy